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Lowness for Difference Tests

David Diamondstone and Johanna N. Y. Franklin

Abstract We show that being low for difference tests is the same as being com-
putable and therefore lowness for difference tests is not the same as lowness for
difference randomness. This is the first known example of a randomness notion
where lowness for the randomness notion and lowness for the test notion do not
coincide. Additionally, we show that for every incomputable set A, there is a
difference test T A relative to A which cannot even be covered by finitely many
unrelativized difference tests.

Along with the study of random sequences comes the study of sequences that are
far from random. There are many different ways in which an infinite binary sequence
can be said to be far from random, such as triviality, lowness, lowness for tests, or
being a base (see Downey and Hirschfeldt [3], Nies [10]). In this paper we will focus
on the lowness notions.

The concept of lowness has been studied in many contexts. In general, a se-
quence is said to be low if it is indistinguishable from a computable sequence in the
given context. For instance, a sequence A is low with respect to the Turing jump if
A0 �T 00, that is, if its jump has the same Turing degree as that of a computable
sequence. Lowness has also been studied in the contexts of learning theory (see Sla-
man and Solovay [11]) and recursive model theory (see Franklin and Solomon [7]),
but it is most prominent in algorithmic randomness (see [5]).

The first notion is that of lowness for R, and the second is that of lowness for
tests.
Definition 1 A sequence A is low for a randomness notion R if RA D R, that
is, if it does not make any random sequence appear to be nonrandom when it is used
as an oracle.
Definition 2 Let R be a randomness notion. A sequence A is low for R-tests if
for every R-test relative to A hV A

i i there is an unrelativized R-test hUi i such thatT
i V

A
i �

T
i Ui .
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It is clear that for any notion R, any sequence that is low for R-tests must also be
low for R, but the converse is not obviously true since more than one unrelativized
test may be required to cover a relativized test. Whenever a universal test exists,
as for Martin-Löf randomness, these notions are clearly equivalent. If this is not
the case, some work must be done to determine whether this equivalence holds.
For instance, there is no universal Schnorr test. However, Kjos-Hanssen, Nies, and
Stephan [8] showed that every sequence that is low for Schnorr randomness is low
for Schnorr tests by characterizing them as the recursively traceable sets, the class
which Terwijn and Zambella [13] had shown were precisely the sets that were low
for Schnorr randomness.

Bienvenu and Miller [1] have recently characterized lowness in terms of open
covers in a way that suggests that lowness for tests and lowness will coincide for any
randomness notion where the tests are composed of †0

1-sets. In this paper, we con-
sider difference randomness, in which the test elements are differences of †0

1-sets,
and show that lowness for difference tests does not coincide with lowness for differ-
ence randomness. This is the first example of a randomness notion for which these
classes are known to be different and suggests that there is no intrinsic reason for
these classes to coincide. One could make the argument that difference randomness
is not a natural randomness notion and that this example is therefore pathological;
however, the difference random sets are precisely the Turing incomplete Martin-Löf
random sets (see Franklin and Ng [6]) and as such form a very natural subclass of
the Martin-Löf random sets (see Stephan [12]).

1 Introduction

In Section 2, we prove our main theorem.
Theorem 3 If A is low for difference tests, then A is computable.
Then, in Section 3, we show that incomputable sets are very far from being low for
difference randomness.
Theorem 4 If A is incomputable, then there is a difference test T A relative to A
which cannot be captured by finitely many unrelativized difference tests.
Our notation is standard and will generally follow [10]. We will not define difference
randomness as Franklin and Ng [6] originally did, but the following formulation is
easily seen to be equivalent and is more appropriate for our purposes.
Definition 5 A difference test is a pair .hUni;C/, where hUni is a uniformly
†0

1-sequence and C is a…0
1-class such that for all n, the measure condition

�.Un \ C/ < 2�n

is satisfied.
We say that a difference test captures a real X if X 2

T
n Un \ C . A real X is

called difference random if it is not captured by any difference test.
Definition 6 A real X is low for difference randomness if every real which is
difference random is difference random relative to X . A real X is low for difference
tests if for every difference test .hUX

n i;C
X / relative to X , there is an unrelativized

difference test .hVni;D/ such that\
n

UX
n \ CX

�

\
n

Vn \D : (1)
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If equation (1) holds, then we say that T X D .hUX
n i;C

X / is covered by T 0 D .hVni;

D/. This can be generalized to finitely many tests T1 � � � Tn in the obvious way.

All of the proofs in this paper are done in the space Œ0; 1�, but all of the results hold
identically for 2! as there is a computable measure isomorphism X 7! 0:X from 2!

to Œ0; 1�.

2 Lowness for Difference Tests

To show that no incomputable set is low for difference randomness, we begin with
hyperimmune sets, that is, those sets that compute a function that cannot be domi-
nated by any computable function. We show how to use such a function f to build
an f -difference test T f which is not covered by any single unrelativized difference
test T 0. The first part of our strategy is to ensure that T f captures �, which ensures
that T f is not covered by any difference test T 0 which does not capture �; we then
need only concern ourselves with difference tests T 0 which capture �. Since � is
Martin-Löf random, a difference test T 0 which captures � cannot be a Martin-Löf
test. Moreover, this must hold locally in any interval around �. Such a T 0 must be
missing many open intervals near �, which will be revealed as they show up in the
…0

1-class that makes T 0 a difference test rather than a Martin-Löf test. When we see
such an interval, we can ensure that some rational in the interval is captured by T f.
We use places where f escapes domination to ensure that we see such an interval
soon enough that we can use it to diagonalize, that is, before we have put it into the
complement of the…0

1Œf �-class that we are building as part of the test T f.

Theorem 7 Let A have hyperimmune degree. Then A is not low for difference
tests.

Proof Let f �T A escape domination by every computable function g. We will
use f to define a difference test .hUA

n i;C
A/. Let h�si be a monotone approximation

of the halting probability �. We define the difference test by setting

UA
n D Œ0;�C 2

�n/

and constructing CA in stages. Let hDei be an effective enumeration of all …0
1-

classes, where DeŒs� is the stage s approximation to De . During the construction,
we will enumerate a set of rationalsQ; when a rational is enumerated intoQ, it will
be enumerated for some De , and the requirement Re will henceforth be marked as
satisfied.

2.1 Construction Stage 0: Let CAŒ0� D Œ0; 1�, and letQ0 D ;.
Stage s: For each e < s with Re unsatisfied, search for the least rational q such

that
(1) �s�1 < q < �f .s/,
(2) q … DeŒf .s/�, and
(3) the denominator of q is at most f .s/.

For each e such that some q is found, enumerate that q into Q, and mark Re as
satisfied. Then remove the set Œ0;�s/nQ (which is a finite union of open1 intervals)
from CA.
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2.2 Verification

Lemma 8 We have CA D Q [ Œ�; 1�.

Proof We will show, by induction on s, that for all s,

CAŒs� � Qs [ Œ�s; 1�:

At stage 0, CAŒ0� D Œ0; 1�, so this is certainly true. Assume that

CAŒs � 1� � Qs�1 [ Œ�s�1; 1�:

If any rational numbers are enumerated intoQ at stage s, they must be at least�s�1,
so

CAŒs � 1� � Qs [ Œ�s; 1�:

At stage s, no element of Qs is removed from CA, nor is anything larger than �s

removed, and therefore
CAŒs� � Qs [ Œ�s; 1�:

By induction, this holds for all s. Taking the lim inf on both sides, we have

CA
D lim inf

s
CAŒs� � lim inf

s
Qs [ Œ�s; 1�:

Thus
CA
� Q [ Œ�; 1�:

On the other hand, if x < � and x … Q, then there is some s such that x < �s .
Then x is removed from CA by the end of stage s. Thus

CA
D Q [ Œ�; 1�;

as claimed.

From this, we can easily see that the measure condition is satisfied, that is,
.hUA

n i;C
A/ is a difference test, and that\

n

UA
n \ CA

D Œ0;�� \
�
Q [ Œ�; 1�

�
D Q [ ¹�º:

Lemma 9 There is no difference test such that its intersection contains\
n

UA
n \ CA

D Q [ ¹�º:

Proof Consider a difference test .hVni;D/. There are two cases: when this dif-
ference test captures �, and when it does not. It the test fails to capture �, then
certainly the intersection cannot contain Q [ ¹�º. Suppose that the difference test
does capture �. Then for every s, the interval .�s; �/ cannot be a subset of D ,
or else h.�s; �C 2

�n�1/ \ VnC1i would satisfy the Martin-Löf measure condition
and would therefore be a Martin-Löf test capturing �.

Let e be an index of D . If Re is ever marked as satisfied, there is some
q … De which is enumerated into Q. By the above lemma, q 2

T
n U

A
n \ CA but

q …
T

n Vn \D , so q witnesses that the difference test .hUA
n i;C

A/ is not covered
by the difference test .hVni;D/. So it suffices to show that Re is eventually marked
satisfied.

In any interval of the form .�s�1; �/, there must be some rational subinterval
removed from D D De . We will define a computable function g W ! ! !. To define
g.s/, search for some natural number n and rational number q with denominator
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at most n such that �s�1 < q < �n and some interval containing q is removed
from De by stage n; let g.s/ be the least such n. The above argument shows that
such an n will always be found, and so g is a total computable function. Since f
escapes domination by g, there is a stage s > e with f .s/ > g.s/. During stage
s of the construction, the search for a rational number q meeting conditions (1)–(3)
will succeed, so Re will be marked as satisfied during stage s if it is not already so
marked.

Therefore, A is not low for difference tests. Theorem 7 is proved.

Corollary 10 If A is low for difference tests, then A is computable.

Proof If A is �0
2 and incomputable, then A is hyperimmune, whence A is not low

for difference tests.
Downey, Nies, Weber, and Yu [4] showed that the K-trivial sets are the sets that

are low for weak 2-randomness versus Martin-Löf randomness, and since difference
randomness is intermediate between these notions (see [6]), we know that every set
that is low for difference randomness is K-trivial.

If A is not �0
2, then A is not K-trivial and hence not low for difference random-

ness. A fortiori, A is not low for difference tests.

In fact, the sets which are low for difference randomness are precisely theK-trivials.
Franklin and Ng [6] observed that for computably enumerable (c.e.) sets A, low-
ness for difference randomness is equivalent to another property, being weakly ML-
noncuppable, meaning that there is no Martin-Löf random set B �T ;

0 such that
;0 �T A˚ B . Weak ML-noncuppability was recently shown by Day and Miller [2]
to be the same asK-triviality. Since everyK-trivial set is below a c.e. K-trivial (see
Nies [9]), every K-trivial set is low for difference randomness.

This equivalence gives us the following additional corollary.

Corollary 11 Lowness for difference tests and lowness for difference randomness
do not coincide.

Remark 12 It is worth pointing out that in order to satisfy requirement Re—
diagonalizing against the eth difference test—the construction completely ignores the
sequence of †0

1-classes which forms the first half of the test and focuses entirely on
the…0

1-class De which forms the second half of the test. As such, it does not matter
whether we diagonalize against an enumeration of all difference tests or merely an
enumeration of all…0

1-classes.
The verification, however, does depend on the entire difference test, because

whether we succeed at diagonalizing against a difference test using some element
ofQ or using � depends on whether the difference test captures �.

3 How Far from Low?

Theorem 3 tells us that no incomputable set is low for difference tests but does so in
a very weak way. Examining the test T A built by the proof, one sees that apart from
�, every real captured by T A is rational. Hence each real captured by T A is either
captured by a single difference test capturing � or by a universal Martin-Löf test.
One is therefore led to ask whether this is an essential feature of the proof. We know
that incomputable K-trivials are low for difference randomness but not difference
tests, but might they be somehow very close to being low for difference tests? In this
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section we show that this is not the case and that in fact every incomputable set is as
far as possible from being low for difference tests in the following way.

Theorem 13 IfA is incomputable, there is a difference test T A relative toAwhich
cannot be covered by finitely many unrelativized difference tests.

To prove this theorem, we can again focus on sets of hyperimmune degree, since
incomputable sets not of hyperimmune degree cannot even be low for difference
randomness. We use a variation on our strategy from Section 2. Again we build a
test T f and ensure that it captures �, but now we have to diagonalize against finite
unions of difference tests of the form T1 � � � Tm. Again, in order to capture T f at
least one of these tests, say, Ti , must contain �. We can use the same strategy from
before to find some interval I in the complement of Ti . We then repeat the same
strategy inside I but now only have to worry aboutm�1 of the tests from the union.
Continuing like this for up to m steps if necessary, we diagonalize against the entire
ensemble T1 � � � Tm. To prevent strategies for separate requirements from interfering
with each other, we will work with infinitely many disjoint open subintervals of Œ0; 1�,

¹IE W E � ! is finiteº:

(We could have done this in the previous construction as well, but it was unnecessary
there.)

Theorem 14 Let A have hyperimmune degree. Then there is a difference test rel-
ative to A which cannot be covered by any finite collection of unrelativized difference
tests.

Proof As before, we will build an A-difference test T A D .hUA
n i;C

A/, defined
using f �T A, which escapes every computable function. Let hTei be an enumera-
tion of all unrelativized difference tests, where Te D .hV

e
n i;De/. We need to satisfy

the requirements

RE W T
A is not covered by ¹Te W e 2 Eº;

where E ranges over all finite subsets of the natural numbers. We will work for
requirement RE on the interval IE , so in our construction we may fix a specific
requirement and define hUA

n i and CA restricted to that interval for that requirement,
ignoring all other requirements. To ensure that we can put all the separate pieces
together and get a valid difference test, we need only ensure that

�.UA
n \ CA

\ IE / � �E2
�n;

where �E is a computable real-valued function of E (a finite set of natural numbers)
with

P
E �E D 1.

Once again, we fix a monotone approximation h�si of �. For an interval I with
rational endpoints a; b, let�I D aC .b� a/�; we see immediately that�I has the
following properties:

(1) �I is in the interior of I ,
(2) �I Œs� WD a C .b � a/�s is a monotone approximation to �I , with range

contained in I ,
(3) �I is Martin-Löf random, and
(4) �I is not difference random.
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We define a procedure M.I; E; �/ that works for a requirement RE inside the
interval I and adds measure at most �2�n to the nth level of the test we build. We
need to succeed at requirement RE inside the interval IE ; the reason we define
things in terms of procedures M.I; E; �/ is that if E D E 0 [ ¹eº and we succeed at
requirement RE 0 inside an interval I in the complement of De , then we also succeed
at requirement RE . Therefore, our strategy for RE involves finding such a pair e; E 0
and interval I and recursing to perform the strategy for RE 0 inside that interval.

The definition of the procedure M.I; E; �/ depends on the stage s0 when it is
called and on whether the set E is empty. If E is nonempty, then it looks for a place
to recurse and call a subprocedure forEn¹eº, but ifE is the empty set, then it merely
has to ensure that T A captures some element of the interval I .

3.1 Procedure M.I;E; �/, for E nonempty Stage s0: We assume that UA
n Œs0� \

I D ; for all n and that CAŒs0� \ I D I . Procedure M.I; E; �/ has two states,
“searching” and “found,” and begins in the “searching” state.

Stage s > s0: We have the following.
� Step 1: If this procedure is in the “found” state, then go to step (2) below. If
this procedure is in the “searching” state, then search for the least pair .a; b/
of rationals according to the lexicographic order on Q2 such that
(1) �I Œs � 1� < a < b < �I Œf .s/�,
(2) there is some e 2 E such that the open interval .a; b/ is a subset of the

complement of DeŒf .s/�, and
(3) the denominators of a and b are at most f .s/.
If such a pair is found, then switch to the “found” state and begin the

procedure M..a; b/; E n ¹eº; �=2/.
� Step 2: If this procedure is in the “searching” state, then let OI D I ; if this
procedure is in the “found” state and .a; b/ is the interval it found, then let
OI D I n Œa; b�. Enumerate OI \ Œ0;�I Œs�C �2

�n�1/ into UA
n for each n, and

enumerate OI \ Œ0;�I Œs�/ into the complement of CA.

3.2 Procedure M.I;E; �/, for E empty Stage s0: We assume that UA
n Œs0� \ I D ;

for all n, and that CAŒs0� \ I D I . Let q be the midpoint of the interval I .
Stage s0 C 1: Enumerate I into Un, and enumerate I n ¹qº into the complement

of CA.
No action will be taken by this procedure at stages after s0 C 1.

3.3 Construction Let Es denote the finite set of natural numbers with canonical
index s.

At stage s, call the procedure M.IEs
; Es; �Es

/, and take one step in each proce-
dure already called.

3.4 Verification When one procedure M.I; E; �/ calls another procedure M.I 0;

E 0; �0/, call the latter procedure a subprocedure of the former. We inductively de-
fine M.I 0; E 0; �0/ to be a child of M.I; E; �/ (and the latter a parent of the former)
if M.I 0; E 0; �0/ is a subprocedure of M.I; E; �/ or a child of a subprocedure of
M.I; E; �/. Looking at the procedure and construction definitions, one can verify
the following properties:

� Each procedure has at most one subprocedure.
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� No action taken by M.I; E; �/ can affect any part of UA
n or CA outside of I .

� If M.I; E; �/ calls M.I 0; E 0; �0/ at a stage s, then I 0 is a proper subinterval
of I , and the procedure M.I; E; �/ has not affected any part of UA

n or CA

inside I 0 before the end of stage s and will never subsequently do so.
� The only procedures called by the construction are the procedures M.IE ;

E; �E / and their children.
By the last two properties, if two procedures M.I; E; �/ and M.I 0; E 0; �0/ are called
during the construction, then either I and I 0 are disjoint or one is a proper subinterval
of the other and the corresponding procedure is a child of the other procedure. For
each procedure M.I; E; �/ called during the construction, define OI to be I nI 0, where
M.I 0; E 0; �0/ is the unique subprocedure of M.I; E; �/ (or OI D I if M.I; E; �/ has
no subprocedure). Since at most one procedure is called with interval I as the first
argument and each procedure calls at most one subprocedure, this is well defined.
Finally, the four properties together imply that the action of procedure M.I; E; �/ is
the only thing that can affect any part of UA

n or CA inside OI during the construction.
If E is nonempty, then the procedure M.I; E; �/ enumerates all of the inter-

val I \ Œ0;�I C �2�n�1/ into UA
n , except for the interval I 0 if a subprocedure

M.I 0; E 0; �0/ is called. Therefore,
OI \UA

n D
OI \ Œ0;�I C �2

�n�1/:

IfE is nonempty, then M.I; E; �/ also enumerates all of the interval I \ Œ0;�I / into
the complement of CA, excluding the interval I 0 if a subprocedure M.I 0; E 0; �0/ is
called. Hence if a procedure M.I; E; �/ is called during the construction with E
nonempty, then OI \ CA D OI \ Œ0;�I /. If E is empty, then OI D I , I � UA

n for all
n, and I \ CA D ¹qº, where q is the midpoint of I .

Lemma 15 If the procedure M.I; E; �/ is called during the construction, then

�.I \UA
n \ CA/ � �2�n:

Proof We prove the lemma by induction on the size of E. If E is empty, then by
the above we have I D OI and I \ UA

n \ CA is the singleton ¹qº, where q is the
midpoint of I , and hence I has measure 0. If E is nonempty and no subprocedure is
called by M.I; E; �/, then we again have I D OI , and

I \UA
n \ CA

D I \ Œ�I ; �I C �2
�n�1/;

so the measure is at most �2�n�1. If E is nonempty and M.I; E; �/ calls a sub-
procedure M.I 0; E 0; �0/, then jE 0j D jEj � 1 and �0 D �=2, so by the inductive
hypothesis,

�.I 0 \UA
n \ CA/ � �2�n�1:

Also,
OI \UA

n \ CA
D OI \ Œ�I ; �I C �2

�n�1/;

which has measure at most �2�n�1. Hence

I \UA
n \ CA

D . OI \UA
n \ CA/ [ .I 0 \UA

n \ CA/

has measure at most �2�n.

Thus
�.IE \UA

n \ CA/ � 2�n�E
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and
�.UA

n \ CA/ D �
�[

E

IE \UA
n \ CA

�
�

X
E

2�n�E D 2
�n;

so .hUA
n i;C

A/ is a difference test relative to A.

Lemma 16 The A-difference test T A D .hUA
n i;C

A/ is not covered by any finite
ensemble of unrelativized difference tests.

Proof We say that RE is satisfied inside I if there is some real X 2 I which is
captured by the test T A but is not captured by any of the tests Te for e 2 E. (In the
case when E is empty, this just says that T A captures some real in the interval I .)
We will show that for every set E, the requirement RE is satisfied inside IE . Notice
that if e 2 E and E 0 D E n ¹eº, then if RE 0 is satisfied on some interval I 0 � I in
the complement of De , there is some real X 2 I 0 not captured by any of the tests Te0

for e0 2 E 0. Since X … De , it is also not captured by Te , and hence RE is satisfied
inside I .

We will prove by induction on jEj that if a procedure M.I; E; �/ is called during
the construction, then RE is satisfied inside I .

Suppose that E is empty. We showed above that in this case, T A captures the
midpoint of I . Hence RE is satisfied inside I .

Now suppose that E is nonempty. We showed above that �I 2 I and �I is
captured by the A-difference test T A, so if �I is not also captured by one of the
difference tests Te where e 2 E, then RE is satisfied inside I . Suppose that �I

is captured by at least one of these tests. If the procedure M.I; E; �/ eventually
goes from the “searching” state to the “found” state after finding some subinterval
I 0 D .a; b/ in the complement of some De (with e 2 E) and calling the subproce-
dure M.I 0; E 0; �=2/ (where E 0 D E n ¹eº), then jE 0j D jEj � 1, so by the inductive
hypothesis we may assume that RE 0 is satisfied inside I 0. But as shown above, this
implies that RE is satisfied inside I . So it suffices to show that if �I is captured by
at least one of the tests Te where e 2 E, then the procedure M.I; E; �/ eventually
goes from the “searching” state to the “found” state.

Let s0 be the stage at which the procedure M.I; E; �/ is called. Fix e 2 E such
that Te captures�I . As before, in any interval of the form .�I Œs�1�;�I /, there must
be some rational subinterval removed from De . We will define a computable func-
tion g W ! ! !. To define g.s/, search for some natural number n and pair of rational
numbers a; b with denominator at most n, such that �I Œs � 1� < a < b < �I Œn�

and the interval .a; b/ is in the complement of DeŒn�; let g.s/ be the least such n.
Such an n will always be found, and so g is a total computable function. Since f
escapes domination by g, there is a stage s > s0 with f .s/ > g.s/. During stage s of
the construction, the search for a rational interval .a; b/ meeting conditions (1)–(3)
must succeed, so the procedure M.I; E; �/ will move to the “found” state at stage s,
provided that it is still searching.

This completes the proof.

Note

1. In the space Œ0; 1�, intervals of the form Œ0; x/ are indeed open.
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