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Some Results and Problems on Complex Germs with
Definable Mittag–Leffler Stars

A. J. Wilkie

To Anand Pillay on the occasion of his 60th birthday

Abstract Working in an o-minimal expansion of the real field, we investigate
when a germ (around zero, say) of a complex analytic function has a definable
analytic continuation to its Mittag–Leffler star.

As an application we show that any algebro-logarithmic function that is com-
plex analytic in a neighborhood of the origin in C has an analytic continuation to
all but finitely many points in C.

1 Introduction

This paper is motivated by the conjecture of Zilber stating that every Cexp-definable
subset of C is either countable or cocountable. Here, Cexp is the expansion of the
ring of complex numbers by the complex exponential function. As far as I know,
even sets of the form ®

z 2 C W 9w 2 CF.z;w/ D 0
¯

(�)
where F.z;w/ is a (two-variable) term of the language L.Cexp/ have not been shown
to satisfy Zilber’s conjecture.

Our approach to this particular case is as follows. Let us suppose that

F.0; 0/ D 0 ¤
@F

@w
.0; 0/:

Then by the implicit function theorem there exists � > 0 and a complex analytic
function ' W �.0I �/ ! C (where, in general, �.aI r/ denotes the disk centered at
a 2 C and having radius r) such that for all z 2 �.0I �/, we have F.z; '.z// D 0.
We must show that the set (�) is cocountable, and it seems reasonable to conjecture
that the function element ' has an analytic continuation (which necessarily preserves
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the equation F.z; '.z// D 0) to all but countably many points in the complex plane.
Indeed, one can fairly easily show that if one proves a suitably generalized version of
this analytic continuation conjecture (in which w is allowed to be an n-tuple of vari-
ables and F an n-tuple of terms in the 1Cn variables z; w, and where the countably
many exceptional points have a certain specific form), then Zilber’s conjecture (even
for subsets of C defined by formulas of the language L!1;!.Cexp/) would follow.

Let us now consider issues of definability. The approach to Zilber’s conjecture
suggested above transcends L.Cexp/-definability (at least, if Zilber’s conjecture is
true!): one cannot define restricted functions ' W �.0I �/! C without the resource
of the real line and the usual metric. So we follow the Peterzil–Starchenko idea
of doing complex analysis definably in a suitable o-minimal structure via the usual
identificationsC � R˚iR � R�R. Actually, we will be considering only a fixed o-
minimal expansioneR of the ordered field of real numbersR, so many of the subtleties
of Peterzil and Starchenko [4] will not be required here. But the uniform finiteness
of the winding number for definable functions will be, and this was inspired by the
Peterzil–Starchenko approach.

My aim in this paper, then, is to consider definable analytic continuation relative
to an o-minimal expansion eR of R. I shall only consider continuations along straight
line paths emanating from the origin in C, so let me discuss this now. The mathe-
matical theory (i.e., without definability considerations) may be found in Hardy [1]
and Markushevich [3] but in very few modern texts as far as I can see.

2 The Mittag–Leffler Star

So consider any complex analytic function ' W �.0I r/ ! C. The Mittag–Leffler
star of ' (henceforth just the star of '), denoted S' , is defined to be the set of all
z 2 C such that there exists an open set Uz � C with �.0I r/ [ Œ0; z� � Uz and a
complex analytic function  W Uz ! C with  � �.0I r/ D '. (Here, Œ0; z� denotes
the straight line segment in C from 0 to z, i.e., Œ0; z� WD ¹tz W 0 � t � 1º:)

It can be shown (see [3, Volume 3]) that S' is an open, connected, and simply
connected set containing �.0I r/ and that there exists a unique complex analytic
function ?' W S' ! C with ?' � �.0I r/ D '. I call ?' the star function of '.
Also, a point z such that z … S' but satisfying Œ0; w� � S' for all w 2 Œ0; z� X ¹zº
will be called a singular point of '.

In general, one can say very little else about the nature of the set S' . (It could,
e.g., be bounded.) However, we have the following result in the definable situation.

Theorem 1 Let eR be an o-minimal expansion of the ordered field of real numbers
R, and assume that eR has analytic cell decomposition. Let ' W �.0I r/ ! C be a
complex analytic function, and suppose that its star function ?' W S' ! C (and
hence its star S') is definable (in eR). Then ' has only finitely many singular points.

Proof Let ' W �.0I r/ ! C and ?' W S' ! C be as in the hypotheses of the
theorem, and suppose that ' has infinitely many singular points. Then by analytic
cell decomposition there would exist (possibly after rotating C about zero) a 2-cell
C of the form

C D
®
x C iy W a < x < b; f .x/ < y < g.x/

¯
;

where f; g W .a; b/! R are definable real analytic functions, such that C � S' and
such that ?' � C has no analytic continuation to any open set inC containing a point
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of graph.g/. We may further assume (by refining the original cell decomposition)
that either for all z 2 C , j?'.z/j < 1, or for all z 2 C , j?'.z/j > 1.

Let us consider the first case. By o-minimality there is a finite set s � graph.g/
such that ?' has a definable continuous extension (which we also denote by ?') to
.C [ .graph.g/// n s. By analytic cell decomposition again, there exist a0; b0 with
a < a0 < b0 < b such that ?' ı g � .a0; b0/ is a definable real analytic function.
We now obtain a contradiction by a using a classical argument (as described in, e.g.,
Lang [2, Chapter IX]). Namely, fix x0 2 .a0; b0/; and let � > 0 be chosen small
enough so that a0 < x0 � � < x0 < x0 C � < b0 and also so that the (real) Taylor
series of both g and ?' ı g extend (via the same power series) to (not necessarily
definable) complex analytic functions G W �.x0I �/ ! C and ˆ W �.x0I �/ ! C,
respectively.

Define the complex analytic functionH W �.x0I �/! C byH.z/ WD z C iG.z/.
Since the Taylor coefficients of G are real, it follows that H 0.x0/ ¤ 0 and hence

(by reducing � if necessary) thatH is a holomorphic homeomorphism from�.x0I �/
onto an open set, U , say. Further, H maps the interval .x0 � �; x0 C �/ onto
graph.g � .x0 � �; x0 C �//.

Now consider the function

‰ WD ?' �ˆ ıH�1 W
�
C [ graph

�
g � .x0 � �; x0 C �/

��
\ U ! C:

By our construction ‰ is continuous, holomorphic on C \ U , and identically zero
on the analytic curve graph.g � .x0 � �; x0 C �// which forms (a nontrivial) part
of the boundary of C \ U . This implies (see [2, Exercise 6, p. 303]) that ‰ is
identically zero throughout .C [ graph.g � .x0 � �; x0 C �/// \ U . It follows that
ˆ ıH�1 provides an analytic continuation of ?' to the open set C [ U . But this is
a contradiction since U contains the point x0 C ig.x0/ of graph.g/.

Remark I am grateful to Chris Miller for pointing out to me that the statement in
the exercise from Lang’s book [2] may well be false in full generality. (The analytic
arc mentioned there might not be accessible from within the open set.) However, it is
true, and easy to prove, via Cauchy’s theorem, for open sets whose boundary consists
of finitely many analytic arcs, which is the case here.

The case when j?'.z/j > 1 for all z 2 C is dealt with by applying the above
argument to the function 1

?'
and then inverting the analytic continuation. (The proof

actually shows that ?' is necessarily locally bounded at all but finitely many points
of graph.g/.)

This completes the proof of Theorem 1.

Later I shall show that the collection of all those complex analytic germs having
a definable Mittag–Leffler star has a reasonably rich structure, at least if eR does.
This is in contrast to those germs having definable entire, or definable meromorphic,
extensions which, as one can easily show, are (for any o-minimaleR) just polynomials
or rational functions, respectively.

The proof of Theorem 1 shows that any definable complex analytic function
whose domain is an open cell C in C has an analytic continuation (though not nec-
essarily a definable one) across the boundary of C at all but finitely many points.
I leave the reader to combine this remark with Theorem 1 itself to give a proof of the
following result.
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Theorem 2 Let eR be an o-minimal expansion of the ordered field of real numbers
R, and assume that eR has analytic cell decomposition. Let ' W �.0I r/ ! C be a
complex analytic function, and suppose that its star function ?' W S' ! C (and
hence its star S') is definable (in eR). Then for all but finitely many points z 2 C
there exists a continuous, piecewise linear path beginning at zero and terminating
at z (and, in fact, consisting of at most two line segments) along which ' has an
analytic continuation.

However, I am unable to settle the following question.

Open Problem 1 Let ' and ?' be as in the hypotheses of Theorems 1 and 2.
Does there exist a finite set s � C n ¹0º such that ' has an analytic continuation
along all continuous, definable paths that begin at zero and avoid s?

Before finishing this section I should mention the Mittag–Leffler star theorem. This
provides a remarkable series expansion for ?' which converges uniformly to ?'
on compact subsets of S' . It is completely analogous to the Taylor expansion
on the disk of convergence of ' in the sense that the only dependence of the se-
ries on the germ ' is a fixed (i.e., independent of ') linear one on the numbers
'.0/; '0.0/; : : : ; '.n/.0/; : : : . I will not need this result, and so I will not expand
on this remark. The interested reader may consult [3] for further information and
proofs.

3 The Ring of Definable Star Functions

I now fix an o-minimal expansion eR of R, and I assume that eR has analytic cell
decomposition. Notions of definability are relative to eR and are without parameters.

I denote by eG the collection of all definable, complex analytic germs at zero, that
is, the collection of definable, complex analytic functions f W U ! C (where U is
a (definable) open neighborhood of zero), where two such functions are identified if
there is some open neighborhood of zero on which they agree. I will, however, not
distinguish notationally between functions and their germs.

It is clear that eG is an integral domain (under pointwise operations) and a differ-
ential ring (under the usual derivative d

dz
). We are interested in its subset consisting

of those ' 2 eG having a definable star function ?' W S' ! C.
It is not immediately obvious that this is a subring of eG : it could be the case, for

example, that ?' W S' ! C and ? W S ! C are definable but that the domain of
?.' C  / (i.e., S.'C /) is strictly larger than S' \ S . So we would need to show
that the extension of the (obviously definable) function ?' C ? W S' \ S ! C to
S.'C / is definable.

To resolve this rather annoying difficulty, we first let eS be the collection of
all definable, open subsets of C of the form C n

Sn
jD1Œaj ;1/, where a1; : : : ; an

are (necessarily definable) nonzero complex numbers (and where, for a 2 C,
Œa;1/ WD ¹ta W 1 � tº).

Now leteM WD ®' 2 eG W ' has a (definable) representative N' W U ! C for some U 2 eS¯:
Now it is certainly clear that eM is a subring of eG since eS is closed under inter-

section. We would like to show that eM may be identified with the collection of those
' 2 eG having a definable star function. Such a result is in the spirit of those in [4,
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Section 2.7] but does not seem to follow directly from them. So instead we argue as
follows.

Consider, more generally, any definable complex analytic function F W U ! C
where U is a (definable) open subset of C of codimension at most 1 (in the sense of
the o-minimal structure eR). Let E.F / denote the collection of all (not necessarily
definable) complex analytic functions G W V ! C with U � V � C, V open, and
G � U D F . Now if Gi W Vi ! C are in E.F / for i D 1; 2, and z 2 V1 \ V2, then
G1.z/ D G2.z/. This is because for some � > 0,�.zI �/ � V1\V2 and�.zI �/\U
is a nonempty open set (as U has codimension 1) on which G1 and G2 agree (with
F ). It follows that G1 andG2, being complex analytic, agree throughout�.zI �/ and
hence in particular that G1.z/ D G2.z/.

It now follows that all functions in E.F / have a common extension,H W W ! C,
say, which also lies in E.F /. Further, H is definable. To see this let A � C � C be
the closure of the graph of F W U ! C. Then one easily shows that for all z; w 2 C,
H.z/ D w if and only if hz; wi 2 A and for some � > 0, A \ .�.zI �/ � C/ is the
graph of a continuously (complex) differentiable function with domain �.zI �/, and
this is a definable condition.

Now suppose that ' 2 eM, represented by N' W U ! C with U 2 eS . Since
sets in eS obviously have codimension at most 1, we may apply the argument above
to F D N' and let H W W ! C be the resulting maximal extension. Then as the
function ?' W S' ! C lies in E. N'/, it follows that S' � W and H � S' D ?'.
Now it may be the case that the inclusion here is proper (e.g., if '.z/ D .1 � z/�1,
then S' D C n Œ1;1/, whereasW D C n ¹1º), but, givenW it is very easy to define
the singular points of ' and hence also the set S' . Since ?' is just the restriction of
H to S' its definability also follows, as required.

The rest of this paper is devoted to proving that eM is closed under various opera-
tions. Our first observation is now clear.

Theorem 3 eM is a subring (in fact, a differential subring) of eG .

We also have the following result where I regard one domain, R0, say, as being
algebraically closed in another domain,R, say, if every zero inR of a (not necessarily
monic) polynomial with coefficients in R0 actually lies in R0.

Theorem 4 eM is algebraically closed in eG .

Proof First, if f 2 eM is invertible in eG (i.e., if f .0/ ¤ 0), then it is invertible ineM. For if domain.f / D U 2 eS , let Zf WD ¹a 2 U W f .a/ D 0º. Since Zf is a
discrete set, it is finite (by o-minimality). So if we set V WD U n

S
a2Zf

Œa;1/, then
V 2 eS and 1

f
IV ! C is a definable, complex analytic function. Hence 1

f
2 eM.

So to prove the theorem it is now sufficient to consider a monic polynomial
P.w/ D wn C f1 � w

n�1
C � � � C fn;

where f1; : : : ; fn 2 eM, which has a root, ', say, in eG . We may assume that P is
irreducible over (the field of fractions of) eM and, in particular, that its discriminant,
D, say, is a nonzero element of eM. It follows, as above, that we can find a set U 2 eS
such that both U �

Tn
jD1 domain.fj / andD.z/ ¤ 0 for all z 2 U n ¹0º.

It now follows from classical theory that ' has an analytic continuation to all
points of U . (The continuation is single valued since U is simply connected.) In
particular, U � S' , and this continuation is necessarily equal to ?' � U (as both
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functions agree on an open neighborhood of zero) and, further, P.?'/ D 0 (in the
ring eM). It remains to show that ?' � U is definable. However, this follows easily by
considering a cell decomposition ofR3 compatible with the (definable) set consisting
of all hx; y; ti 2 R3 such that x C iy 2 U and for some u 2 R,

.t C iu/n C f1.x C iy/ � .t C iu/
n�1
C � � � C f0.x C iy/ D 0:

Then the graph of the real part of ?' � U is given by piecing together certain 0,
1, and 2 cells of this decomposition. The imaginary part of ?' � U is dealt with
similarly, and this completes the proof of the theorem.

It follows from Theorem 4 that if eR D R, then eM D eG .

Open Problem 2 Does there exist an o-minimal expansion eR of R in which some
nonalgebraic, complex analytic germ f W �.0I r/ ! C is definable but is such thateM D eG ?

Certainly the complex exponential function restricted to a disk �.0I r/ could not be
definable in such an eR since its star function is the entire exponential function which
is not definable in any o-minimal structure.

From now on we assume that, for any R > 0, exp � ¹x C iy W �R < y < Rº is
definable in eR. This is equivalent to both the real exponential function exp � R and
the restricted sine function sin W Œ0; 2�/ ! R being definable in eR. The structure
Ran;exp is an example.

Theorem 5 Let f 2 eM, and assume that f .0/ ¤ 0. Then any branch of logf
(restricted to some set in eS ) is in eM.

Proof Clearly we may choose r > 0 small enough so that all determinations of
logf � �.0I r/ are in eG . Let Lf W �.0I r/ ! C be such a determination. Let
U D domain.f /, so that U 2 eS . Now arguing as before we may assume that
f .z/ ¤ 0 for all z 2 U . Thus, since U is simply connected, Lf extends to a
single-valued logarithm of f on all of U via the usual formula

Lf .z/ D Lf .0/C

Z z

0

f 0.w/

f .w/
dw .z 2 U/;

where the integration is along the straight line segment Œ0; z� � U .
To see that Lf W U ! C is definable let us first note that the functions

jf j W U ! R>0 and f
jf j
W U ! ¹w 2 C W jwj D 1º are definable, continuous

functions. Since the real logarithm function from R>0 to R is definable, we obtain
immediately that the real part of Lf (= log jf j) is definable.

To deal with the imaginary part we note that as Lf is definable in some neigh-
borhood of zero, the number Lf .0/ is definable and hence so is its imaginary part,
�0, say. Then for z 2 U , the imaginary part of Lf .z/ is given by �z.z/, where
�z W Œ0; z�! R is the unique continuous function satisfying (a) �z.0/ D �0, and (b)
f
jf j
.w/ D ei�z.w/ for w 2 Œ0; z�.
So we must show that �z.z/ is a definable function.
For z 2 U , let

Az D
°
t 2 R W 0 � t � 1 and

f

jf j
.tz/ D 1

±
:
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Then Az is, uniformly in z, a definable subset of Œ0; 1�. It follows by o-minimality
that there exists N > 0 such that for all z 2 U , either Az contains at most N points,
or else Az contains an open interval. In the former case we clearly have

�0 � 2�.N C 1/ � �z.w/ � �0 C 2�.N C 1/

for all w 2 Œ0; z�. This holds in the latter case too since then, by analyticity, f is real
(and positive) throughout Œ0; z�, and hence �z is constant with value �0.

We now consider a cell decomposition of R3 compatible with the set°
hx; y; �i 2 R3 W x C iy 2 U; �0 � 2�.N C 1/ � � � �0 C 2�.N C 1/ and

cos � C i sin � D
f .x C iy/

jf .x C iy/j

±
:

(Notice that this set is definable by our assumptions on eR.)
The graph of the function z 7�! �z.z/ (z 2 U ) is now obtained by piecing

together certain 0, 1, and 2 cells of this decomposition.

By a similar argument one can also establish the following result.

Theorem 6 If f 2 eM, f .0/ ¤ 0, and ˛ is an exponent ofeR, then (any branch of)
f ˛ also lies in eM.

I am reasonably confident that Theorems 4 and 5 have a common generalization as
suggested by the following problem.

Open Problem 3 Let f1; : : : ; fn 2 eM n ¹0º, and let �1.w/; : : : ; �n.w/ be one-
variable terms of L.Cexp/. Assume that ' 2 eG satisfies

nX
jD1

fj .z/ � �j
�
'.z/

�
D 0

for all z 2 domain.'/. Is it the case that ' 2 eM?

As for our original motivation, I conjecture a positive answer to the following.

Open Problem 4 Let �.z; w/ be a two-variable term of L.Cexp/, and let ' 2 eG
be such that

�
�
z; '.z/

�
D 0

for all z 2 domain.'/. Then does the star of ' have at most countably many singular
points? If so, is each such point definable?

Finally, I state a result that makes no reference to definability. It follows immediately
from Theorems 4, 5, 6, and 2. However, I see no way of proving it without using the
o-minimality of, say, Ran;exp.

Theorem 7 Let O denote the ring of complex analytic germs at the origin in C.
Let H be the smallest subset of O containing the polynomial ring CŒz� and satisfying
the following closure conditions:

(i) H is a subring of O and is algebraically closed in O;
(ii) if f 2 H and f .0/ ¤ 0, then logf 2 H ;
(iii) if f 2 H , f .0/ ¤ 0 and ˛ 2 R, then f ˛ 2 H .
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Then for every germ f 2 H there exists a finite set sf � C such that for all
z 2 C n sf there exists a piecewise linear path starting at zero and terminating at z
along which f can be analytically continued.
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