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Unlikely Intersections in
Poincaré Biextensions over Elliptic Schemes

D. Bertrand

Abstract This paper concerns the relations between the relative Manin–
Mumford conjecture and Pink’s conjecture on unlikely intersections in mixed
Shimura varieties. The variety under study is the 4-dimensional Poincaré
biextension attached to a universal elliptic curve. A detailed list of its special
subvarieties is drawn up, providing partial verifications of Pink’s conjecture in
this case, and two open problems are stated in order to complete its proof.

1 Introduction

In recent work, partly in collaboration with B. Edixhoven and with D. Masser, A. Pil-
lay, and U. Zannier (see [4], [5], [6]), semiabelian surface schemes are studied in the
context of the relative Manin–Mumford conjecture. Due to the possible presence of
Ribet sections (see [4], [5]), this conjecture does not hold in general, but as is shown
in [6], they are the only obstruction to its validity.

More precisely, let Qalg be the algebraic closure of Q in C, and let S be an irre-
ducible algebraic curve over Qalg. For any group scheme G over S , we write Gtor for
the union of all the torsion points of the various fibers of G ! S . Then, we have the
following theorem.

Theorem 1 ([6, Section 1]) Let E=S be an elliptic scheme over the curve S=Qalg,
and let G=S be an extension of E=S by Gm=S . Further, let s W S ! G be a section
of G=S . Assume that the image W D s.S/ of s contains infinitely many points of
Gtor. Then,

(i) either s is a Ribet section, or
(ii) s factors through a strict subgroup scheme of G=S .
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A formal definition of Ribet sections will presently be given. But to get a grasp on
Theorem 1, it suffices to know that the scheme G=S admits Ribet sections s D sR
if and only if it is not isoconstant and E=S admits complex multiplications (i.e.,
Z ¨ End.E=S/). This forces E=S to be isoconstant, and so, isomorphic, after
a finite base extension, to E0 � S for some elliptic curve E0=Qalg, with complex
multiplications. Under these assumptions, which imply that the extension G=S does
not split, both conclusions (i) and (ii) actually occur and are mutually exclusive. The
image WR D sR.S/ of a Ribet section will be called a Ribet curve of G.

In [4, Section 2], it was observed that although Ribet curves cannot be inter-
preted in terms of subgroups schemes of G=S , they are special curves in the moduli
viewpoint provided by Pink’s extension of the André–Oort and Zilber conjectures
to mixed Shimura varieties (see Pink [15, Conjecture 1.2]). The relevant mixed
Shimura variety is here the Poincaré biextension P0 attached to the CM elliptic
curve E0.

In this note, we pursue this study by looking at “unlikely intersections” for a curve
W in P0 or, more generally, in the Poincaré biextension P attached to a general
family of elliptic curves. The statement of Pink’s conjecture for this case will be
found in Section 5. Most of the present work is directly inspired by Sections 5 and 6
of Pink’s preprint [15].

To conclude this introduction, here is the promised definition of a Ribet section
sR W S ! G. In the notations of Theorem 1, let OE=S be the dual of E=S : the iso-
morphism class of theGm-torsorG overE is given by a section q W S ! OE. Further,
let P ! E �S OE be the Poincaré biextension of E and OE by Gm, rigidified above
the zero section of E �S OE. By Deligne [7, Section 10.2.13], a section s W S ! G

of G=S lifting a section p W S ! E of E=S is entirely described by a trivialization
of the Gm-torsor .p; q/�P over S . Assume now that E D E0 � S admits complex
multiplications, and let f W OE0 ! E0 be a nonzero antisymmetric isogeny (i.e.,
identifying E0 and OE0, a purely imaginary complex multiplication). For simplicity,
suppose that f is divisible by 2. Then, .f .q/; q/�P is a trivial torsor in a canonical
way, and the corresponding trivialization yields a well-defined section s D s.f / of
G=S . Any section sR of G=S a nonzero multiple of which is of the form s.f / for
some antisymmetric f will be called a Ribet section of G=S . See [4, Section 1(i)]
and its appendix for two further descriptions of these sections.

2 Special Points

Let X be a modular curve, say, X D Y.2/, parameterizing isomorphism classes
of elliptic curves with some level structure, let E be the universal elliptic scheme
over X , with dual OE , and let P be the Poincaré biextension of E �X OE by Gm.
This is a mixed Shimura variety of dimension 4, which parameterizes points P on
extensions G of elliptic curves E by Gm. A point of P .C/ can be represented by a
triple .E;G;P /, and is called special if the attached Mumford–Tate group is abelian,
which is equivalent to requiring that E has complex multiplications, that G is an
isotrivial extension, and that P is a torsion point on G. Denote by Psp the set of
special points of P . Following [15], we further say that an irreducible subvariety
of P is special if it is a component of the Hecke orbit of a mixed Shimura subvariety
of P . The special subvarieties of P of dimension zero are the special points; those
of higher dimensions are described below (for the full list, see Section 3).
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Corollary 1 Let W=Qalg be an irreducible closed algebraic curve in P . Assume
that W \Psp is infinite. Then, W is a special curve.

To make this corollary more explicit—and to prove it—we distinguish the various
cases provided by the projection $ W P ! X and its canonical section (rigidifica-
tion) � W X ! P above the zero section of E �X OE , whose image �.X/ is made up
of points of the type .E;Gm �E; 0/ 2 P .

— Either the restriction of $ to W is dominant: the corollary then says that W
lies in the Hecke orbit of the curve �.X/. Indeed, up to Hecke transforms,

� �.X/ is the only 1-dimensional (mixed, but actually pure) Shimura subvariety
of P dominating X .

This case, however, is a red herring, in the sense that for $jW dominant, the
corollary follows not from Theorem 1 but from André’s theorem [1, p. 12] on the
special points of the mixed Shimura variety E (see Pila [12, Theorem 1.2] for another
proof of André’s theorem), combined with an easy analogue for Gm=X (which is
actually covered by Pila [13, Theorem 1.1] with n D ` D 1;m D 0).

— Or $.W / is a point x0 of X , necessarily of CM type. In particular, W lies
in the fiber P0 of $ above x0. This fiber P0 is a 3-dimensional mixed Shimura
subvariety of P , which can be identified with the Poincaré biextension of E0 � OE0
by Gm, where E0 denotes an elliptic curve in the isomorphism class of x0. An
analysis of the generic Mumford–Tate group of P0 as in Bertrand [3, p. 52] shows
that, up to Hecke transforms, there are exactly four types of special curves in P0:

� .Gm/x0
D the fiber above (0, 0) of the projection P0 ! .E �X OE/x0

D

E0 � OE0;
� .�3/ the images  B.B/ of the elliptic curves B � E0 � OE0 passing through
.0; 0/ such that the Gm-torsor P0jB is trivial, under the corresponding
(unique) trivialization  B W B ! P0jB . As recalled in [4, Remark 2],
there are, up to isogenies, three types of such elliptic curves B: the ob-
vious ones E0 � 0 and 0 � OE0 (whose images we will simply denote by
 .E0 � 0/;  .0 � OE0/), and the graphs of antisymmetric isogenies from
OE0 to E0, in which case  B , composed with the induced map OE0 ! B ,
corresponds precisely to a Ribet section (of the semiabelian scheme G0= OE0
to be described presently).

Corollary 1 now follows from Theorem 1, on interpreting P0= OE0 as the uni-
versal extension G0 of E0 by Gm, viewed as a group scheme over OE0, so that
Psp \ P0 � .G0/tor. More precisely, suppose that W dominates OE0: then, it is the
image of a multisection of G0= OE0, and after a base extension, the theorem implies
that W is a Ribet curve  B.B/ of G0 D P0, or that it lies in a torsion translate of
G
m= OE0

D Gm � OE0, where a new application of the theorem (or more simply, of its
constant version; see Hindry [9]) shows that it must coincide with a Hecke transform
ofGm D .Gm/x0

or of  .0� OE0/. By biduality (i.e., reverting the roles of OE and E),
the same argument applies if W dominates E0. Finally, if W projects to a point of
E0 � OE0, then, this point must be torsion, and W lies in the Hecke orbit of .Gm/x0

.
Being closed, W is therefore a special curve of P in all cases.
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3 Unlikely Intersections

Although insufficient in the presence of Ribet curves, the argument devised by Pink
to relate the Manin–Mumford and the André–Oort settings often applies (see the
proof of Pink [15, Theorems 5.7, 6.3] and the discussion in [5] on abelian schemes).
In the present situation, one notes that given a point .E;G;P / in P .C/, asking that it
be special as in Corollary 1 gives 4 independent conditions, while merely asking that
P be torsion on G as in Theorem 1 gives 2 conditions. Now, unlikely intersections
for a curve W in P precisely means studying its intersection with the union of the
special subvarieties of P of codimension� 2 (i.e., of dimension� 2), and according
to Pink [15, Conjecture 1.2], when this intersection is infinite, W should lie in a
special subvariety of dimension � 1C 2 D 3 < 4, that is, a proper one. Similarly, if
W lies in the fiber P0 of P above a CM point x0 and meets infinitely many special
curves of this 3-fold, then it should lie in a special surface of the mixed Shimura
variety P0. In these directions, we have the following.

Corollary 2 Let W=Qalg be an irreducible algebraic curve in P . Assume that the
intersection of W with the union of all the special surfaces of P dominating X is
infinite. Then, W lies in a special 3-fold of P .

Corollary 3 Let W=Qalg be an irreducible algebraic curve in the fiber P0 of P

above a CM point x0 of X . Assume that the intersection of W with the union of all
the special, but not Ribet, curves of P0 is infinite. Then, W lies in a special surface
of P0.

To see the scope of these results, we first list all the special subvarieties of P , an-
nouncing them by 1, 2, or 3 bullets according to their dimensions, and with the
occasional symbol .�n/ to indicate that n types of special subvarieties are listed at
that stage. By inspection, one deduces that “special surfaces” can be replaced by
“special subvarieties of dimension � 2” in Corollary 2; similarly, Corollary 3 can be
formulated in apparently broader terms, involving special points and special curves
of P .

An analysis of the generic Mumford–Tate group of P as in [3, p. 59] shows that
up to Hecke transforms, there are only
� � � one type of special 3-folds of P dominatingX , namely, its restrictions PjB

to the various flat elliptic (subgroup) schemes B of E �X OE over X ;
� � .�3/ three types of special surfaces in P dominating X , namely, the restriction

Gm��.X/ of P above the zero section of E �X OE , and the images  B.B/

of the elliptic subschemes B as above such that theGm-torsor PjB is trivial,
under the corresponding (unique) trivialization  B W B ! PjB . Since
E=X has no complex multiplications, this occurs if and only if B � E�X OE

projects to the zero section of one of the factors, and in the same style as in
Section 2, we will denote by  .0� OE/ and  .E �0/ the two corresponding
special surfaces of P ;
� one special curve dominating X , namely, the already-met �.X/.

The other special subvarieties of P are contained in
� � � the fibers P0 of P above the various CM points x0 of X , for which we re-

call the notations and references of the previous section; thus, up to Hecke
transforms;
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� � the only type of special surfaces of a fiber P0 is given by its restrictions P0jB

to the various elliptic subgroups B of E0 � OE0;
� .�4/ the already-met special curves of P0 are in the Hecke orbit of .Gm/x0

,
 .E0�0/,  .0� OE0/, or (when B is the graph of an antisymmetric isogeny)
of a Ribet curve  B.B/.

Theorem 1 (C Masser and Zannier [10], [11]) ) Corollary 2 To deduce Corollary 2
from the theorem, we follow the lines of [15] and first consider the case when W
does not dominate X , that is, $.W / D x is a point (which we can assume to be
non-CM; otherwise, the fiber Px is a special 3-fold of P containing W ). So, W lies
in the nonspecial 3-fold Px , which we can identify with the Poincaré biextension of
.E�X OE/x D Ex� OEx byGm, whereEx=Qalg denotes an elliptic curve representing
x. Now, we have the following.

— If W meets the Hecke orbit of Gm � �.X/ infinitely often, then either its
projection to Ex � OEx is a torsion point, in which case W lies in the Hecke orbit of
the special surface Gm � �.X/, or this projection contains infinitely many torsion
points. We then deduce from Raynaud’s theorem on curves in Ex � OEx (combined
with End.Ex/ D Z) thatW lies in the Hecke orbit of a special 3-fold of the type PjB

for some elliptic subgroup scheme B of E �X OE .
— Suppose that W projects to a point q 2 OEx.Qalg/, that is, lies in the exten-

sion Gq D Px jEx�q of Ex by Gm; we can assume that q is not torsion. (Other-
wise, W lies in the Hecke orbit of the special 3-fold PjE�0.) So, W does not meet
the Hecke orbit of  .E � 0/ at all. And if its intersection with the Hecke orbit of
 .0 � OE/ is infinite, then W , viewed in the nonisotrivial extension Gq , contains in-
finitely many points of .Gq/tor. By Theorem 1 (or Hindry [9, Section 5, Theorem 2]),
W must then lie in a torsion translate of Gm D Px j.0�q/, hence in the Hecke orbit of
P
j0� OE
D Gm �  .0 � OE/.

— By biduality, we can now assume that W dominates both OEx and Ex . In
particular, it is the image of a multisection of the universal extension Gx WD Px ofEx
by Gm, viewed as a group scheme over OEx . IfW meets the Hecke orbit of  .0� OE/
infinitely often, then W , viewed as a curve in the group scheme Gx= OEx , contains
infinitely many points of Gx;tor, and the theorem implies that W lies in a torsion
translate of G

m= OEx
� P

j0� OE
. This contradicts the assumption that W dominates

Ex . Inverting the roles of E and OE , we similarly deduce that W cannot intersect the
Hecke orbit of  .E � 0/ infinitely often.

Finally, assume that W dominates X . Then, after a finite base extension if nec-
essary, the projection of W to OE (resp., E) defines a section q of OE=X , hence an
extension G=X of E=X by Gm (resp., a section p of E=X ), andW is the image of a
multisection of G=X lifting p. Now, we have the following.

— If W meets the Hecke orbit of Gm � �.X/ infinitely often, its projection to
E �X OE either is a torsion section (and W lies in the Hecke orbit of Gm � �.X/)
or meets infinitely many torsion sections of this abelian scheme. We then deduce
from the theorem of Masser and Zannier [11, Section 1] (i.e., the relative version of
Raynaud’s) that W lies in the Hecke orbit of a special 3-fold of the type PjB .

— If W meets the Hecke orbit of  .0 � OE/ infinitely often, then W , viewed as
a curve in the group scheme G=X , contains infinitely many points of Gtor, and the
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theorem implies that W lies in the Hecke orbit of the special 3-fold P
j0� OE

if G=X

is a nonisotrivial extension; otherwise, q is a torsion section of OE=X , and W may
alternatively lie in the Hecke orbit of the special surface  .E � 0/ � PjE�0.

— By biduality, the same argument applies if W intersects the Hecke orbit of
 .E � 0/ infinitely often.

Theorem 1 (C [10], [11]) ) Corollary 3 Since Ribet curves are discarded, the argu-
ment goes along the same lines as the one concerning $.W / D x, with the base X
replaced by the point x0 and B replaced by (the vaster choice of) an elliptic curve B
in E0 � OE0.

Note that when B is the graph of a nonrational isogeny, the special surface P0jB
does not lie in any of the special 3-folds of P dominating X . This has no impact on
Corollary 3, where these surfaces occur in the conclusion. On the other hand, they
are the precise reason why we had to restrict the hypothesis of Corollary 2 to surfaces
dominating X ; we discuss this further in Section 5, together with the restriction to
non-Ribet curves in Corollary 3.

Our last corollary of Theorem 1 concerns the remaining special 3-folds of P , of
type PjB , where B is an elliptic (subgroup) scheme in E �X OE dominating X .

Corollary 4 Let W=Qalg be an irreducible algebraic curve in the special 3-fold
PjB . Assume that the intersection of W with the union of all the special curves of
PjB is infinite. Then, W lies in a special surface of PjB .

As already suggested after the statement of Corollary 3, one can replace “special
curves” by “special subvarieties of dimension � 1,” and “of PjB” by “of P ,” since
any special point is contained in the Hecke orbit of a special curve of the type
.Gm/x0

, while the special curves not contained in PjB meet this 3-fold along special
points. This fact explains why Ribet curves need not be discarded in Corollary 4;
PjB contains no such curve, since even above a CM point x0, the fiber B D Bx0

of
B=X is not the graph of a nonrational isogeny.

Theorem 1 (C [1] ) ) Corollary 4 We first assume that W dominates X . Suppose
that there are infinitely many points in the intersection of W with the Hecke orbit of
the following special subsets.

— The special curve �.X/: As explained above (and after a base extension), we
can view W as a curve in a semiabelian scheme G=X and view these intersections
as points in Gtor. Theorem 1 implies that W lies in the Hecke orbit of Gm � �.X/,
P
j0� OE

, or PjE�0, and all intersect PjB along its special surface Gm � �.X/ if B

is not one of the factors of E �X OE . Otherwise, we can assume by biduality that
B D E � 0, in which caseW lies in the Hecke orbit of Gm � �.X/ or of the special
surface  .E � 0/ of PjE�0.

— The union of the special curves contained in the fibers P0 above the various
CM points x0 of X (i.e., those of type .Gm/x0

;  .E0 � 0/;  .0� OE0/, and the Ribet
curves): By André’s theorem [1], applied to the special points of the mixed Shimura
variety B=X , the projection of W to B must be a torsion section, and W lies in the
Hecke orbit of Gm � �.X/.

The case when$.W / is a non-CM point x is proved along similar lines. Finally,
assume that$.W / is a CM point x0, and let B � E0 � OE0 be the fiber above x0 of
the elliptic scheme B=X . Then, W lies in the special surface P0jB D PjB \P0.
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4 Back to Group Schemes

First of all, since the four “corollaries” above have requested the help of [1, p. 12] and
of [10] and [11], it is fairer to gather them under a new heading, as follows. We recall
from [15] that the special closure of an irreducible curve W in the mixed Shimura
variety P is the intersection of all the special subvarieties of P containing W .

Theorem 2 Let W=Qalg be an irreducible curve in the mixed Shimura 4-fold P ,
and let ıW be the dimension of the special closure of W .

(i) Suppose that ıW D 4; then, the intersection of W with the union of all the
special surfaces of P dominating X is finite.

(ii) Suppose that ıW D 3; then, the intersection of W with the union of all the
special non-Ribet curves of P is finite.

(iii) Suppose that ıW D 2; then, the intersection of W with the union of all the
special points of P is finite.

This statement is equivalent to the union of the four corollaries; we leave it to the
reader to check that (ii) is equivalent to Corollaries 3 C 4 and that (i) C (ii) C (iii)
implies Corollary 1. (The Hecke orbit of any special point meets a special curve of
type .Gm/x0

, which is contained in the special surface Gm � �.X/.)
In the next section, we will discuss how far Theorem 2 stands from Pink’s general

conjecture for curves. In the reverse direction, following [15, Section 6] (and Pink
[14, Remark 2.13]), we now prove the following.

Theorem 2 ) Theorem 1 In fact, the following weaker version of Theorem 2 will
suffice:

(i0) in (i), constrain the conclusion to the Hecke orbit of the special surface
 .0 � OE/;

(ii0) in (ii), constrain the conclusion to the Hecke orbits of the special curves �.X/
and  .0 � OE0/, where E0 runs through the CM fibers of E ! X .

So, letG ! S andW D s.S/ satisfy the hypotheses of Theorem 1. The universal
property of P provides canonical morphisms ' W S ! OE (above the “modular” map
� attached to the elliptic scheme E=S ) and ˆ W G ! P above ' such that the
following diagram commutes:

W ,! G
ˆ
��! P

-s # # n

S
'
��! OE $

&� # =

X

Furthermore, ˆ induces a morphism of group schemes from G=S to P = OE , where
we view the latter as the canonical extension of the elliptic scheme E OE by Gm.

Assume first that ˆ.W / is a point of P . Then, G=S must be an isoconstant
scheme, of which s is an isoconstant section. Since W meets Gtor, s is a torsion
section, andW does lie in a strict subgroup scheme of G=S . So, we can now assume
that W 0 D ˆ.W / is a curve in P .

By the universal property of P , the image of Gtor under ˆ lies in the Hecke orbit
of the special surface  .0� OE/. Theorem 2(i0) then implies that ıW 0 < 4, soW 0 lies
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in the Hecke orbit of a special 3-fold. Performing a Hecke transform, we henceforth
assume thatW 0 lies in PjB for some B � E � OE , or in the fiber P0 of P above some
CM point x0, represented by a CM curve E0.

Let us first assume that W 0 lies in P
j0� OE

. Then, up to a torsion translate, W lies
in the fiber of G ! E above the zero section, that is, in the strict subgroup scheme
Gm=S of G=S .

Let us now assume thatW 0 lies in PjB , where B is the graph of a homomorphism
E ! OE . Then, the intersection of PjB with  .0� OE/ is the special curve �.X/, and
since ˆ.Gtor/ lies in the Hecke orbit of  .0 � OE/, the curve W 0 � PjB meets the
Hecke orbit of �.X/ infinitely often. By Theorem 2(ii0), W 0 must lie in the Hecke
orbit of a special surface. Postponing to the next step the case when this surface is
above a CM point, we conclude that up to a Hecke transform,W 0 lies inGm��.X/,
in which case a torsion translate ofW lies in the subgroup scheme Gm=S of G=S , or
that B D E � 0, withW 0 lying in  .E � 0/, in which case G=S must be an isotrivial
extension and, after an isogeny, W lies in a torsion translate of its subgroup scheme
E=S .

Let us finally assume that W 0 lies in a CM fiber P0. Then, up to an isogeny, G
is an extension of E0 � S by Gm, and ˆ.Gtor/ lies in the Hecke orbit of the special
curve  .0 � OE0/ of P0. By Theorem 2(ii0), W 0 must then lie in the Hecke orbit of a
special surface of the type P0jB , where B is an elliptic (subgroup) curve in E0� OE0.
We can assume that B ¤ 0� OE0; otherwise,W lies in a torsion translate of the fiber
Gm=S of G ! E0 � S above the zero section.

We are at last reduced to the case when B is the graph of a homomorphism
E0 ! OE0 and W 0 lies in the special surface P0jB . But again, ˆ.Gtor/ lies in
the Hecke orbit of the special curve  .0 � OE0/, which meets such a surface P0jB
transversally, and therefore along special points of P . So, W 0 contains infinitely
many special points and by Theorem 2(iii) must be a special curve of P0jB , neces-
sarily of type .Gm/x0

, or  .E0�0/ if B D E0�0, or a Ribet curve of P0 otherwise.
In the first case, W lies in a torsion translate of Gm=S ; in the second one, G=S is an
isotrivial extension and W lies in a torsion translate of E0 � S ; and in the last one,
G=S is not isoconstant, and W is a Ribet curve of G=S .

5 Pink’s Conjecture for Curves in P

We close this note by discussing how far we now stand from Pink’s conjecture for
a curve W in the mixed Shimura variety P . As is timely to recall, this asserts that,
whatever the dimension ıW of the special closure of W is, the following holds.

Conjecture 1.2 of [15] for curves in P The intersection of a curve W of P with
the union of the special subvarieties of P of dimension � ıW � 2 is finite.

We again point out that, in the case of our mixed Shimura variety P , the sign �
can equivalently be replaced by D in this statement. So, to prove the conjecture, it
suffices to lift the restrictions “dominating X” and “non-Ribet” in the conclusions
of Theorem 2. We now state the two corresponding problems in concrete terms and
mention possible approaches.

Going back to the list of special subvarieties of P established above, we see that
the only special surfaces left out by the restriction “dominating X” are of the type
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P0jB for B � E0 � OE0, where E0 D Ex0
is the fiber of E=X above a CM point x0.

Therefore, lifting this restriction amounts to a positive answer to the following.

Question 1 Let E be a nonisoconstant elliptic scheme over a curve S=Qalg, and
let p; q be two sections of E=S defined over Qalg. Assume that there are infinitely
many points � 2 S.Qalg/ such that the fiber E� of E=S above � admits complex
multiplications and such that the points p.�/ and q.�/ are linearly dependent over
End.E�/. Must the sections p and q then be linearly dependent over Z?

This problem can alternatively be viewed as a special case of Pink’s conjecture for
curves in the nth fibered power of E over X , with n D 2. As already mentioned,
this special case is established by André [1] for n D 1. The theorem of Masser and
Zannier [11] used above provides a partial answer for n D 2. See Habegger [8] for
further results in higher dimensions.

Although it addresses constant elliptic schemes, the work of Buium and Poonen
on Heegner-type points in a given group of finite rank may provide an approach to
Question 1. See Pila’s proof in [12] of André’s theorem for further suggestions.

As for lifting the restriction “non-Ribet,” here is a way to state the problem. We
fix a CM elliptic curve E0=Qalg and a curve S=Qalg. Given an extension G=S of
E0 � S by Gm which admits Ribet sections, we define a Ribet point as any point
(not necessarily torsion) of G.Qalg/ lying on a Ribet curve of G. We denote by
q 2 E0.S/ the image under the standard polarization OE0 ' E0 of the section of
OE0 � S representing the isomorphism class of the extension G=S . Given a section
s of G=S , we denote by p D � ı s 2 E0.S/ its composition with the projection
� W G ! E0 � S .

Question 2 Let G=S be a nonisoconstant extension of E0 � S by Gm, and let s
be a section ofG=S defined overQalg. Assume that there exist infinitely many points
� 2 S.Qalg/ such that s.�/ is a Ribet point of G. Must the sections p and q then be
linearly dependent over End.E0/?

Notice that at each � such that s.�/ is a Ribet point, the points p.�/ and q.�/ of
E0.Qalg/ are linearly dependent over End.E0/. That the lift s.�/ of p.�/ is a Ribet
point gives a second condition, and both constraints are unlikely to hold infinitely
often.

As a possible approach to Question 2, we mention the existence of a canonical rel-
ative height on semiabelian varieties, which has the property that the relative height
of any Ribet point onG.Qalg/ vanishes (see Bertrand [2, Proposition 4, Theorem 4]).

6 Conclusion

Apart from clearing the way towards Pink’s conjecture, presenting the viewpoint of
mixed Shimura varieties was motivated by two aims:

— To get a more uniform statement of Theorem 1; obviously, Theorem 2 is not
a satisfactory answer; Corollary 1 is better in this respect, but is too weak.

— To put some order into the array of cases which the proof of [6, Theorem 1]
leads to, particularly when E=S is isoconstant.

This second aim is only partially fulfilled; the list of cases to be distinguished
during this proof does not always parallel the list of cases encountered in the present
note. The basic reason is that differential Galois groups are not fully controlled by
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Mumford–Tate groups. So, a unified proof of Theorem 1 should probably put more
emphasis on the study of the generic Mumford–Tate groups of the special subvari-
eties coming into play.
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