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A Counterexample to Polynomially Bounded
Realizability of Basic Arithmetic

Mohammad Ardeshir, Erfan Khaniki, and Mohsen Shahriari

Abstract We give a counterexample to the claim that every provably total func-
tion of Basic Arithmetic is a polynomially bounded primitive recursive function.

1 Introduction

We give a counterexample (Corollary 3.7) to the main result of Salehi [4, Corol-
lary 3.7] which states that for a formula A.x; y/ with the free variables x; y, if
Basic Arithmetic .BA/ `) 9yA.x; y/ or BA `) 8x.> ! 9yA.x; y//, then
N ˆ 8xA.x; f .x//, for a polynomially bounded primitive recursive function f .

As Salehi explains in [4], the above result is a sharpening of his previous result
in [3], in which it is proved that every provably total function of BA is a primitive
recursive function. Following [3], the notion of “polynomially bounded realizabil-
ity,” indicated by P -realizability, is applied in [4] to obtain the above result. This
notion of realizability is defined in Definition 3.8 of this article.

In this article, we give an explicit formula in the language of BA that isn’t
P -realizable. Moreover, it shows that the induction axiom schema isn’t P -realizable,
and hence the claim of soundness of the weakened basic arithmetic (BAw ) with
respect to P -realizability (see [4, Theorem 3.3]) is wrong. The theory BAw is
defined in [4] to be the sequent theory axiomatized by all axioms and rules of BA,
except the induction rule (rule 8 in 2.2).

2 Preliminaries to Basic Arithmetic

Basic Arithmetic is introduced by Ruitenburg in [2]. Basic Arithmetic is an arith-
metical theory based on Basic Logic, as Heyting Arithmetic and Peano Arithmetic
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are based on Intuitionistic Logic and Classical Logic, respectively. For motivations
and basic properties of BA, see [2], Ardeshir [1], and [3].

2.1 Axioms and rules of Basic Predicate Calculus The language of Basic Predicate
Calculus (BQC) is the same as of Intuitionistic Predicate Calculus (IQC). It was
originally axiomatized in sequent notation, that is, using sequents like A ) B ,
where A and B are formulas in the language ¹_; ^; !; ?; >; 9; 8º ( see [2]). Since
modus ponens is not a rule in BQC, a universally quantified formula like 8x8y A

is different from 8xy A. In BQC, when we write 8x .A ! B/, we mean x to be
a finite sequence of variables once quantified. Besides a set of predicate and func-
tion symbols of possibly different finite arity, we also include the binary predicate
“D” for equality. Terms, atomic formulas, and formulas are defined as usual except
for universal quantification: if A and B are formulas, and x is a finite sequence of
variables, then 8x .A ! B/ is a formula. The concepts of free and bound variables
are defined as usual. A sentence is a formula with no free variable. An implication
is a universal quantification 8x .A ! B/, where x is the empty sequence. Further,
:A means A ! ?. Given a sequence of variables x without repetitions, sŒx=t� and
AŒx=t� stand for, respectively, the term and formula that results from substituting the
term t for all free occurrences of the variables of x in the term s and the formula A.
For details, see [2] and Ardeshir [1]. We often write A for > ) A.

Axioms and rules of BQC In the following list, the use of a double horizontal line in
a rule means that the rule is reversible.

1. A ) A,
2. A ) >,
3. ? ) A,
4. A ^ .B _ C / ) .A ^ B/ _ .A ^ C /,
5. A ^ 9x B ) 9 x.A ^ B/, where x is not free in A,
6. > ) x D x,
7. x D y ^ A ) AŒx=y�, where A is atomic,
8. 8x .A ! B/ ^ 8x .B ! C / ) 8x .A ! C /,
9. 8x .A ! B/ ^ 8x .A ! C / ) 8x .A ! B ^ C /,

10. 8x .B ! A/ ^ 8x .C ! A/ ) 8x .B _ C ! A/,
11. 8x .A ! B/ ) 8x .AŒx=t� ! BŒx=t�/, where no variable in the sequence

of terms t is bound by a quantifier of A or B ,
12. 8x .A ! B/ ) 8y .A ! B/, where no variable in y is free on the left-hand

side,
13. 8yx .B ! A/ ) 8y .9x B ! A/, where x is not free in A,
14. A ) B B ) C

A ) C
,

15. A ) B A ) C

A ) B ^ C
,

16. B ) A C ) A

B _ C ) A
,

17. A ) B

AŒx=t� ) BŒx=t� , where no variable in the sequence of terms t is bound
by a quantifier in the denominator,

18. B ) A

9x B ) A
, where x is not free in A,
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19. A ^ B ) C

A ) 8x .B ! C /
, where no variable in x is free in A.

2.2 Axioms and rules of BA The nonlogical language L of BA is ¹0; S; C; �º, where
0 is a constant symbol, S is a unary function symbol for successor, and C and � are
binary function symbols for addition and multiplication, respectively. Note that in
the following list of axioms and rules, beside the Rule of Induction (8), we also have
the Induction Axiom Schema (7).

1. Sx D 0 ) ?,
2. Sx D Sy ) x D y,
3. x C 0 D x,
4. x C Sy D S.x C y/,
5. x � 0 D 0,
6. x � Sy D x � y C x,
7. 8yx .A ! AŒx=Sx�/ ) 8yx .AŒx=0� ! A/,
8. A ) AŒx=Sx�

AŒx=0� ) A
.

2.3 Some properties of BA In this section, we collect some elementary properties of
BA that we may need later in this article.

Lemma 2.1 The following rules are derivable in BQC:

1. A ) B

C _ A ) C _ B
,

2. A ) B > ) C

A ) B ^ C
,

3. A ) B C ) D

A ^ C ) B ^ D
,

4. 9xA.x/ ) B

9yA.y/ ) B
, where y is not bound by any quantifier in A.y/ and y is not

free in B .

Proof All items are easy. We show the last one by the following tree:

9xA.x/ ) 9xA.x/

A.x/ ) 9xA.x/

A.y/ ) 9xA.x/

9yA.y/ ) 9xA.x/ 9xA.x/ ) B

9yA.y/ ) B

Definition 2.2

1. x < y � 9z.x C Sz D y/,
2. x � y � x < y _ x D y,
3. x j y � 9z.x � z D y/.

Lemma 2.3 The following are derivable in BA:
1. .x C y/ C z D x C .y C z/,
2. x C y D y C x,
3. .x � y/ � z D x � .y � z/,
4. x � y D y � x,
5. x � .y C z/ D x � y C x � z,
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6. x > 0 ) 9y.x D Sy/,
7. x < 0 ) ?,
8. x � 0,
9. x > 0 ) x C y > 0,

10. x C y D 0 ) x D 0 ^ y D 0,
11. x < Sy ) x D y _ x < y,
12. x < n ) x D 0 _ x D 1 _ � � � _ x D n � 1,
13. x > 0 ^ y > 0 ) x � y > 0,
14. x � y D 0 ) x D 0 _ y D 0,
15. x < y ) Sx < Sy,
16. y < x ) x D Sy _ Sy < x,
17. x > y ) x C z > y C z,
18. x > y ^ z > 0 ) x � z > y � z,
19. x C y D 1 ) x D 0 _ y D 0,
20. x � y D 1 ) x D 1 ^ y D 1.

Proof See [1, Lemma 2.5].

Definition 2.4 Let BAQ be a subtheory of BA including:
1. All axioms and rules of BQC,
2. All axioms and rules of BA, except the induction axiom (7) and rule (8),
3. All sequents listed in Lemma 2.3.

Lemma 2.5 For terms s, t , and u,
1. BAQ

` s D t ) t D s,
2. BAQ

` s D t ^ t D u ) s D u,
3. BAQ

` s D t ) uŒx=s� D uŒx=t�.

Proof All items are easily proved. The last one can be proved by induction on u.

Lemma 2.6 BAQ
` x D y ) x j y � z.

Proof We have the following sequence of derivations in BAQ:
1. x D y ) x � z D y � z, by Lemma 2.5(3),
2. x D y ) 9w.x � w D y � z/, by axiom 1 and rules 14, 17, and 18.

Lemma 2.7 BAQ
` x j y ) x j z � y.

Proof We have the following sequence of derivations in BAQ:
1. x � w D y ) z � .x � w/ D z � y, by Lemma 2.5(3),
2. x � w D y ) .z � x/ � w D z � y, by Lemmas 2.3(3), 2.1(2), 2.5(2), and rule

14,
3. x � w D y ) .x � z/ � w D z � y, by Lemmas 2.3(4), 2.5, 2.1(2), 2.5(2), and

rule 14,
4. x � w D y ) x � .z � w/ D z � y, by Lemmas 2.3(3), 2.1(2), 2.5(1 and 2), and

rule 14,
5. x � w D y ) 9u.x � u D z � y/, by axiom 1 and rules 18, 17, and 14,
6. 9w.x � w D y/ ) 9u.x � u D z � y/, by rule 18.
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3 A Counterexample

Let us define the following formula that is our main concern:

E.x; y/ � y > 0 ^ 8z.z � x ! z D 0 _ z j y/:

We note that for m; n 2 N and m; n � 1 that if N ˆ E.m; n/, then the least common
multiple (LCM) of 1; 2; : : : ; m divides n. We indicate this by lcm¹1; 2; : : : ; mº j n.

We need a well known classical fact in number theory called the prime number
theorem. Let �.x/ indicate the number of prime numbers less than or equal to natural
number x > 1.

Theorem 3.1 (Prime number theorem) limx!1 �.x/ �
ln x
x

D 1.

Proof See, for example, Zagier [5].

Corollary 3.2 For large enough natural number m, we have lcm¹1; : : : ; mº �

2
m

2 ln m .

Proof By Theorem 3.1, there exists n0 2 N such that for any m > n0,
j�.x/ �

ln x
x

� 1j < 0:5. Then for any m > n0, 0:5m
ln m

< �.m/ < 1:5m
ln m

. This
implies that for any m > n0,

lcm¹1; : : : ; mº �

�.m/Y
iD1

pi �

�.m/Y
iD1

2 D 2�.m/
� 2

m
2 ln m :

Now we want to show that the formula 9yE.x; y/ is derivable in BA.

Lemma 3.3 BAQ
` E.x; y/ ) E.Sx; Sx � y/.

Proof We have the following sequence of derivations in BAQ:
1. 8z.z D 0 _ z j y ! z D 0 _ z j Sx � y/, by Lemmas 2.7, 2.1, and rule 19,
2. 8z.z � x ! z D 0_z j y/ ) 8z.z � x ! z D 0_z j Sx �y/, by axioms

1 and 6, Lemma 2.1(2), and rule 14,
3. 8z.z � x ! z D 0 _ z j y/ ) 8z.z < Sx ! z D 0 _ z j Sx � y/, by

Lemmas 2.3(11) and 2.1(2), rules 19 and 14, and axiom 6,
4. 8z.z D Sx ! z D 0 _ z j Sx � y/, by axiom 1, rules 16, 14, and 19, and

Lemma 2.6,
5. 8z.z � x ! z D 0 _ z j y/ ) 8z.z � Sx ! z D 0 _ z j Sx � y/, by

Lemma 2.1(2), axiom 6, and rule 14,
6. y > 0 ) Sx � y > 0, by Lemmas 2.1(2) and 2.3(13), rules 17 and 14, and

the fact that BAQ
` Sx > 0. The following proof tree justifies this fact:

x � 0

Sx � 0

Sx D 0 ) ? ? ) Sx > 0

Sx D 0 ) Sx > 0 Sx > 0 ) Sx > 0

Sx � 0 ) Sx > 0

Sx > 0

7. y > 0^8z.z � x ! z D 0_z j y/ ) Sx �y > 0^8z.z � Sx ! z D 0_

z j Sx � y/, by Lemma 2.1(3).

Lemma 3.4 BAQ
` 9yE.x; y/ ) 9yE.Sx; y/.

Proof We have the following proof tree:
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E.x; w/ ) E.Sx; Sx � w/

9yE.Sx; y/ ) 9yE.Sx; y/

E.Sx; y/ ) 9yE.Sx; y/

E.Sx; Sx � w/ ) 9yE.Sx; y/

E.x; w/ ) 9yE.Sx; y/

9wE.x; w/ ) 9yE.Sx; y/

9yE.x; y/ ) 9yE.Sx; y/

Lemma 3.5 BAQ
` E.0; 1/.

Proof We have the following proof tree:

1 > 0

z < 0 ) ? ? ) z D 0 _ z j 1

z < 0 ) z D 0 _ z j 1

z D 0 _ z j 1 ) z D 0 _ z j 1

z D 0 ) z D 0 _ z j 1

z � 0 ) z D 0 _ z j 1

8z.z � 0 ! z D 0 _ z j 1/

1 > 0 ^ 8z.z � 0 ! z D 0 _ z j 1/

Theorem 3.6 BA ` 9yE.x; y/.

Proof We have the following proof tree:

E.0; 1/

9yE.0; y/ ) 9yE.0; y/

E.0; y/ ) 9yE.0; y/

E.0; 1/ ) 9yE.0; y/

9yE.0; y/

9yE.x; y/ ) 9yE.Sx; y/

9yE.0; y/ ) 9yE.x; y/

9yE.x; y/

Corollary 3.7 There is a formula E.x; y/ with presented free variables, such that
BA ` 9yE.x; y/ (and thus BA ` 8x.> ! 9yE.x; y//), but there is no polynomi-
ally bounded function f with N ˆ 8xE.x; f .x//.

Proof Combine Theorem 3.6 and Corollary 3.2.

Corollary 3.7 provides a counterexample to [4, Corollary 3.7]. In the rest of the
article, we want to show that [4, Corollary 3.7] is wrong because it is based on [4,
Theorem 3.3]. In fact, the portion of [4] that makes the other results incorrect is
the proof of Theorem 3.3, where it is claimed that the induction axiom (Ax20) is
realizable. There, the function f may not be a P-function. That is repeated as the
argument to prove Theorem 3.5 as well.

In [4], the author defines qP -realizability by the usual changes of the rP -
realizability. By using this notion of realizability, the main result (Corollary 3.7)
is stated. In the following definition, �1 and �2 are the projection functions, that
is, �1.hm; ni/ D m and �2.hm; ni/ D n, where h; i is a fixed pairing function
such as hm; ni D

1
2
.m C n/.m C n C 1/ C n. Moreover, 'n is the unique unary

recursive function whose program has code n. For a sequence x D .x1; : : : ; xm/,
the expression 'n.x/ means 'n.hx1; hx2; : : : ; hxm�1; xmiii/. If the formula P .x/

is true, then 8z.'�1.x/.z/ � z�2.x/ C �2.x// holds. This is what is meant by
polynomially bounded. For more details, see [4].
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Definition 3.8 (Polynomially bounded realizability) Now x qP A is defined by
induction on the complexity of A:

� x qP A � A, for atomic A, >, and ?.
� x qP B ^ C � .�1.x/qP B/ ^ .�2.x/qP C /.
� x qP B _ C � .�1.x/ D 0 ^ �2.x/ qP B/ _ .�1.x/ ¤ 0 ^ �2.x/ qP C /.
� x qP 9yB.y/ � �2.x/ qP B.�1.x//.
� xqP 8z.B.z/ ! C.z// � P .x/^8y; z.yqP B.z/ ! '�1.x/.y; z/qP C.z//^

8z.B.z/ ! C.z//.

Definition 3.9 x qP .B ) C / � P .x/ ^ 8y.y qP B ! '�1.x/.y/ qP C / ^

.B ! C /.

Theorem 3.10 For all sequents A ) B , if BAQ
` A ) B , then for a natural

number n, N ˆ n qP .A ) B/.

Proof The proof is by induction on the length of the proof of the sequent. It is
easy to see that sequents of Lemma 2.3 are P -realizable. The rest of proof is like the
proof of Theorem 3.5 in [4].

Lemma 3.11 There exists a natural number m such that N ˆ mqP .8x.9y

E.x; y/ ! 9y E.Sx; y///.

Proof By Lemma 3.4, BAQ
` 9y E.x; y/ ) 9y E.Sx; y/. Then BAQ

`

8x.9y E.x; y/ ! 9y E.Sx; y//. Theorem 3.10 implies the result.

Lemma 3.12 There exists a natural number k such that N ˆ kqP .9y E.0; y//.

Proof By Lemma 3.5, BAQ
` 9y E.0; y/. Then Theorem 3.10 implies the result.

Theorem 3.13 The induction axiom schema 8x y.A.x; y/ ! A.Sx; y// )

8x y.A.0; y/ ! A.x; y// is not P -realizable.

Proof We consider an instance E.x; y/ of the induction axiom schema. Suppose
that there exists a natural number n such that

N ˆ n qP
�
8x

�
9y E.x; y/ ! 9y E.Sx; y/

�
) 8x

�
9y E.0; y/ ! 9y E.x; y/

��
:

Then
N ˆ 8a

�
aqP

�
8x

�
9y E.x; y/ ! 9y E.Sx; y/

��
! '�1.n/.a/qP

�
8x

�
9y E.0; y/ ! 9y E.x; y/

���
^ P .n/:

In particular,

N ˆ mqP
�
8x

�
9y E.x; y/ ! 9y E.Sx; y/

��
! '�1.n/.m/qP .8x

�
9y E.0; y/ ! 9y E.x; y/

�
:

Then by Lemma 3.11,

N ˆ '�1.n/.m/qP
�
8x

�
9y E.0; y/ ! 9y E.x; y/

��
:

To simplify notations, let us assume l D '�1.n/.m/. Then we have

N ˆ 8b; c
�
b qP

9y E.0; y/ ! 'l .b; c/qP
9y E.c; y/

�
^ P .l/:



488 Ardeshir, Khaniki, and Shahriari

By choosing the natural number k for b, we have
N ˆ 8c

�
k qP

9y E.0; y/ ! 'l .k; c/qP
9y E.c; y/

�
^ P .l/:

Then by Lemma 3.12,
N ˆ 8c

�
'l .k; c/qP

9y E.c; y/
�

^ P .l/:

Then
N ˆ 8c.�2'l .k; c/qP E

�
c; �1'l .k; c/

�
^ P .l/:

Now by explanation before [4, Theorem 3.5], we have
N ˆ 8c E

�
c; �1'l .k; c/

�
^ P .l/:

By the definition of E.x; y/, we can see that for all natural numbers e and r that if
N ˆ E.e; r/, then lcm¹1; : : : ; eº j r . Then there exists a natural number i such that
for all natural numbers c > i , �1'l .k; c/ � lcm¹1; : : : ; cº � 2

c
2 ln c . This contradicts

N ˆ P .l/.

The following result is in contrast with [4, Theorem 3.3].
Corollary 3.14 BAw is not sound with respect to P -realizability.
Proof See Theorems 3.13 and 3.6.
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