
Notre Dame Journal of Formal Logic
Volume 60, Number 1, 2019

Teachers, Learners, and Oracles

Achilles Beros and Colin de la Higuera

Abstract We exhibit a family of computably enumerable sets which can be
learned within polynomial resource bounds given access only to a teacher but
which requires exponential resources to be learned given access only to a mem-
bership oracle. In general, we compare the families that can be learned with and
without teachers and oracles for four measures of efficient learning.

1 Introduction

In this paper, we address the question of whether or not the presence of a teacher
as a computational aide improves learning. A teacher is a computable machine that
receives data and selects a subset of the data. In the models we consider, a teacher
receives an enumeration for a target and passes its data selection to the learner—the
learner does not have access to the original data. The first natural question is whether
there are families that are learnable with a teacher, but not learnable without. As will
be obvious from the definitions presented in the next section, the answer is no: the
learner can always perform an internal simulation of the learner–teacher interaction
and output the result. The second question is whether a teacher can improve effi-
ciency. For teacher models of learning, only the computational activity of the learner
counts against the efficiency bound; the computational activity of the teacher is not
counted. Heuristically, the question is whether there is benefit to preprocessing data.
We will prove that there can be an exponential improvement in efficiency. In fact,
there are situations where access to a teacher is better than access to a membership
oracle about the target.

Various forms of and questions related to teaching have arisen in learning theory
over the last few decades. Work on the complexity of teaching families has given rise
to the classical teaching dimension (see Goldman and Kearns [7]) and, more recently,
the recursive teaching dimension (see Holte et al. [8] and Doliwa et al. [4]). In [4],

Received May 2, 2015; accepted November 3, 2016
First published online January 16, 2019
2010 Mathematics Subject Classification: Primary 03D80; Secondary 68T05
Keywords: learning theory, oracles, teachers, recursion theory
© 2019 by University of Notre Dame 10.1215/00294527-2018-0021

13

http://www.nd.edu/~ndjfl/
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
https://doi.org/10.1215/00294527-2018-0021

14 Beros and de la Higuera

Doliwa et al. establish deep and interesting connections between recursive teaching
dimension, Vapnik–Chervonenkis dimension, and sample compression schemes (see
Floyd and Warmuth [5] for more about sample compression). Query learning has
been a central topic in learning theory for even longer than teaching. Numerous
papers have been written both on the abilities of machines equipped with oracles to
learn (see Sammut and Banerji [11], Angluin [1], [2]) and on the properties of oracles
that allow learning of certain target families (see Stephan [12], Jain and Sharma [9],
Fortnow et al. [6], Kummer and Stephan [10]).

We add to the body of research on teaching and query learning by comparing the
efficiency of the two learning modes.

2 Background

We will examine variants of Gold-style text learning of effectively describable sets
of natural numbers. In particular, the target objects will be computably enumerable
sets.

Definition 2.1 A set, S , is computably enumerable (c.e.) if there is a partial
computable function, f , such that S D dom.f /. A sequence of sets, ¹Anºn2N
is called uniformly computably enumerable (u.c.e.) if the set ¹ha; ii W a 2 Ai º is
c.e. We also call u.c.e. sequences of sets indexed families, and we call n an index
for An. Note that in an indexed family a set may have multiple indices if the sequence
¹Anºn2N has multiple instances of the same set. For notational convenience, we
regard indexed families both as sequences and as sets, and we write A 2 A meaning
.9n/.A D An/.

We now remind the reader of some standard notation and concepts and introduce
some notation specific to this paper.

1. � denotes an acceptable universal Turing machine and hence a partial com-
putable function. �e;s.x/ is the state or value of the function described by
the program coded by e 2 N after s computation stages on input x. If the
program execution has terminated, we write �e;s.x/ #; otherwise, we write
�e;s.x/ ".

2. We is the c.e. set coded by the program e as the domain of �e . ¹Weºe2N is a
u.c.e. sequence of sets and enumerates all the c.e. sets. We write E for the
set of all c.e. sets.

3. For n 2 N, hx0; x1; : : : ; xni W NnC1 ! N is a polynomial-time computable
encoding function such that xi � hx0; x1; : : : ; xni for all i � n. We also
define a polynomial-time computable decoding function .x/n W N ! Nn

which is the inverse function of the encoding function hx0; x1; : : : ; xn�1i.
We define A ˝ B D ¹ha; bi W .a 2 A/ ^ .b 2 B/º. We use ˝ to partition
N into an infinite number of infinite computable sets, N ˝ ¹0º;N ˝ ¹1º; : : :.
Sets of this form are known as columns, whereby N ˝ ¹iº is the i th column
of N. As a shorthand, we will represent the i th column of N with the symbol
Ci and the i th column of A � N by Ci .A/. Associated with Ci , we define ci

to be a computable function such that Wci .x/ D Wx \ Ci .
4. We write .x0; x1; : : : ; xn/ to denote the ordered tuple of elements (as opposed

to the encoding of the ordered tuple, hx0; x1; : : : ; xni).

Teachers, Learners, and Oracles 15

5. We fix an encoding of polynomials as natural numbers and write p� to denote
the encoding of a polynomial p. The encoding is polynomial-time com-
putable, as is the decoding, and maps onto N.

6. signedInt W N ! Z is the computable bijection such that signedInt.2n/ D n

and signedInt.2n C 1/ D �.n C 1/.
7. If a is a string or natural number, then ai denotes the string which consists of

a repeated i times.
8. For function composition we use the notation f ı g, where .f ı g/.x/ D

f .g.x//.
9. If � D a0 � � � an is a string, then j� j D n C 1 is the length of the string,

�.k/ D ak and content.�/ D ¹�.k/ W k < j� jº.
10. An enumeration of a nonempty set A is an infinite sequence of elements of A

such that every element of A appears in the sequence at least once. We regard
an enumeration as a stream of bits with markers between individual elements.
We will restrict our attention to nonempty sets. Consequently, we need not
consider enumerations of the empty set.

11. A learning machine (or learner) is a partial computable function that receives
a string as input, may have access to oracle queries, and outputs a natural
number that is interpreted as a code for a set. The outputs are called hypothe-
ses and the sequence of hypotheses produced by a learner on initial segments
of an enumeration is called the hypothesis stream. When measuring effi-
ciency, we allow a learner to skip an element of an enumeration for some
fixed computational cost.

12. Given an interval Œ0; n�, where n is unknown but bounded by am, n can be
determined with .mC1/aC1 or fewer oracle queries using the following algo-
rithm. First, determine the least k0 such that ak0C1 … Œ0; n�. We will obtain
k0 after at most m C 1 queries. Next, we repeat the process to determine the
least k1 such that ak0 C ak1C1 … Œak0 ; n�. By iterating this process at most
a C 1 times we find n. We call this an exponential query search algorithm.

We will consider learning models using combinations of three different data
sources: enumeration, oracle, and teacher. All of the models we consider are forms
of TxtEx-learning, or learning in the limit. We begin with the definition of this
fundamental learning model.

Definition 2.2 Let M be a computable learning machine, let F D ¹Fnºn2N be
an indexed family, and let ¹anºn2N be an enumeration (text) of a set F 2 F .

1. M TxtEx-identifies ¹anºn2N if

.9i/.8j /
�
M.a0 � � � aiCj / D M.a0 � � � ai / ^ FM.a0���ai / D F

�
:

If only the first condition above is met, that is, .9i/.8j /.M.a0 � � � aj C1/ D

M.a0 � � � ai //, then we say that M has converged on the enumeration
¹anºn2N.

2. M TxtEx-learns F if M TxtEx-identifies every enumeration of F .
3. M TxtEx-learns F if M TxtEx-learns every F 2 F .

All of the models we examine in this paper are variants of TxtEx-learning. The
parameters we will vary are linked to sources of information and the measurement of
efficiency. We state definitions of these variants starting from an arbitrary learning
model.

16 Beros and de la Higuera

Definition 2.3 Let L-learning be an arbitrary learning model.
1. We say that F is L-learnable with a membership oracle (denoted L[O]-

learnable) if there is a learning machine, M , that L-learns F and has access
to a membership oracle for the target it is learning. As membership oracles
are the only oracles we will consider, we often simply refer to a membership
oracle as an oracle.

2. A function T W 2<N ! 2<N is a teacher if it is a computable function, T .�/ is
a prefix of T .�/ whenever � is a prefix of � , and content.T .�// � content.�/.
We say that F is L-learnable with a teacher (denoted L[T]-learnable) if there
is a learner-teacher pair .M; T / such that M L-identifies every enumeration
of the form T ı f , where f enumerates a member of F .

3. We say that F is L-learnable with a teacher and a membership oracle
(denoted LŒT; O�-learnable) if there is a learner-teacher pair, .M; T /, such
that M has access to a membership oracle, T has access to the query
responses M receives, and M L-identifies every enumeration of the form
T ı f , where f enumerates a member of F .

As is clear from the definition, the teacher serves to preprocess the text input before
passing the elements deemed important to the learner. In the subsequent sections, we
will consider the different combinations of teacher and oracle with certain variants
of TxtEx-learning.

When defining efficiency notions for learning, the first natural notion is that of
polynomial run-time: the learner must converge within p.e/ computation steps,
where p is a polynomial and e is a code for the target. There are two problems with
this definition. First, apart from trivial cases, any learning process can be delayed
arbitrarily by using an enumeration that repeats a single element of the target set.
Second, if a learning machine has produced an encoding of the target, but has failed
to do so in polynomial run-time, a suitably larger and equivalent encoding can be
chosen instead so that the run-time is appropriately bounded. As we are considering
indexed families, rather than general classes of c.e. sets, we can address the sec-
ond problem by fixing a reference index for every set in the family against which
efficiency is measured.

Definition 2.4 Let A D ¹Anºn2N be an indexed family. We define the minimal
index of A 2 A (symbolically, miA.A/) to be the least n such that An D A.

By restricting our attention to indexed families, we have a well-defined concept of
polynomial bounds in the size of the target that is independent of the underlying
numbering of the c.e. sets, thereby addressing the second problem. In the absence of
an oracle or teacher the first problem remains. Nevertheless, we include polynomial
run-time among the notions of efficiency that we define below as it is reasonable
when an oracle or teacher is present.

We will address four measures of learning efficiency: polynomial run-time,
polynomial-size data set, polynomial-size characteristic sample, and polynomial
mind-changes.

The results presented here for general classes of c.e. sets equipped with an index-
ing function were proved in the preprint version of this paper (see [3]). Nevertheless,
in this paper we restrict our attention to the limited case of indexed families, as it
is a more familiar context than the indexed target families required by the general

Teachers, Learners, and Oracles 17

case. In that more general case, the indexing function selects a unique code from
the underlying numbering for each set in the class. The codes output by the indexing
function are taken as the reference against which efficiency is computed.

3 Polynomial Run-Time

Definition 3.1 An indexed family F D ¹Fnºn2N is polynomial run-time learn-
able (PRT-learnable) if there is a machine M and a polynomial p such that, for every
enumeration f of F 2 F , the learner M converges to a correct index on f in fewer
than p.miF .F // computation steps. If an oracle is accessed, then oracle use must
also be bounded by p.miF .F //. We use PRT to denote the set of all PRT-learnable
indexed families.

We will apply Definition 2.3 to Definition 3.1 to obtain, for example, PRTŒT �-learning
and PRTŒT �, the PRTŒT �-learnable indexed families.
Proposition 3.2 demonstrates that PRT-learnability is much too restrictive in the
absence of an oracle or teacher.

Proposition 3.2 Let F be an indexed family. If there are A; B 2 F such that
A ¤ B and A \ B ¤ ;, then F is not PRT-learnable.

Proof Let A, B , and F be as in the statement, let M be an arbitrary learning
machine, and let p be an arbitrary increasing polynomial. Also, let a D miF .A/,
b D miF .B/, and x 2 A \ B . Define fA to be an enumeration of A that begins
with xp.a/Cp.b/ and fB to be an enumeration of B that begins with xp.a/Cp.b/. If
M PRT-identifies fA, then M.�/ must be a code for A for any � D xp.a/Ci for
i � 0. Similarly, if M PRT-identifies fB , then M.�/ must be a code for B for any
� D xp.b/Ci for i � 0. Thus, no machine can PRT-identify both fA and fB , and F

is not PRT-learnable.

On the other hand, there are many nontrivial indexed families which are PRTŒO�-,
PRTŒT �-, or PRTŒT; O�-learnable.

Example 3.3 Define Fn D Œn; 1/, Ghm;ni D Œm; n� and H k
n D content..n/k/.

The indexed families F D ¹Fnºn2N, G D ¹Gnºn2N and Hk D ¹H k
n ºn2N for k 2 N

are PRTŒO�-learnable.

Example 3.4 The indexed families in Example 3.3 are also PRTŒT �-learnable.
For example, consider Hk for some fixed k. Define a teacher T such that
T .a0 � � � an/ D T .a0 � � � an�1/an if an … ¹a0; : : : ; an�1º and outputs T .a0 � � � an�1/

otherwise. Define a learner M that waits until it has received k C1 distinct numbers,
¹b0; : : : ; bkº, from T and then outputs hb0; : : : ; bki. .M; T / PRTŒT �-learns Hk .

Proposition 3.5 PRT � PRTŒO� � PRTŒT; O� and PRT � PRTŒT � �

PRTŒT; O�.

Proof Let H2 be as above. As observed in Examples 3.3 and 3.4, H2 is
PRTŒO�-learnable and PRTŒT �-learnable, but by Proposition 3.2, H2 is not PRT-
learnable. Thus, PRT � PRTŒO� \ PRTŒT �. The other containments follow from
the definitions.

We now produce indexed families that distinguish PRTŒT �-learning from PRTŒO�-
learning and PRTŒT; O�-learning from both PRTŒO�- and PRTŒT �-learning. In order

18 Beros and de la Higuera

to prove that all of these distinctions are nontrivial, we introduce the concept of
marked self-description.

3.1 Marked self-describing sets Including self-description in an object is an encod-
ing technique on which many important learning theory examples are based.
Examples of self-description include the self-describing sets SD D ¹A 2 E W

Wmin.A/ D Aº, and the almost self-describing functions ASD D ¹f W �f .0/ D� f º.
Many variants on the self-description theme have been explored in learning theory
and inductive inference.

Our interest is in families that use carefully engineered self-description to
calibrate the difficulty in identifying their members. We will construct families
whose members are not only self-describing but also have their self-describing
elements marked for ease of identification. We say that such families exhibit
marked self-description. In particular, we will use encapsulating objects that we call
descriptors.

Definition 3.6 For finite X � N, a descriptor on the i th column is a finite set
D D ¹hx; cx ; 1; ii W x 2 Xº � Ci .C1/ such that

1.
P

x2X signedInt.cx/ D 0;
2. .8X 0 � X/.

P
x2X 0 signedInt.cx/ ¤ 0/;

3.
P

x2X 0 signedInt.x/ � 0.
Such a descriptor is said to describe the natural number n D

P
x2X signedInt.x/.

For hx; cx ; 1; ii 2 D, we call cx the completion index of the element. For n 2 N,
we define descriptorsi .n/ to be the set of all descriptors on the i th column that
describe n.

A descriptor can be thought of as a stream of data that includes parity bits to check the
integrity of the data stream and where the intended message is the number described
by the descriptor. Thus, a machine can decide not only which elements are pieces of
the descriptor (packets in the stream) but also when the entire descriptor has appeared
in the enumeration (all the packets have been received). By using a descriptor to
encode the self-description for a set, we make the self-description instantly recog-
nizable upon appearance in the enumeration. For this reason, learning such a self-
describing set can be achieved with no mind-changes. In contrast to the degree to
which we have made learning easier, we have potentially made efficient learning
harder. By distributing the self-description into a large descriptor, we will create a
scenario in which a very large amount of data is required to reach a correct decision.
We now proceed to our first result using these tools.

Lemma 3.7 There is an indexed family ¹Fnºn2N, where Fn describes n, which is
PRTŒT �-learnable but not PRTŒO�-learnable. We call this indexed family the marked
self-describing sets and designate it by MSD .

Proof Fix n 2 N and let learning machine M and polynomial p be such that
n D hm; p�; ii, where �m D M and i 2 ¹0; 1º. Without loss of generality, we
may assume that p is increasing. Consider the situation where M has access to the
membership oracle for the singleton ¹h0; 1; 1; 0iº and define a computable function
q such that, for ` 2 N, q.`/ is the greatest number about which M queries the
oracle when it receives inputs which are substrings of h0; 1; 1; 0i`. Note that q is an

Teachers, Learners, and Oracles 19

increasing function. Define Fn to be a member of descriptors0.n/ such that

Fn \
�
0; q

�
p

�
hm; p�; 1i

���
D

®
h0; 1; 1; 0i

¯
(1)

and chosen according to a fixed algorithm so that MSD D ¹Fnºn2N is u.c.e.
First, we show that MSD is PRTŒT �-learnable. We define a teacher T as follows.

If content.�/ is not a descriptor, then T .�/ is the empty string. If D D content.�/

describes n, then T .�/ D min.D/i if j� j D j�0j C i , where �0 is the shortest initial
segment of � whose content contains D and i < n; if i D n, then T .�/ D min.D/n.
Having output min.D/ n times, T proceeds by enumerating D in decreasing order.
Let M be a machine that reads the output of T and returns the number of elements
in the output of T . The teacher-learner pair learns MSD and the run-time of the
learner is linear in the index of the target.

We now show that MSD is not PRTŒO�-learnable. To prove that MSD is not
PRTŒO�-learnable, fix a learner M D �m, an increasing polynomial p encoded
by p�, n0 D hm; p�; 0i, and n1 D hm; p�; 1i. If M PRTŒO�-learns MSD

with polynomial bound p, then it must succeed at identifying Fn0
and Fn1

within
p.n1/ � p.n0/ computation stages. Choose T0 and T1 to be any enumerations of
Fn0

and Fn1
, respectively, which have h0; 1; 1; 0ip.n1/ as an initial segment. When

trying to identify T0 and T1, the learner must reach its final hypothesis before find-
ing any elements of the target sets, Fn0

and Fn1
, other than h0; 1; 1; 0i. Whatever

hypothesis M converges to before completing the p.n1/ length initial segment of
either enumeration cannot code both sets. Thus, M fails to learn at least one of the
two sets. Since M and p were chosen arbitrarily we conclude that MSD is not
PRTŒO�-learnable.

Lemma 3.8 If F D ¹Fnºn2N is an indexed family, p is a polynomial, and there
are indices a; b0; b1; : : : ; bp.a/�1 such that Fb0

� Fb1
� � � � � Fp.a/�1 � Fa, then

F is not PRTŒT �-learnable with polynomial bound p.

Proof Let F , p, a, and b0; : : : ; bp.a/�1 be as in the statement, and let .M; T / be
an arbitrary learner-teacher pair. Let �0 be an initial segment of an enumeration of
Fb0

on which M ı T outputs an index for Fb0
(if no such �0 exists, then .M; T /

has already failed to learn F). Given �n, an initial segment of an enumeration of
Fbn

for n < p.a/ � 1, define �nC1 to be an initial segment of an enumeration of
FbnC1

extending �n on which .M; T / outputs an index for FbnC1
. Again, if no such

extension can be found, then M has failed to learn F . Let T be an enumeration of
Fa which has �p.a/�1 as an initial segment. Since M changes hypothesis at least
p.a/ times on �p.a/�1, either M fails to identify T or the run-time of the learner
cannot be bounded by p.a/.

Lemma 3.9 There is a PRTŒO�-learnable indexed family that is not PRTŒT �-
learnable. We call this indexed family the column self-describing sets and desig-
nate it by CSD .

Proof Define

an D n C 1 C

n�1X
iD0

pi .ai /; (2)

where pi is the polynomial such that p�
i D i . Fix n 2 N and define An D Œ0; an� ˝

¹pn.an/º [
S

i<p.an/Œ0; an C i � ˝ ¹iº and Bn;i D
S

j �i Œ0; an C j � ˝ ¹j º, for

20 Beros and de la Higuera

i < p.an/. Finally, define Fn D Ai if n D ai and Fn D Bi;j if n D ai C j ,
where j < pi .ai /. Let CSD D ¹Fnºn2N. To PRTŒO�-learn CSD , define M

to be a learning machine that uses the exponential query search algorithm to find
the highest-index nonempty column, queries about the members of the column, in
increasing order, until the greatest element is found, and returns the value of this
element. Since the number of queries involved is polynomially bounded in e, M

witnesses the desired learnability.
Since Bn;0 � Bn;1 � � � � � Bn;p.an/�1 � An, for each polynomial, p, there is a

subfamily of F that cannot be PRTŒT �-learned with efficiency bound p. Thus, F is
not PRTŒT �-learnable.

Finally, we wish to distinguish PRTŒT; O�-learning from both PRTŒT �-learning and
PRTŒO�-learning.

Lemma 3.10 There is an indexed family which is PRTŒT; O�-learnable but neither
PRTŒT �-learnable nor PRTŒO�-learnable.

Proof To prove the claim, we must combine the strategies used in the proofs of
Lemmas 3.7 and 3.9. Define Fn exactly as the members of MSD are defined, except
we modify formula (1) to be

Fn \
�
0; q

�
p

�
3hm; p�; 1i

���
D

®
h0; 1; 1; 0i

¯
:

We also define Gn exactly as the members of CSD are defined, except that we
replace formula (2) by

an D 3.n C 1/ C

n�1X
iD0

pi .3ai /:

Finally, we define H D ¹Hnºn2N, where

Hn D

´
Gi if n D 2i I

Fi if n D 2i C 1:
:

We will show that H D ¹Hnºn2N is PRTŒT; O�-learnable but neither PRTŒT �-
learnable nor PRTŒO�-learnable. To PRTŒT; O�-learn H , let M be a learner which
first determines if the target set contains 0 using an oracle query. If the target does,
then M proceeds as the PRTŒO�-learner in the proof of Lemma 3.9, multiplying the
hypotheses output by that learner by 2. If the target does not contain 0, then M pro-
ceeds as the PRTŒT �-learner in the proof of Lemma 3.7, multiplying the hypotheses
output by that learner by 2 and adding 1. M PRTŒT; O�-learns H with only a linear
decrease in efficiency compared to the two learners from the previous lemmas.

To see that H is neither PRTŒO�-learnable nor PRTŒT �-learnable, observe that
the proofs of Lemmas 3.7 and 3.9 suffice to show that H contains two indexed
subfamilies, one of which fails to be PRTŒO�-learnable, and the other fails to be
PRTŒT �-learnable.

For clarity, we summarize the results of Section 3 in the following theorem.

Theorem 3.11 1. PRT � PRTŒO� � PRTŒT; O�;
2. PRT � PRTŒT � � PRTŒT; O�;
3. PRTŒO� n PRTŒT � ¤ ;;
4. PRTŒT � n PRTŒO� ¤ ;.

Teachers, Learners, and Oracles 21

Proof All of the claims in the statement follow from Lemmas 3.7, 3.9, and 3.10
and Proposition 3.5.

4 Polynomial-Size Data Set

Definition 4.1 An indexed family, F D ¹Fnºn2N, is polynomial-size data set
learnable (PSD-learnable) if there is a machine M and a polynomial p such that for
any enumeration f of F 2 F , M converges to a correct index on an initial segment
f � n such that j¹f .x/ W x < nºj < p.miF .F //. If an oracle is accessed, oracle use
must also be bounded by p.miF .F //.

Note that oracle use bounds both the queries to which the oracle responds in the
positive and those to which it responds in the negative. We shall apply Definition 2.3
to Definition 4.1 much as we did in the case of Definition 3.1.

Proposition 4.2 PSD � PSDŒO� � PSDŒT; O� and PSD � PSDŒT � �

PSDŒT; O�.

Proof The claim follows from the definitions of PSD, PSDŒT �, PSDŒO�, and
PSDŒT; O�.

Unlike PRT-learning, there are nontrivial PSD-learnable indexed families.

Example 4.3 Let F be an indexed family containing all the finite sets such that
miF .F / D hjF j; ei, where e is the canonical code for F . F is PSD-learnable by the
learning machine M , where M.a0 � � � an/ D hj content.a0 � � � an/j; ai, where a is the
canonical code content.a0 � � � an/.

Example 4.4 Let Fn D Œ0; 2n�. F D ¹Fnºn2N is PSDŒO�-learnable by a learning
machine that uses the exponential query search algorithm to find the greatest ele-
ment. F is PSDŒT �-learnable by the pair .M; T /, where M.a

k0

0 ; : : : ; a
kn�1

n�1 / D k0

and T .a0 � � � akC1/ D an
0a1 � � � akC1 if 2n � max¹a0; : : : ; akC1º < 2nC1 and

max¹a0; : : : ; akº < 2n. F is not PSD-learnable, as the learner may be forced to
receive 2n�1 distinct elements before converging to a correct hypothesis.

Lemma 4.5 There is an indexed family which is PSDŒT �-learnable but not
PSDŒO�-learnable.

Proof We prove the claim using a strategy similar to that used in the proof of
Lemma 3.7. Following the notation established in the proof, the only differences are
that (i) we define q.`/ to be the maximum number about which M queries the ora-
cle when it receives inputs which are substrings h0; 1; 1; 0ih2; 1; 1; 0i � � � h2`; 1; 1; 0i,
given the oracle for ¹h2i; 1; 1; 0i W i � `º, and (ii) that we define Fn to be a member
of descriptors0.n/ such that

Fn \
�
0; q

�
p

�
hm; p�; 1i

���
D

®
h2i; 1; 1; 0i W i � p

�
hm; p�; 1i

�¯
:

Let F D ¹Fnºn2N. The proof that F is PSDŒT �-learnable is exactly the same as
the proof that MSD is PRTŒT �-learnable. That F is not PSDŒO�-learnable follows
from the observation that for arbitrary M D �m, M cannot distinguish between
Fhm;p�;0i and Fhm;p�;1i on increasing enumerations without receiving more than
p.hm; p�; 1i/ elements of an enumeration of the target.

22 Beros and de la Higuera

Theorem 4.6

1. PSD � PSDŒO� � PSDŒT; O�;
2. PSD � PSDŒT � � PSDŒT; O�;
3. PSDŒO� n PSDŒT � ¤ ;;
4. PSDŒT � n PSDŒO� ¤ ;.

Proof By Lemma 4.5 and Example 4.4, we need only prove that PSDŒO� n

PSDŒT � ¤ ; and PSDŒT � [PSDŒO� � PSDŒT; O�.
Observe that the proof of Lemma 3.8 demonstrates that an indexed family meeting

the hypotheses of the lemma is not PSDŒT �-learnable. Thus, Lemma 3.9 proves that
CSD 2 PSDŒO� n PSDŒT �.

Following the proof of Lemma 3.10, merging the families constructed in Lem-
mas 4.5 and 3.9 with suitable modifications produces an indexed family which is
PSDŒT; O�-learnable but neither PSDŒT �-learnable nor PSDŒO�-learnable.

It follows from the definitions that PRT � PSD, PRTŒO� � PSDŒO�, PRTŒT � �

PSDŒT � and PRTŒT; O� � PSDŒT; O�. With the following theorem, we show that all
three of these containments are strict.

Theorem 4.7 PSD n PRTŒT; O� ¤ ;.

Proof Let K denote the halting problem. Define F D ¹F0; F1; : : :º, where
� F2iC1 D ¹2iº if i … K and F2iC1 D ¹2i; 2i C 1º if i 2 K;
� F

22i D ¹2i; 2i C 1º;
� for all even numbers 2i ¤ 22k for some k, F2i D ;.

That F is PSD-learnable is witnessed by the learner M which outputs 6 on the
empty string, outputs 2i C 1 on a string with one unique element which is 2i , and
outputs 22i and any other string, if the string contains either 2i or 2i C 1. On
the other hand, suppose that the learner-teacher pair, .N; T /, PRTŒT �-learns F with
polynomial bound p. Computing and returning 22i cannot be done within p.2i C 1/

computation steps for more than finitely many values of i ; thus, for all but finitely
many i , i … K if and only if .9j /.N.T .2i.2iC1/j // D 22i

/. Since this would imply
that K is †0

1, we have arrived at a contradiction and must conclude that F … PRTŒT �.
Observe that the use of an oracle does not facilitate learning in this case, and so we
conclude that PSD n PRTŒT; O� ¤ ;.

5 Polynomial Mind-Changes

Definition 5.1 An indexed family, F D ¹Fnºn2N, is polynomial mind-changes
learnable (PMC-learnable) if there is a machine M and a polynomial p such that,
for every enumeration f of F 2 F , the hypothesis stream, g, generated by M on
f satisfies j¹i W g.i/ ¤ g.i C 1/ºj � p.miF .F //, and the only one that appears
infinitely many times in g is an index of F . If an oracle is accessed, then oracle use
must also be bounded by p.miF .F //.

We begin with an example exhibiting three PMC-learnable indexed families.

Example 5.2 Let F be an indexed family containing all the finite sets such that
miF .F / D hjF j; ei, where e is the canonical code for F . F is PMC-learnable as
witnessed by the learning machine M such that M.a0 � � � ak/ D hj content.a0; : : : ;

Teachers, Learners, and Oracles 23

ak/j; ei, where e is the canonical code for the finite set of distinct elements in
a0; : : : ; ak . On any enumeration of a finite set, F , M will change its hypothesis
at most jF j times.

Let F D ¹Fnºn2N, where Fn D Œ0; 2n�. F is PMC-learnable. Define M such
that M.�/ is a code for Œ0; 2s�, where s is the least integer greater than or equal to
log2.max.�//.

MSD is PMC-learned by a learning machine that waits until a descriptor has
appeared in the enumeration and then outputs the number the descriptor describes.

Theorem 5.3 PMCŒT � D PMC D PSDŒT � and PMCŒT; O� D PMCŒO�.

Proof Fix an arbitrary indexed family F . If .M; T / PMCŒT �-learns F , then
M ı T PMC-learns F . Since every PMC-learnable indexed family is also
PMCŒT �-learnable, PMC D PMCŒT �. Similarly, PMCŒT; O� D PMCŒO�.

Suppose .M; T / PSDŒT �-learns F , and define M � such that M �.a0 � � � akC1/ D

M ı T .a0 � � � akC1/ when T .a0 � � � akC1/ ¤ T .a0 � � � ak/ and M �.a0 � � � akC1/ D

M �.a0 � � � ak/ otherwise. Since .M; T / PSDŒT �-learns F , the number of distinct
elements that T outputs before M ı T converges to a correct hypothesis is polyno-
mially bounded; hence M � changes hypothesis a polynomially bounded number of
times. Thus, F 2 PMC.

Define functions f and g such that f .�/ D j� j and g.n; x/ D xn, the
string x repeated n times. Suppose M PMC-learns F . Define T such that
T .�/ D g.M.�/; min.�// if M.�/ is different from M.�/ for all � � � . T .�/

is undefined otherwise. .f; T / PSDŒT �-learns F because it converges to a correct
hypothesis after reading a polynomially bounded number of outputs from T .

Theorem 5.4 PMC D PMCŒT � � PMCŒO� D PMCŒT; O�.

Proof The proof of Lemma 3.8 implies that indexed families which meet the
hypotheses are not PMC-learnable. Thus, CSD is PMCŒO�-learnable but not PMC-
learnable. By Theorem 5.3, PMC D PMCŒT � and PMCŒT � D PMCŒT; O�. Hence,
the desired claims are true.

6 Polynomial-Size Characteristic Sample

Definition 6.1 An indexed family, F , is polynomial-size characteristic sample
learnable (PCS-learnable) if there is a machine M , a polynomial p, and a fam-
ily H such that for each F 2 F , there is a corresponding H 2 H such that
jH j < p.miF .F //, and if f is an enumeration of F , then M outputs the same
encoding of F on every initial segment of f whose content includes H . If an oracle
is accessed, then oracle use must also be bounded by p.miF .F //.

Theorem 6.2

1. PCSŒO� n PCSŒT � ¤ ;;
2. PCSŒT � n PCSŒO� ¤ ;;
3. PCSŒT; O� n .PCSŒT � [PCSŒO�/ ¤ ;.

Proof Define G0 D N, Gn D Œ0; n�, for n > 0, and G D ¹Gnºn2N. F is
PCS[O]-learned by M , where M.a0 � � � an/ D 0 if the answer to a query about
max¹a0; : : : ; anºC1 is true and is a code for Œ0; max¹a0; : : : ; anº� otherwise. Since

24 Beros and de la Higuera

any string, � , can either be extended to an enumeration of G0 D N or to an enu-
meration of Gn D Œ0; n� for any n � max.content.�//, no learner-teacher pair can
PCS-learn G . Thus, we have proved 1.

Fix k and suppose that k D hn; p�i, where p is an increasing polynomial, and let
M be the learner coded by n. Define Ek to be a c.e. subset of Œ22kC1 C 1; 22kC2�

that satisfies three conditions:
� 22kC1 C 1 2 Ek ;
� jEkj D p.2k C 1/ C 1;
� for any enumeration, f , of Œ22kC1 C 1; 22kC2�, if Ek � f � i for some

i � p.2k C 1/, then M.f � j / D 2k for i � j � p.2k C 1/.
If no such set exists, let Ek D ;. If Ek ¤ ;, then we define a set Dk satisfying the
following conditions:

� jDkj D 2p.2k C 1/ C 1;
� Ek � Dk � Œ22kC1 C 1; 22kC2�;
� Dk includes the first p.2k C 1/ members of Œ22kC1 C 1; 22kC2� about which

M queries the oracle on a fixed uniformly computable enumeration of Ek .
If Ek D ;, then Dk D ;. To prove 2, define F D ¹F0; F1; : : :º, where
F2k D Œ22kC1 C 1; 22kC2� and F2kC1 D Dk [¹22kC1 C 1º. Observe that for
any oracle learner, M , and polynomial, p, there is a k such that either

� there is an enumeration of F2kC1 on which M converges to 2k or M makes
more than p.2k C 1/ oracle queries, or

� M does not have a characteristic sample for F2k of size at most p.2k/.
Thus, F is not PCSŒO�-learnable. On the other hand, consider the learner, M , and
teacher, T , defined as follows. Once a number of the form 22kC1 C 1 appears in the
enumeration, T outputs 22kC1 C 1. Using k, T then determines a natural number,
n, and polynomial, p, such that k D hn; pi. The teacher outputs no further numbers
until the distinct elements of the enumeration exceeds 2p.2k C 1/ C 1. At this point,
T outputs 22kC1 C 2. Simultaneously, T calculates Dk . If Dk is nonempty, then T

outputs the least element of Œ22kC1 C1; 22kC2�nDk if it appears in the enumeration.
M returns 2k C 1 if T has output only one element and returns 2k if T has output
two or more elements. The learner-teacher pair PCSŒT �-learns F , proving 2.

We prove 3 by combining the two families defined above into one family: define
H D ¹G0 ˝ ¹0º; F0 ˝ ¹1º; G1 ˝ ¹0º; F1 ˝ ¹1º; : : :º. Were H PCSŒO�-learnable,
that would imply that F is PCSŒO�-learnable; similarly, if H were PCSŒT �-learnable,
then G would also be PCSŒT �-learnable. That H is PCSŒT; O�-learnable is witnessed
by a learner-teacher pair (with access to an oracle) that first waits to see whether the
enumeration contains elements of the form hn; 0i or hn; 1i and applies the appropri-
ate learning algorithm as defined above.

The final theorem of this paper illustrates some of the relationships between
PCS-learning and the other three types of polynomial-bounded learning.

Theorem 6.3

1. PMC n PCS ¤ ;;
2. PSD � PCS;
3. PCS n PMC ¤ ;.

Teachers, Learners, and Oracles 25

Proof Observe that the family, F , defined in the proof of Theorem 6.2 is also
PMC-learnable. Consider a learner, M , which attempts to compute Dk and returns
0 until a number of the form 22kC1 C1 appears in the enumeration. If this is the only
number in the enumeration, then M outputs 2k C1. M also outputs 2k C1 if M suc-
ceeds in computing Dk and every element of the enumeration is in Dk [¹22kC1C1º.
Otherwise, M outputs 2k. Since F … PCS, we have proved 1.

We prove 2 in two parts. First, suppose that M PSD-learns a family G D

¹G0; G1; : : :º with polynomial bound p. Let Ci denote the first at most p.i/ ele-
ments of Gi . Define M � such that M �.�/ D M.�/, where � lists the distinct
elements of � in increasing order. Since M must PSD-learn Gi on the increasing
enumeration, Ci must be a characteristic sample for M � on Gi . Thus, PSD � PCS.
Now, consider A D ¹A0; A1; : : :º, where An D ¹nº ˚ N. Consider the string ˛k

consisting of the odd numbers from 1 to 2k C 1. For any member of A, there is
an enumeration that begins with ˛k . Consequently, A is not PSD-learnable. Con-
versely, each member of A has a characteristic sample of size 1. We conclude that
PSD � PCS.

Given n 2 N, there are unique in and kn such that n D in C2kn and 1 � in � 2kn .
Define G D ¹G0; G1; : : :º, where G2n D ¹nº ˚ Œ0; 2n� and G2nC1 D ¹knº ˚ Œ0; in�.
In order to PCS-learn F , we define a learner M as follows. Let � be an arbi-
trary string of natural numbers. If � contains no odd numbers or contains no
even numbers, define M.�/ D 0. Otherwise, let 2n be the least even number
in � , and let 2m C 1 be the greatest odd number. M.�/ D 2n if m D 2n and
M.�/ D 2k C 1, where k D m C 2n, if m ¤ 2n. Each member of G has a
characteristic sample of size 2 for M ; thus, M PCS-learns G . Conversely, suppose
that N PMC-learns G . For each n; i; a1; a2; : : : ; ai�1 and k D i C 2n, there is an
ai such that N.2n13a15a2 � � � .2i � 1/ai�1.2i C 1/ai / D 2k C 1. Thus, for any
polynomial there is an n such that p.2n/ < 2n and an enumeration of G2n on which
N outputs 2n different hypotheses. We have proved 3.

References

[1] Angluin, D., “Queries and concept learning,” Machine Learning, vol. 2 (1988), pp.
319–42. MR 3363446. DOI 10.1007/BF00116828. 14

[2] Angluin, D., “Queries revisited,” Theoretical Computer Science, vol. 313 (2004), pp.
175–94. Zbl 1069.68086. MR 2051785. DOI 10.1016/j.tcs.2003.11.004. 14

[3] Beros, A., and A. de la Higuera, “Teachers, learners and oracles,” preprint,
arXiv:1504.03623 [math.LO]. 16

[4] Doliwa, T., H. U. Simon, and S. Zilles, “Recursive teaching dimension, learning com-
plexity, and maximum classes,” pp. 209–23 in Proceedings of the 21st International
Conference on Algorithmic Learning Theory (ALT’10), edited by M. Hutter, F. Stephan,
V. Vovk, and T. Zeugmann, Springer, Berlin, 2010. MR 2755806. DOI 10.1007/
978-3-642-16108-7_19. 13

[5] Floyd, S., and M. Warmuth, “Sample compression, learnability, and the Vapnik-
Chervonenkis dimension,” Machine Learning, vol. 21 (1995), pp. 1–36. 14

[6] Fortnow, L., W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz, M. Pleszkovich, T.
Slaman, R. Solovay, and F. Stephan, “Extremes in the degrees of inferability,” Annals
of Pure and Applied Logic, vol. 66 (1994), pp. 231–76. MR 1270964. DOI 10.1016/
0168-0072(94)90035-3. 14

http://www.ams.org/mathscinet-getitem?mr=3363446
https://doi.org/10.1007/BF00116828
http://www.emis.de/cgi-bin/MATH-item?1069.68086
http://www.ams.org/mathscinet-getitem?mr=2051785
https://doi.org/10.1016/j.tcs.2003.11.004
http://arxiv.org/abs/arXiv:1504.03623
http://www.ams.org/mathscinet-getitem?mr=2755806
https://doi.org/10.1007/978-3-642-16108-7_19
https://doi.org/10.1007/978-3-642-16108-7_19
http://www.ams.org/mathscinet-getitem?mr=1270964
https://doi.org/10.1016/0168-0072(94)90035-3
https://doi.org/10.1016/0168-0072(94)90035-3

26 Beros and de la Higuera

[7] Goldman, S. A., and M. J. Kearns, “On the complexity of teaching,” Journal of Com-
puter and System Sciences, vol. 50 (1995), pp. 20–31. MR 1322630. DOI 10.1006/
jcss.1995.1003. 13

[8] Holte, R., S. Lange, S. Zilles, and M. Zinkevich, “Teaching dimen-
sions based on cooperative learning,” pp. 135–46 in Proceedings of the
21st Annual Conference on Learning Theory (COLT’08), Helsinki, 2008,
http://colt2008.cs.helsinki.fi/papers/COLT2008.pdf. 13

[9] Jain, S., and A. Sharma, “On the non-existence of maximal inference degrees for
language identification,” Information Processing Letters, vol. 47 (1993), pp. 81–88.
MR 1234559. DOI 10.1016/0020-0190(93)90229-3. 14

[10] Kummer, M., and F. Stephan, “On the structure of degrees of inferability,” Journal of
Computer and System Sciences, vol. 52 (1996), pp. 214–38. MR 1393991. DOI 10.1006/
jcss.1996.0018. 14

[11] Sammut, C., and R. Banerji, “Learning concepts by asking questions,” pp. 167–92 in
Machine Learning: An Artificial Intelligence Approach, vol. 2, edited by R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, Morgan Kaufmann Publishers, Los Altos, CA, 1986.
14

[12] Stephan, F., “Noisy inference and oracles,” Theoretical Computer Science, vol. 185
(1997), pp. 129–57. MR 1486354. DOI 10.1016/S0304-3975(97)00018-2. 14

Acknowledgments

The authors could like to thank the anonymous referee for numerous useful comments
and suggestions.

Beros
Department of Mathematics
University of Hawai‘i at Mānoa
Honolulu, Hawaii
USA
beros@math.hawaii.edu
http://math.hawaii.edu/~beros

de la Higuera
Laboratoire d’Informatique de Nantes Atlantique
Université de Nantes
Nantes
France
cdlh@univ-nantes.fr

http://www.ams.org/mathscinet-getitem?mr=1322630
https://doi.org/10.1006/jcss.1995.1003
https://doi.org/10.1006/jcss.1995.1003
http://colt2008.cs.helsinki.fi/papers/COLT2008.pdf
http://www.ams.org/mathscinet-getitem?mr=1234559
https://doi.org/10.1016/0020-0190(93)90229-3
http://www.ams.org/mathscinet-getitem?mr=1393991
https://doi.org/10.1006/jcss.1996.0018
https://doi.org/10.1006/jcss.1996.0018
http://www.ams.org/mathscinet-getitem?mr=1486354
https://doi.org/10.1016/S0304-3975(97)00018-2
mailto:beros@math.hawaii.edu
http://math.hawaii.edu/~beros
mailto:cdlh@univ-nantes.fr

	1 Introduction
	2 Background
	3 Polynomial Run-Time
	3.1 Marked self-describing sets

	4 Polynomial-Size Data Set
	5 Polynomial Mind-Changes
	6 Polynomial-Size Characteristic Sample
	References
	Acknowledgments
	Author's addresses

