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Ostrowski Numeration Systems, Addition, and
Finite Automata

Philipp Hieronymi and Alonza Terry Jr.

Abstract We present an elementary three-pass algorithm for computing addi-
tion in Ostrowski numeration systems. When a is quadratic, addition in the
Ostrowski numeration system based on a is recognizable by a finite automa-
ton. We deduce that a subset of X � Nn is definable in .N; C; Va/, where Va is
the function that maps a natural number x to the smallest denominator of a con-
vergent of a that appears in the Ostrowski representation based on a of x with
a nonzero coefficient if and only if the set of Ostrowski representations of ele-
ments of X is recognizable by a finite automaton. The decidability of the theory
of .N; C; Va/ follows.

1 Introduction

A continued fraction expansion Œa0I a1; : : : ; ak ; : : : � is an expression of the form

a0 C
1

a1 C
1

a2C 1

a3C 1

: : :

:

For a real number a, we say that Œa0I a1; : : : ; ak ; : : : � is the continued fraction expan-
sion of a if a D Œa0I a1; : : : ; ak ; : : : � and a0 2 Z, ai 2 N>0 for i > 0. Let a be
a real number with continued fraction expansion Œa0I a1; : : : ; ak ; : : : �. In this article
we study a numeration system due to Ostrowski [14] based on the continued fraction
expansion of a. Set q�1 WD 0 and q0 WD 1, and for k � 0, set

qkC1 WD akC1 � qk C qk�1: (1.1)
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Then every natural number N can be written uniquely as

N D

nX
kD0

bkC1qk ;

where bk 2 N such that b1 < a1, bk � ak , and if bk D ak , then bk�1 D 0. We say
that the word bn � � � b1 is the Ostrowski representation of N based on a, and we write
�a.N / for this word. For more details on Ostrowski representations, see for example
Allouche and Shallit [2, p. 106] or Rockett and Szüsz [15, Chapter II.4]. When a is
the golden ratio � WD

1C
p

5
2

, the continued fraction expansion of a is Œ1I 1; : : : �. In
this special case the sequence .qk/k2N is the sequence of Fibonacci numbers. Thus,
the Ostrowski representation based on the golden ratio is precisely the better known
Zeckendorf [18] representation.

In this article, we will study the following question: Given the continued fraction
expansion of a and the Ostrowski representation of two natural numbers based on a,
is there an easy way to compute the Ostrowski representation of their sum? Ahlbach,
Usatine, Frougny, and Pippenger [1] give an elegant algorithm to calculate the sum
of two natural numbers in Zeckendorf representations. In this article we generalize
their work and present an elementary three-pass algorithm for computing the sum of
two natural numbers given in the Ostrowski representation. To be precise, we show
that, given the continued fraction expansion of a, the addition of two n-digit numbers
in the Ostrowski representation based on a can be computed by three linear passes
over the input sequence and hence in time O.n/. If a is a quadratic number,1 we
establish that the graph of addition in the Ostrowski numeration system based on a

can be recognized by a finite automaton (see Theorem B for a precise statement).
When a is the golden ratio, this result is due to Frougny [8].2

Ostrowski representations arose in number theory and have strong connections
to the combinatorics of words (see, e.g., Berthé [3]). However, our main motiva-
tion for studying Ostrowski representations is their application to decidability and
definability questions in mathematical logic. The results in this article (in particular,
Theorem B below) play a crucial role in the work of the first author [10] on expan-
sions of the real additive group. Here we will present the following application of
our work on addition in the Ostrowski numeration system to the study of expansions
of Presburger arithmetic (see Theorem A).

Let a be quadratic. Since the continued fraction expansion of a is periodic, there
is a natural number c WD maxk2N ak . Let †a D ¹0; : : : ; cº. So �a.N / is a †a-word.
Let Va W N ! N be the function that maps x � 1 with Ostrowski representation
bn � � � b1 to the least qk with bkC1 ¤ 0 and maps 0 to 1.
Theorem A Let a be quadratic. A set X � Nn is definable in .N; C; Va/ if and
only if X is a-recognizable. Hence, the theory of .N; C; Va/ is decidable.
We say that a set X � N is a-recognizable if 0��a.X/ is recognizable by a finite
automaton, where 0��a.X/ is the set of all †a-words of the form 0 � � � 0�a.N / for
some N 2 X . The definition of a-recognizability for subsets of Nn is slightly
more technical, and we postpone it to Section 3. The decidability of the theory
of .N; C; Va/ follows immediately from the first part of the statement of Theorem A
and Kleene’s theorem (see Khoussainov and Nerode [12, Theorem 2.7.2]) that the
emptiness problem for finite automata is decidable. Bruyère and Hansel [4, Theo-
rem 16] establish Theorem A when a is the golden ratio. In fact, they show that
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Theorem A holds for linear numeration systems whose characteristic polynomial is
the minimal polynomial of a Pisot number. A similar result for numeration systems
based on .pn/n2N, where p > 1 is an integer, is due to Büchi [6] (for a full proof
see Bruyère, Hansel, Michaux, and Villemaire [5]). It is known by Shallit [16] and
Loraud [13, Thèoréme 7] that the set N is a-recognizable if and only if a is quadratic.
So in general the conclusion of Theorem A fails when a is not quadratic.

A few remarks about the proof of Theorem A are in order. The proof that every
definable set is a-recognizable is rather straightforward, and we follow a similar argu-
ment from Villemaire [17]. For the other direction, by Hodgson [11] it is enough to
prove that N, the graph of Va, and the graph of C are a-recognizable. While it is
easy to check the a-recognizability of the graph of Va, we have to use our algo-
rithm for addition in Ostrowski numeration systems to show that the graph of C is
a-recognizable. Thus, most of the work toward proving Theorem A goes into show-
ing the following result.

Theorem B Let a be a quadratic. Then ¹.x; y; z/ 2 N3 W x C y D zº is
a-recognizable.

We end this introduction with a brief comment about possible applications of Theo-
rem B to the theory of Sturmian words.3 Let a be a real number in Œ0; 1�. We define

fa.n/ WD
�
.n C 1/a

˘
� bnac;

and we denote the infinite ¹0; 1º-word fa.1/fa.2/ � � � by f a. This word is called
the Sturmian characteristic word with slope a. If a is a quadratic irrational, then
the set ¹n 2 N W fa.n/ D 1º is a-recognizable (see [2, Theorem 9.1.15]). Du,
Mousavi, Schaeffer, and Shallit [7] use this connection and Theorem B in the case
of the golden ratio � to prove results about the Fibonacci word (i.e., the Sturmian
characteristic word with slope � � 1). Because of Theorem B the techniques in
[7] can be applied to any characteristic Sturmian word whose slope is a quadratic
irrational.

Notation We denote the set of natural numbers ¹0; 1; 2; : : : º by N. Definable will
always mean definable without parameters. If † is a finite set, we denote the set of
†-words by †�. If a 2 † and X � †�, we denote the set ¹a : : : aw W w 2 Xº

of †-words by a�X . If x 2 Xm for some set X , we write xi for the i th coordinate
of x.

2 Ostrowski Addition

Fix a real number a with continued fraction expansion Œa0I a1; : : : ; ak ; : : : �. In this
section we present an algorithm to compute the Ostrowski representations based on
a of the sum of two natural numbers given in Ostrowski representations based on a.
Since we only consider the Ostrowski representations based on a, we will omit the
reference to a. In the special case in which a is the golden ratio, our algorithm is
exactly the one presented in [1]. Although it is not strictly necessary, the reader might
find it useful to read [1, Section 2] first.

Let M; N 2 N, and let xn : : : x1; yn : : : y1 be the Ostrowski representations of M

and N . We will describe an algorithm that, given the continued fraction expansion of
a, calculates the Ostrowski representations of M CN . Let s be the word snC1sn � � � s1
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given by
si WD xi C yi ;

for i D 1; : : : ; n and snC1 WD 0. For ease of notation, we set m WD n C 1.
The algorithm consists of three linear passes over s: one left-to-right, one right-

to-left, and one left-to-right. These three passes will change the word s into a word
that is the Ostrowski representation of M C N . The first pass converts s into a word
whose digit at position k is smaller than or equal to ak . The idea of how to achieve
this is as follows. We will argue (see Lemma 2.4) that, whenever the digit at position
k is larger than or equal to ak , the preceding digit has to be less than akC1. Using
(2.1) we can then decrease the digit at position k by ak , without increasing the one
at position k C 1 above akC1 and without changing the value the word represents.
The resulting word might not yet be an Ostrowski representation of M C N , because
the digit at position k may be ak and not followed by 0. With the second and third
passes we eliminate all such occurrences.

The first step is an algorithm that makes a left-to-right pass over the sequence
sm � � � s1 starting at m. That means that it starts with the most significant digit, in
this case sm, and works its way down to the least significant digit s1. The algorithm
can best be described in terms of a moving window of width 4. At each step, we
only consider the entries in this window. After any possible changes are performed,
the window moves one position to the right. When the window reaches the last
four digits, the changes are carried out as usual. Afterward, one final operation
is performed on the last three digits. The precise algorithm is as follows. Given
s D sm � � � s1, we will recursively define, for every k 2 N with 3 � k � m C 1, a
word

zk WD zk;mzk;m�1 � � � zk;2zk;1:

Algorithm 1 Let k D m C 1. Then set

zmC1 WD sm � � � s1:

Let k 2 N with 4 � k < m C 1. We now define zk D zk;mzk;m�1 � � � zk;2zk1
:

� for i … ¹k; k � 1; k � 2; k � 3º, we set zk;i D zkC1;i ;
� the subword zk;kzk;k�1zk;k�2zk;k�3 is determined as follows:
(A1) if zkC1;k < ak , zkC1;k�1 > ak�1, and zkC1;k�2 D 0, then

zk;kzk;k�1zk;k�2zk;k�3

D .zkC1;k C 1/
�
zkC1;k�1 � .ak�1 C 1/

�
.ak�2 � 1/.zkC1;k�3 C 1/I

(A2) if zkC1;k < ak , ak�1 � zkC1;k�1 � 2ak�1, and zkC1;k�2 > 0, then

zk;kzk;k�1zk;k�2zk;k�3 D .zkC1;k C1/.zkC1;k�1 �ak�1/.zkC1;k�2 �1/.zkC1;k�3/I

(A3) otherwise,

zk;kzk;k�1zk;k�2zk;k�3 D zkC1;kzkC1;k�1zkC1;k�2zkC1;k�3:

Let k D 3. We now define z3 D z3;m � � � z3;1:
� for i … ¹1; 2; 3º, we set z3;l D z4;l ;
� the subword z3;3z3;2z3;1 is determined as follows:

(B1) if z4;3 < a3, z4;2 > a2, and z4;1 D 0, then

z3;3z3;2z3;1 D .z4;3 C 1/
�
z4;2 � .a2 C 1/

�
.a1 � 1/I
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(B2) if z4;3 < a3, z4;2 � a2, and a1 � z4;1 > 0, then
z3;3z3;2z3;1 D .z4;3 C 1/.z4;2 � a2/.z4;1 � 1/I

(B3) if z4;3 < a3, z4;2 � a2, and z4;1 > a1, then
z3;3z3;2z3;1 D .z4;3 C 1/.z4;2 � a2 C 1/.z4;1 � a1 � 1/I

(B4) if z4;2 < a2 and z4;1 � a1, then
z3;3z3;2z3;1 D z4;3.z4;2 C 1/.z4;1 � a1/I

(B5) otherwise,
z3;3z3;2z3;1 D z4;3z4;2z4;1:

When we speak of the entry at position l after step k, we mean zk;l . When
zkC1;l ¤ zk;l , we say that at step k the entry in position l was changed. It follows
immediately from the algorithm that the only entries changed at step k are in position
k, k � 1, k � 2, or k � 3.

The goal of Algorithm 1 is to produce a word whose entry at position k is smaller
than or equal to ak and which represents the same value as s. The following two
propositions make this statement precise.

Proposition 2.1 Algorithm 1 does not change the value represented. That is, for
every k 2 N with 3 � k � m C 1,

mX
iD0

zk;iC1qi D

mX
iD0

siC1qi :

Proof It follows immediately from the recursive definition of the qi ’s (see (1.1))
that each rule of Algorithm 1 does not change the value represented. Induction on k

gives the statement of the proposition.

Proposition 2.2 For k > 1, z3;k � ak and z3;1 � a1 � 1.

We will prove the following two lemmas first.

Lemma 2.3 Let k 2 N and k � 3.
(i) If zkC1;k�1 D 2ak�1 C 1, then zkC1;k�2 D 0.
(ii) If zkC1;k�1 D 2ak�1, then zkC1;k�2 � ak�2.

Proof For (i), let zkC1;k�1 D 2ak�1 C 1. It follows immediately from the rules
of the algorithm that zkC2;k�1 D 2ak�1 C 1 and zmC1;k�1 D 2ak�1. So xk�1 and
yk�1 are both equal to ak�1. Hence, xk�2 D 0, yk�2 D 0, and zmC1;k�2 D 0. The
first time that the entry in position k � 2 can be changed is at step k C 1, when rule
(A1) is applied. However, since zkC2;k�1 D 2ak�1 C 1, rule (A1) was not applied
at step k C 1. Thus, zkC1;k�2 D zmC1;k�2 D 0.

For (ii), let zkC1;k�1 D 2ak�1. If xk�1 D yk�1 D ak�1, we argue as before
to get zkC1;k�2 D 0. Suppose that either xk�1 ¤ ak�1 or yk�1 ¤ ak�1. Because
zkC1;k�1 D 2ak�1, we get that xk�1 C yk�1 D 2ak�1 � 1 and that the entry in
position k � 1 had to be increased by 1 at step k C 2. Hence, either xk�1 D ak�1 or
yk�1 D ak�1. By the definition of Ostrowski representations, xk�2 C yk�2 � ak�2.
Thus, zkC2;k�2 � ak�2. Since the entry in position k � 1 was increased by 1 at step
k C 2, zkC2;k D ak � 1. Thus, no change is made at step k C 1. It follows that
zkC1;k�2 D xk�2 C yk�2 � ak�2.
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Lemma 2.4 Let k 2 N and 3 � k � m.
(i)k If zkC1;k�1 > ak�1, then zkC1;k < ak .
(ii)k If zkC1;k�1 D ak�1 and zkC1;k�2 > 0, then zkC1;k < ak .

Proof We prove the statements by induction on k. For k D m, both (i)m and (ii)m

hold, because zmC1;m D 0. For the induction step, suppose that (i)kC1 and (ii)kC1

hold. We need to establish (i)k and (ii)k .
We first show (i)k . Suppose that zkC1;k�1 > ak�1. Toward a contradiction,

assume that zkC1;k � ak . Since zkC1;k�1 > ak�1 and the algorithm does
not increase the entry in position k � 1 above ak�1 at step k C 1, we have
zkC2;k�1 > ak�1. Because zkC1;k � ak and the algorithm either leaves the
entry in position k at step k C 1 untouched or decreases it by ak or ak C 1, we get
that either zkC2;k D zkC1;k or zkC2;k 2 ¹2ak ; 2ak C 1º. We handle these cases
separately.

Suppose that zkC2;k 2 ¹2ak ; 2ak C 1º. By (i)kC1, zkC2;kC1 < akC1. It
follows from Lemma 2.3 that if zkC2;k D 2ak , then zkC2;k�1 � ak�1, and if
zkC2;k D 2ak C 1, then zkC2;k�1 D 0. Since one of the first two rules is applied
at step k C 1, we have that zkC1;k�1 < ak�1. This contradicts our assumption that
zkC1;k�1 > ak�1.

Now, we suppose that zkC2;k D zkC1;k and zkC2;k D ak . Because zkC2;k�1 >

ak�1, we get zkC2;kC1 < akC1 by (ii)kC1. Hence, zkC1;k D zkC2;k � ak by rule
(A2). This contradicts zkC1;k D zkC2;k .

Finally, assume that zkC2;k D zkC1;k and zkC2;k > ak . By (i)kC1, zkC2;kC1 <

akC1. Since zkC2;k�1 > ak�1, we have zkC2;kC1 < 2akC1 by Lemma 2.3. Apply-
ing rule (A2) gives zkC1;k D zkC2;k � ak . As before, this is a contradiction.

We now prove (ii)k . Let zkC1;k�1 D ak�1 and zkC1;k�2 > 0. Suppose toward
a contradiction that zkC1;k � ak . Then zkC2;k � ak , because the algorithm never
increases the entry at position k at step k C 1. Since zkC1;k�1 D ak�1, either
zkC2;k�1 D ak�1 C 1 (in this case, rule (A2) was applied) or zkC2;k�1 D ak�1 (in
this case, rule (A3) was applied). In both cases, zkC2;kC1 < akC1 by (i)kC1 and
(ii)kC1. Since zkC2;k�1 > 0, zkC2;k � 2ak by Lemma 2.3(i). Hence, rule (A2) was
applied at step k C 1, and zkC2;k�1 D ak�1 C 1. By Lemma 2.3(ii), zkC2;k < 2ak .
Thus, zkC1;k D zkC2;k � ak < ak , which is a contradiction.

Proof of Proposition 2.2 Suppose that k � 3. Because the entry at position k is
not changed after step k, it is enough to show that zk;k � ak . We have to consider
four different cases depending on the value of zkC2;k .

First, consider the case in which zkC2;k < ak . Since the algorithm does
not increase the entry in position k at step k C 1, zkC1;k < ak . Thus, zk;k �

zkC1;k C 1 � ak .
Suppose that zkC2;k D ak and zkC2;k�1 > 0. By Lemma 2.4(ii), zkC2;kC1 <

akC1. By rule (A2), zkC1;k D 0. Hence, zk;k � 1 � ak .
Suppose that zkC2;k D ak and zkC2;k�1 D 0. Then no change is made at step

k C 1. Thus, zkC1;k D ak and zkC1;k�1 D 0. Since no change is made at step k

either, zk;k D ak .
Finally, consider zkC2;k > ak . By Lemma 2.4(i), zkC2;kC1 < akC1. Hence,

either rule (A1) or rule (A2) is applied. We get that zkC1;k � ak . If zkC1;k D ak ,
then zk;k D ak . If zkC1;k < ak , then zk;k � zkC1;k C 1 � ak .
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Now suppose that k < 3. We have to show that z3;k � ak . We do so by consider-
ing several different cases depending on the values of z4;2 and z4;1. By Lemma 2.4,
if z4;2 > a2 or if z4;2 D a2 and z4;1 > 0, then z4;3 < a3. If z4;2 D a2 and z4;1 D 0,
then no changes are made.

Suppose that z4;2 D 2a2 C 1. By Lemma 2.3, z4;1 D 0. By rule (B1), z3;2 D a2,
z3;1 D a1 � 1, and z3;3 D z4;3 C 1 � a3.

Now suppose that z4;2 D 2a2. We get that z4;1 � a1 from Lemma 2.3. Then
either rule (B1) or rule (B2) is applied. In both cases we get that z3;2 D a2,
z3;1 D z4;1 � 1 � a1 � 1, and z3;3 D z4;3 C 1 � a3.

Consider a2 � z4;2 < 2a2 and z4;1 > 0. Here either rule (B2) or rule (B3) is
used. Then z3;2 � a2, z3;1 � a1 � 1, and z3;3 D z4;3 C 1 � a3.

The last case we have to consider is z4;2 < a2. Depending on whether z4;1 � a1,
we apply either rule (B4) or rule (B5). Since z4;1 � 2a1 � 1, we get z3;1 � a1 � 1

and z3;2 � z3;2 C 1 � a2 in both cases.

We now describe the second step toward determining the Ostrowski representation
of M C N . This second algorithm will be a right-to-left pass over z3. Given the
word z3;mz3;m�1 � � � z3;2z3;1, we will recursively generate a word

wk D wk;mC1wk;m � � � wk;2wk;1

for each k 2 N with k 2 N with 2 � k � m C 1. At each step, only elements in a
moving window of length 3 are changed. Because the algorithm moves right to left,
we will start by defining w2 and then recursively define wk for k � 2.

Algorithm 2 Let k D 2. Then set

w2 WD 0z3;mz3;m�1 � � � z3;2z3;1:

Let k 2 N with 2 < k � m C 1. We now define wk D wk;mC1 � � � wk;1:
� for i … ¹k; k � 1; k � 2º, we set wk;i WD wk�1;i ;
� if wk�1;k < ak , wk�1;k�1 D ak�1, and wk�1;k�2 > 0, set

wk;kwk;k�1wk;k�2 WD .wk�1;k C 1/0.wk�1;k�2 � 1/I

otherwise,

wk;kwk;k�1wk;k�2 WD wk�1;kwk�1;k�1wk�1;k�2:

Again it follows immediately from (1.1) that this algorithm does not change the value
represented:

mX
kD0

wmC1;kC1qk D

mX
kD0

z3;kC1qk :

By Proposition 2.2 and the rules of Algorithm 2, wk;i � ak for every k D 2; : : : ;

m C 1 and i D 1; : : : ; m C 2.

Lemma 2.5 There is no k 2 N such that
� wmC1;k D ak ,
� wmC1;k�1 < ak�1,
� wmC1;k�2 D ak�2, and
� wmC1;k�3 > 0.
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Proof Toward a contradiction, suppose that there is such a k. We will first show
that wk�2;k�3 > 0, wk�2;k�2 D ak�2, and wk�2;k�1 D ak�1.

Suppose that wk�2;k�3 D 0. Then the algorithm would not have made any
changes at step k �2. Thus, wk�1;k�3 D 0. Because the entry will not be changed at
a step later than step k�1, wmC1;k�3 D 0. However, this contradicts wmC1;k�3 > 0.
Thus, wk�2;k�3 > 0.

Suppose that wk�2;k�2 < ak�2. Then wk�1;k�2 D wk�2;k�2. This implies that
wk;k�2 < ak�2 and wmC1;k�2 < ak . This is a contradiction against our assumption
that wmC1;k�2 D ak�2. Hence, wk�2;k�2 D ak�2.

Now suppose that wk�2;k�1 < ak�1. Since wk�2;k�2 D ak�2 and wk�2;k�3 > 0,
wk�1;k�2 D 0. Thus wmC1;k�2 D 0, contradicting wmC1;k�2 D ak�2. So
wk�2;k�1 D ak�1.

It follows thatwk�1;k�1 D wk�2;k�1 D ak�1 andwk�1;k�2 D wk�1;k�2 D ak�2.
We will now argue that wk�1;k < ak .

Suppose toward a contradiction that wk�1;k D ak . Then wk;k D ak and
wk;k�1 D ak�1. Since wmC1;k�1 < ak�1, we have wk;kC1 < akC1. Thus,
wkC1;k D 0. Hence, wmC1;k D 0, which is a contradiction. So wk�1;k < ak .

We conclude that the entry at position k � 2 is changed at step k. Therefore,
wk;k�2 D wk�1;k�2 � 1 D ak�2 � 1. So wmC1;k�2 D ak�2 � 1. This contradicts
our original assumption that wmC1;k�2 D ak�2.

The third and final step of our algorithm is a left-to-right pass over wmC1. The
moving window is again of length 3, and we use the same rule as in step 2. Given
the word wmC1;mC1 � � � wmC1;1, we will recursively generate a word

vk WD vk;mC2 � � � vk;1

for each k 2 N with k 2 N with 3 � k � mC3. Because the algorithm moves left to
right, we will start by defining wmC3 and then recursively define wk for k � m C 3.

Algorithm 3 Let k D m C 3. Then set
vmC3 WD 0wmC1;mC1 � � � wmC1;1:

Let k 2 N with 3 � k � m C 2. We now define vk D vk;mC2 � � � vk;1:
� for i … ¹k; k � 1; k � 2º, we set vk;i WD vkC1;i ;
� if vkC1;k < ak , vkC1;k�1 D ak�1, and vkC1;k�2 > 0, then set

vk;kvk;k�1vk;k�2 WD .vkC1;k C 1/0.vkC1;k�2 � 1/I

otherwise
vk;kvk;k�1vk;k�2 WD vkC1;kvkC1;k�1vkC1;k�2:

As before, (1.1) implies that this algorithm does not change the value represented:
mX

kD0

wmC1;kC1qk D

mX
kD0

v3;kC1qk :

Moveover, we have vk;i � ak for every k D 3; : : : ; m C 3 and i D 1; : : : ; m C 2.
We will now show that v3 is indeed the Ostrowski representation of M C N . It is
enough to prove the following proposition.

Proposition 2.6 Let l � 3. Then there is no k � l � 1 such that vl;k D ak and
vl;k�1 > 0.
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Before we give the proof of Proposition 2.6, we need one more lemma.

Lemma 2.7 Let l 2 ¹3; : : : ; m C 3º. Then there is no k 2 N such that
� vl;k D ak ,
� vl;k�1 < ak�1,
� vl;k�2 D ak�2, and
� vl;k�3 > 0.

Proof We prove the lemma by induction on l . By Lemma 2.5, there is no such k

for mC3. Suppose that the statement holds for l C1. We want to show the statement
for l . Toward a contradiction, suppose that there is a k such that

vl;k D ak ; vl;k�1 < ak�1;

vl;k�2 D ak�2; and vl;k�3 > 0: (2.1)

By the induction hypothesis, it is enough to check that no change was made at step
l ; that is, vl;i D vlC1;i for i 2 ¹k; : : : ; k � 3º. Since the algorithm only modifies the
entries at position l , l C 1, or l C 2, we can assume that k 2 ¹l � 2; : : : ; l C 3º. We
consider each case separately.

First, suppose that k D l �2. We get that vl;i D vlC1;i for i 2 ¹k�1; k�2; k�3º,
because they are not in the moving window at step l . The only possible change is at
position k. Since vl;l�2 < vlC1;l�2 by the induction hypothesis and vl;l�2 D al�2,
we get vl;k D vlC1;k . So no change is made.

Suppose that k D l � 1. If a change is made at step l , then vl;k D 0. But this
contradicts (2.1). Hence, no change is made in this case.

Suppose that k D l . If a change is made at step l , then vl;k�2 D vlC1;k�2 � 1 <

ak�2. As before, this contradicts (2.1). Thus, no change is made.
Suppose that k D l C 1. If a change is made at step l , then vl;k�2 D 0, contra-

dicting (2.1). So no change is made in this case either.
Suppose that k D l C2. If a change is made at step l , then vl;k�3 D 0. This again

contradicts (2.1), and hence, no change is made.
Finally suppose that k D l C3. By the induction hypothesis, vlC1;k�3 D 0. Since

vl;k�3 > 0, we have vlC1;k�4 D ak�4 and vlC1;k�5 > 0. Then

vlC1;k�2 D ak�2; vlC1;k�3 D 0;

vlC1;k�4 D ak�4; and vlC1;k�5 > 0:

This contradicts the induction hypothesis.

Proof of Proposition 2.6 We prove this statement by induction on l . For l D mC3

the statement holds trivially, because vmC3;mC2 D 0. Now suppose that the state-
ment holds for l C 1 but fails for l . Hence, there is k � l � 1 such that vl;k D ak

and vl;k�1 > 0. Since vlC1;i D vl;i for i > l , we have k � l C 1. We now consider
the three remaining cases k D l C 1, k D l , and k D l � 1 individually.

If k D l C 1, then vlC1;k D alC1;k . By the induction hypothesis, vlC1;k�1 D 0.
But in order for vl;k�1 > 0 to hold, we must have vlC1;k�2 D ak�2 and
vlC1;k�3 > 0. This contradicts Lemma 2.7.

If k D l , then either vlC1;k D ak or vlC1;k D ak � 1. Suppose that
vlC1;k D ak � 1. Then vlC1;k�1 D ak and vlC1;k�2 > 0. This implies that
vl;k�1 D 0, which contradicts vl;k�1 > 0. Suppose that vlC1;k D ak . By the
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induction hypothesis, vlC1;k�1 D 0. But then no change is made at step l , and
hence, vl;k�1 D 0. This is a contradiction against vl;k�1 > 0.

If k D l � 1, then no change is made at step l , since vl;l�1 D al�1. Hence,
vlC1;l�1 D vl;l�1 D al�1 and vlC1;l�2 D vl;l�2 > 0. Since no change is made at
step l , we get that vlC1;l D al . This contradicts the induction hypothesis.

Corollary 2.8 The word v3;mC2 � � � v3;1 is the Ostrowski representation of M CN .

3 Proof of Theorem A

In this section we will prove Theorem A. Let a be a quadratic irrational number. Let
Œa0I a1; : : : ; an; : : : � be its continued fraction expansion. Since the continued fraction
expansion of a is periodic, it is of the form

Œa0I a1; : : : ; a��1; a� ; : : : ; a� �;

where � � � is the length of the repeating block and the repeating block starts at � .
We can choose � and � such that � > 4 and � � � � 3.4 Set � WD maxi ai . Set
m WD 2� C 1. Set †a WD ¹0; : : : ; mº.

We first remind the reader of the definitions of finite automata and recognizability.
For more details, we refer the reader to [12]. Let † be a finite set. We denote by †�

the set of words of finite length on †.

Definition 3.1 A nondeterministic finite automaton A over † is a quadruple
.S; I; T; F /, where S is a finite nonempty set, called the set of states of A, I is
a subset of S , called the set of initial states, T � S �†�S is a nonempty set, called
the transition table of A, and F is a subset of S , called the set of final states of A.
An automaton A D .S; I; T; F / is deterministic if I contains exactly one element,
and for every s 2 S and w 2 †� there is exactly one s0 2 S such that .s; w; s0/ 2 T .
We say that an automaton A on † accepts a word w D wn � � � w1 2 †� if there
is a sequence sn; : : : ; s1; s0 2 S such that sn 2 I , s0 2 F , and for i D 1; : : : ; n,
.si ; wi ; si�1/ 2 T . A subset L � †� is recognized by A if L is the set of †-words
that are accepted by A. We say that L � †� is recognizable if L is recognized by
some deterministic finite automaton.

It is well known (see [12, Theorem 2.3.3]) that a set is recognizable if it is recognized
by some nondeterministic finite automaton.

Let † be a set containing 0. Let z D .z1; : : : ; zn/ 2 .†�/n, and let m be the
maximal length of z1; : : : ; zn. We add to each zi the necessary number of 0’s to get a
word z0

i of length m. The convolution5 of z is defined as the word z1�� � ��zn 2 .†n/�

whose i th letter is the element of †n consisting of the i th letters of z0
1; : : : ; z0

n.

Definition 3.2 A subset X � .†�/n is †-recognizable if the set®
z1 � � � � � zn W .z1; : : : ; zn/ 2 X

¯
is †n-recognizable.

We remind the reader that every natural number N can be written as N DPn
kD0 bkC1qk , where bk 2 N such that b1 < a1, bk � ak , and if bk D ak ,

then bk�1 D 0, and that we denoted the †a-word bn � � � b1 by �a.N /.
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Definition 3.3 Let X � Nn. We say that X is a-recognizable if the set®�
0l1�a.N1/; : : : ; 0ln�a.Nn/

�
W .N1; : : : ; Nn/ 2 X; l1; : : : ; ln 2 N

¯
is †a-recognizable.

In this section we will prove that a subset X � Nn is a-recognizable if and only if X

is definable in .N; C; Va/.

Recognizability implies definability We will first show that, whenever a set X � Nn

is a-recognizable, X is definable in .N; C; Va/. The proof here is an adjusted version
of the proofs in [17] and [4].

First note that < is definable in .N; C; Va/ and so is Va.N/ D ¹qk W k 2 Nº. For
convenience, we write I for Va.N/. We denote the successor function on I by sI .

Definition 3.4 For j 2 ¹1; : : : ; mº, let �j � I � N be the set of .x; y/ 2 I � N
with

9z 2 N9t 2 N
�
z < x ^ z C jx < sI .x/ ^ Va.t/ > x ^ Va.x C t /

D x ^ y D z C jx C t
�

_ 9z 2 N
�
z < x ^ y < sI .x/ ^ y D z C jx

�
:

Let �0 � I � N be the set of .x; y/ 2 I � N with
Vm

j D1 :�j .x; y/.

This definition is inspired by [17, Lemma 2.3]. Obviously, �j is definable in
.N; C; Va/. Because of the greediness of the Ostrowski representation, �j .x; y/

holds if and only if x D qk for some k 2 N and the coefficient of qk in the Ostrowski
representation of y is j . We directly get the following lemma.

Lemma 3.5 Let l; n 2 N, and let
P

k bkC1qk be the Ostrowski representation
of n. Then blC1 D j if and only if �j .ql ; n/.

Definition 3.6 Let Ie be the set of all y 2 I with

9z 2 N �1.1; z/ ^ �1.y; z/ ^ 8x 2 I
�
�1.x; z/ $ :�1sI

�
x

�
; z/

�
;

and let Io be the set of all y 2 I with

9z 2 N
�
:�1.1; z/

�
^ �1.y; z/ ^ 8x 2 I

�
�1.x; z/ $ :�1

�
sI .x/; z

��
:

Obviously both Ie and Io are definable in .N; C; Va/, I D Ie [Io, and since q0 D 1,

Ie D ¹qk W k evenº and Io D ¹qk W k oddº:

Definition 3.7 Let Ue � N be the set of all y 2 N with

8z 2 Io �0.z; y/ ^ 8z 2 Ie

�
�0.z; y/ _ �1.z; y/

�
;

and let Uo � N be the set of all y 2 N with

8z 2 Ie �0.z; y/ ^ 8z 2 Io

�
�0.z; y/ _ �1.z; y/

�
:

Again it is easy to see that Ue and Uo are definable in .N; C; Va/. We get the follow-
ing lemma from Lemma 3.5.

Lemma 3.8 Let n 2 N, and let
P

k bkC1qk be the Ostrowski representation of n.
(i) n 2 Ue if and only if, for all even k, bkC1 � 1, and for all odd k, bkC1 D 0.
(ii) n 2 Uo if and only if, for all odd k, bkC1 � 1, and for all even k, bkC1 D 0.
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Definition 3.9 Let � � I � .Ue � Uo/ be the set of all .x; .y1; y2// with�
x 2 Ie ! �1.x; y1/

�
^

�
x 2 Io ! �1.x; y2/

�
:

Theorem 3.10 Let X � Nn be a-recognizable. Then X is definable in .N; C; Va/.

Proof Let X � Nn be a-recognizable by a finite automaton A D .S; I; T; F /.
Without loss of generality we can assume that the set of states S is ¹1; : : : ; tº for
some t 2 N, and I D ¹1º. Let ' be the formula defining the following subset Z of
U t : °

.u1; : : : ; ut / 2 U t
W 8q 2 I

t̂

iD1

�
�.q; ui / !

t̂

j D1;j ¤i

:�.q; uj /
�±

:

So Z is the set of tuples .u1; : : : ; ut / 2 U t such that for q 2 I there is at most one
i 2 ¹1; : : : ; tº such that �.q; ui /. Note that x 2 X if there is a run s1 � � � sm of A

on the word given by the Ostrowski representation of the coordinates of x such that
s1 D 1 and sm 2 F . The idea now is to code such a run as an element of Z. To be
precise, a tuple .u1; : : : ; ut / 2 Z will code a run s1 � � � sm if, for each qi 2 I , si is
the unique element k of ¹1; : : : ; tº such that �.qi ; uk/. Thus, x D .x1; : : : ; xn/ 2 X

if and only if x satisfies the following formula in .N; C; Va/:

9u1; : : : ; ut 2 U 9q 2 I '.u1; : : : ; ut / ^ �.1; u1/ ^

_
l2F

�.q; ul /

^

^
.l;.�1;:::;�n/;k/2T

8z 2 I
�
.z > q/ !

n̂

iD1

m̂

j D1

:�j .z; xi /
�

^

h�
z � q ^ �.z; ul / ^

n̂

iD1

��i
.z; xi /

�
! �

�
sI .z/; uk

�i
:

Definability implies recognizability We will prove that if a subset X � Nn is defin-
able in .N; C; Va/, then it is a-recognizable. By [11] it suffices to show that the set
N and the relations ¹.x; y/ 2 N2 W x D yº, ¹.x; y; z/ 2 N3 W x C y D zº,
and ¹.x; y/ 2 N2 W Va.x/ D yº are all a-recognizable. It is well known that
N is a-recognizable (see, e.g., [16, Theorem 8]), and by using that knowledge it is
easy to check that ¹.x; y/ 2 N2 W x D yº and ¹.x; y/ 2 N2 W Va.x/ D yº are
a-recognizable. We are now going to show that ¹.x; y; z/ 2 N3 W x C y D zº is
a-recognizable.

By the work in the previous section, we have an algorithm to compute addition in
the Ostrowski representation based on a. This algorithm consists of four steps, and
we will now show that each of the four steps can be recognized by a finite automaton.
Given two words z D zn � � � z1; z0 D z0

n � � � z0
1 2 �a.N/, the first step is to compute the

†a-word .zn Cz0
n/ � � � .z1 Cz0

1/, which we will denote by z Cz0. It is straightforward
to verify that the set ¹z � z0 � .z C z0/ W z; z0 2 �a.N/º is recognizable by a finite
automaton. For z; z0 2 †�

a, we will write z  i z0 if Algorithm i produces z0 on
input z. In the following, we will prove that the set ¹z � z0 W z; z0 2 †�

a; z i z0º is
recognizable by a finite automaton for i D 1; 2; 3. From these results it is immediate
that ®

z � z0
� z00

� u0 � u1 � u2 W z; z0; z00
2 �a.N/; u0; u1; u2 2 †�

a;

u0 D z C z0; u0  1 u1  2 u2  3 z00
¯
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is recognizable by a finite automaton. Since recognizability is preserved under pro-
jections (see [12, Theorem 2.3.9]), ¹.x; y; z/ 2 N3 W x C y D zº is a-recognizable
by Corollary 2.8. Thus, every set X � Nn definable in .N; C; Va/ is a-recognizable.

An automaton for Algorithm 1 We will now construct a nondeterministic automaton
A1 that recognizes the set ¹z � z0 W z; z0 2 †�

a; z  1 z0º. Before giving the
definition of A1, we need to introduce some notation. Let A � N4

�m � N4
�m � N4

�m

be the set of tuples .u; v; w/ with

w D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

.v1 C 1; v2 � .u2 C 1/; u3 � 1; v4 C 1/

if v1 < u1; v2 > u2; and v3 D 0;

.v1 C 1; v2 � u2; v3 � 1; v4/

if v1 < u1; u2 � v2 � 2u2; and v3 > 0;

.v1; v2; v3; v4/

otherwise.

Let B � N3
�m � N3

�m � N3
�m be the set of tuples .u; v; w/ with

w D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

.v1 C 1; v2 � .u2 C 1/; u3 � 1/

v1 < u1; v2 > u2; and v3 D 0;

.v1 C 1; v2 � u2; v3 � 1/

v1 < u1; v2 � u2; and u1 � v1 > 0;

.v1 C 1; v2 � u2 C 1; v1 � u1 � 1/

v1 < u1; v2 � u2; and v1 > u1;

.v1; v2 C 1; v1 � u1/

if v2 < u2 and v1 � u1;

.v1; v2; v3/

otherwise.

Note that A corresponds to the rules (A1), (A2), and (A3) of Algorithm 1, while
B corresponds to the rules (B1)–(B5) of Algorithm 1. The values of the variable u

represent the relevant part of the continued fraction, the values of the variable v are
used to code the entries in the moving window before any changes are carried out,
and the values of the variable w correspond to the entries in the moving window after
the changes are carried out. For i 2 ¹4; : : : ; �º and l 2 ¹0; 1º,

P.i; l/ WD

8̂̂̂<̂
ˆ̂:

.ai ; ai�1; ai�2; a�/ i D � C 2 and l D 1;

.ai ; ai�1; a� ; a��1/ i D � C 1 and l D 1;

.ai ; a� ; a��1; a��2/ i D � and l D 1;

.ai ; ai�1; ai�2; ai�3/ otherwise.

We first explain informally the construction of A1. Suppose we take z D zl � � �

z1 2 †�
a. Now perform Algorithm 1 on z, and let the word z0 D z0

l
� � � z0

1 be the out-
put. To carry out the operations at step k in Algorithm 1, we need to know the values
of ak ; ak�1; ak�2; ak�3. Because of the periodicity of the continued fraction expan-
sion of a, there is i � � such that ak D ai . Let l be 1 if k > � and 0 otherwise. Then
P.i; l/ D .ak ; ak�1; ak�2; ak�3/. Hence, to reconstruct .ak ; ak�1; ak�2; ak�3/, it
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is enough to save i and whether or not k � �. Moreover, to perform the opera-
tions at step k in Algorithm 1, we also use the values of the last three entries in the
moving window after the changes in the previous step are carried out but before the
window moves to the right. Let us denote the triple consisting of these entries by
v D .v1; v2; v3/ 2 †3

a. So before the operations at step k are performed, the values
in the moving window are .v1; v2; v3; zk�3/. Note that, at step k in the algorithm, we
are reading in zk�3 and not zk . However, the value of z0

k
is determined at the same

step. Indeed, at step k with k � 4, the entries in the moving window are changed as
follows:

.v1; v2; v3; zk�3/ 7! .z0
k ; v0

1; v0
2; v0

3/;

for a certain triple .v0
1; v0

2; v0
3/ 2 †3

a with A.P.i; l/; v1; v2; v3; zk�3; z0
k
; v0

1; v0
2; v0

3/.
The values in the moving window for step k � 1 will be .v0

1; v0
2; v0

3; zk�4/. Because
the value of z0

k
is only determined at step k, and thus, at the same time z0

k�3
is being

read, we are required to store the value of z0
k

for three steps. To save this information
when moving from state to state, we introduce another triple .w1; w2; w3/ 2 †3

a.
This triple will always contain the last three digits of z0. That means that before step
k, .w1; w2; w3/ D .z0

k
; z0

k�1
; z0

k�2
/. We now define the set of states of A1 as the set

of quadruples .i; l; v; w/, where i � �, l 2 ¹0; 1º, v; w 2 †3
a. The idea is that in each

state of the automaton the pair .i; l/ codes the relevant part of the continued fraction
expansion, v contains the entries of the moving window, and w 2 †3

a contains the
values of z0

k
that we need to save. The automaton moves from one of these states to

another according to the rules described in Algorithm 1.
Here is the definition of the automaton A1 D .S1; I1; T1; F1/.
(1) The set S1 of states of A1 is®

.i; 1; v; w/ W � � i � �; v; w 2 †3
a

¯
[

®
.i; 0; v; w/ W 3 � i � �; v; w 2 †3

a

¯
:

(2) The set I1 of initial states is®�
i; l; .0; 0; 0/; .0; 0; 0/

�
2 S W i � 4

¯
:

(3) The transition table T1 contains the tuples .s; .x; y/; t/ 2 S1 � †2
a � S1 that

satisfy w0 D .w2; w3; y/ and one of the following conditions:
(a) i ¤ �, .j; l 0/ D .i � 1; l/, A.P.i; l/; v; x; w1; v0/;
(b) i D �, l D 1, .j; l 0/ D .�; l/, A.P.i; l/; v; x; w1; v0/;
(c) i D �, l D 0, .j; l 0/ D .i � 1; l/, A.P.i; l/; v; x; w1; v0/;
(d) i D 4, j D 3, A.P.4; l/; v; x; w1; v0/, B.a3; a2; a1; v0; w2; w3; y/,
where s D .i; l; v; w/, w D .w1; w2; w3/, and t D .j; k; v0; w0/;

(4) The set F1 of final states is ¹.i; l; w; y/ 2 S1 W i D 3º.
We leave it to the reader to check the details that A indeed recognizes the set

¹z � z0 W z; z0 2 †�
a; z  1 z0º. The automata we constructed are nondeterministic,

but as mentioned above there is a deterministic finite automaton that recognizes the
same set.

Automata for Algorithms 2 and 3 We now describe the nondeterministic automata
A2 and A3 recognizing the sets ¹z � z0 W z; z0 2 †�

a; z  2 z0º and ¹z � z0 W z;

z0 2 †�
a; z 3 z0º. Again, we have to fix some notation first. Let C � N3

�m�N3
�m�
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N3
�m be the set of triples .u; v; w/ 2 C such that

w D

´
.v1 C 1; 0; v3 � 1/ if v1 < u1; v2 D u2; and v3 > 0I

.v1; v2; v3/ otherwise.

The relation C represents the operation performed in both Algorithms 2 and 3. As
for A and B above, the values of the variable u correspond to the relevant part of the
continued fraction, while the values of the variables v and w represent the entries in
the moving window, before and after any changes are carried out. For i 2 ¹3; : : : ; �º

and l 2 ¹0; 1º,

Q.i; l/ WD

8̂<̂
:

.ai ; ai�1; a�/ i D � C 1 and l D 1I

.ai ; a� ; a��1/ i D � and l D 1I

.ai ; ai�1; ai�2/ otherwise.

We start with an informal description of the automaton A2. Let z D zl � � � z1 2 †�
a,

and suppose that z0 D z0
l
� � � z0

1 is the output of Algorithm 2 on input z. To perform
the operations at step k in Algorithm 2, we again need to know a certain part of
the continued fraction expansion of a: in this case, .ak ; ak�1; ak�2/. As before,
it is enough to know the natural numbers i � � with ak D ai and whether
k < �. Set l to be 1 if k > � and 0 otherwise. Then Q.i; l/ D .ak ; ak�1; ak�2/.
When constructing A2, we have to be careful: Algorithm 2 runs from the right
to the left, but the automaton reads the input from the left to the right. Let
.v0

1; v0
2/ 2 †2

a be such that .zk ; v0
1; v0

2/ are the entries in the moving window
before the changes at step k are made. Then at step k, the entries change as
follows:

.zk ; v0
1; v0

2/ 7! .v1; v2; z0
k�2/;

for some pair .v1; v2/ 2 †2
a with C.Q.i; l/; zk ; v0

1; v0
2; v1; v2; z0

k�2
/. So when the

automaton reads in .zk�2; z0
k�2

/, the value of zk is used to determine z0
k�2

. Hence,
in contrast to A1, the automaton A2 has to remember the value of zk and not the
value of z0

k
. We define the states of A2 to be tuples .i; l; v; w/ 2 ¹0; : : : ; mº�¹0; 1º�

†2
a � †2

a. The pair v is again used to save the entries of the moving window, and
w is needed to remember the previously read entries of z. The automaton moves
from one of these states to another according to the rules described in Algorithm 2.
However, since the automaton reads the input backward, the automaton will go from
a state .i; l; v; w/ to a state .i 0; l 0; v0; w0/ if Q.i; l/ and Q.i 0; l 0/ are the correct parts
of the continued fraction expansion of a and the algorithm transforms .zk ; v0

1; v0
2/ to

.v1; v2; z0
k�2

/.
Here is the definition of the automaton A2 D .S2; I2; T2; F2/.
(1) The set S2 of states of A2 is®

.i; 1; v; w/ W � � i � �; v; w 2 †2
a

¯
[

®
.i; 0; v; w/ W 2 � i � �; v; w 2 †2

a

¯
:

(2) The set I2 of initial states is®�
i; l; .0; 0; 0/; .0; 0; 0/

�
2 S W i � 3

¯
:

(3) The transition table T2 contains the tuples .s; .x; y/; t/ 2 S2 � †2
a � S2 that

satisfy w0 D .w2; x/ and one of the following conditions:
(a) i ¤ �, .j; l 0/ D .i � 1; l/, C.Q.i; l/; w1; v0; v; y/;



230 Hieronymi and Terry Jr.

(b) i D �, l D 1, .j; l 0/ D .�; l/, C.Q.i; l/; w1; v0; v; y/;
(c) i D �, l D 0, .j; l 0/ D .i � 1; l/, C.Q.i; l/; w1; v0; v; y/;
(d) i D 3, j D 2, C.Q.i; 0/; w; x; v; y/,
where s D .i; l; v; w/, w D .w1; w2/, and t D .j; k; v0; w0/.

(4) The set F2 of final states is ¹.i; l; w; y/ 2 S2 W i D 3º.
As in the case of Algorithm 1, we leave it to the reader to verify that A2 recognizes

the set ¹z � z0 W z; z0 2 †�
a; z  2 z0º. As before, while A2 is nondeterministic,

there are deterministic automata recognizing the same set as A2.
It is left to construct the automaton for Algorithm 3. The only difference between

Algorithms 2 and 3 is the direction in which the algorithm runs over the input. Hence,
the only adjustment we need to make to A2 is to address the change in direction. Let
A3 D .S2; I2; T3; F2/ be the automaton that has the same states as A2, but whose
transition table T3 contains the tuples .s; .x; y/; t/ 2 S2 � †2

a � S2 that satisfy
w0 D .w2; y/ and one of the following conditions:

(a) i ¤ �, .j; l 0/ D .i � 1; l/, C.Q.i; l/; v; x; w1; v0/;
(b) i D �, l D 1, .j; l 0/ D .�; l/, C.Q.i; l/; v; x; w1; v0/;
(c) i D �, l D 0, .j; l 0/ D .i � 1; l/, C.Q.i; l/; v; x; w1; v0/;
(d) i D 3, j D 2, C.Q.i; 0/; v; x; w; y/,

where s D .i; l; v; w/, w D .w1; w2/, and t D .j; k; v0; w0/.
The set ¹z � z0 W z; z0 2 †�

a; z  3 z0º is recognized by A3. So there is
also a deterministic automaton that recognizes this set. This completes the proof of
Theorem A.

Notes

1. A real number a is quadratic if it is a solution to a quadratic equation with rational
coefficients.

2. In private communication Frougny [9] proved, whenever the continued fraction expan-
sion of a has period 1, the stronger statement that addition in the Ostrowski numeration
system associated with a can be obtained by three linear passes, one left-to-right, one
right-to-left, and one left-to-right, where each of the passes defines a finite sequential
transducer.

3. When preparing this article, the authors were completely unaware of the connection
between Sturmian words and Ostrowski representations. We would like to thank the
anonymous referee for pointing out this connection.

4. It might be the case that neither � nor � are minimal, but this is irrelevant here.

5. Here we followed the presentation in [17]. For a general definition of convolution see
[12].

References

[1] Ahlbach, C., J. Usatine, C. Frougny, and N. Pippenger, “Efficient algorithms for Zeck-
endorf arithmetic,” Fibonacci Quarterly, vol. 51 (2013), pp. 249–55. Zbl 1350.11016.
MR 3093678. 216, 217

http://www.emis.de/cgi-bin/MATH-item?1350.11016
http://www.ams.org/mathscinet-getitem?mr=3093678


Ostrowski Numeration Systems and Addition 231

[2] Allouche, J.-P., and J. Shallit, Automatic Sequences: Theory, Applications, Generaliza-
tions, Cambridge University Press, Cambridge, 2003. Zbl 1086.11015. MR 1997038.
DOI 10.1017/CBO9780511546563. 216, 217

[3] Berthé, V., “Autour du système de numération d’Ostrowski,” Bulletin of the Belgian
Mathematical Society, Simon Stevin, vol. 8 (2001), pp. 209–39. Zbl 0994.68100.
MR 1838931. 216

[4] Bruyère, V., and G. Hansel, “Bertrand numeration systems and recognizability,” Theo-
retical Computer Science, vol. 181 (1997), pp. 17–43. Zbl 0957.11015. MR 1463527.
DOI 10.1016/S0304-3975(96)00260-5. 216, 225

[5] Bruyère, V., G. Hansel, C. Michaux, and R. Villemaire, “Logic and p-recognizable sets
of integers,” Bulletin of the Belgian Mathematical Society, Simon Stevin, vol. 1 (1994),
pp. 191–238. Zbl 0804.11024. MR 1318968. 217

[6] Büchi, J. R., “Weak second-order arithmetic and finite automata,” Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, vol. 6 (1960), pp. 66–92.
Zbl 0103.24705. MR 0125010. DOI 10.1002/malq.19600060105. 217

[7] Du, C. F., H. Mousavi, L. Schaeffer, and J. Shallit, “Decision algorithms for Fibonacci-
automatic words, with applications to pattern avoidance,” preprint, arXiv:1406.0670v4
[cs.FL]. 217

[8] Frougny, C., “Representations of numbers and finite automata,” Mathematical Systems
Theory, vol. 25 (1992), pp. 37–60. Zbl 0776.11005. MR 1139094. DOI 10.1007/
BF01368783. 216

[9] Frougny, C., personal communication, July 2014. 230
[10] Hieronymi, P., “Expansions of the ordered additive group of real numbers by two discrete

subgroups,” Journal of Symbolic Logic, vol. 81 (2016), pp. 1007–27. Zbl 06709240.
MR 3569117. DOI 10.1017/jsl.2015.34. 216

[11] Hodgson, B. R., “Décidabilité par automate fini,” Annales des Sciences Mathématiques
du Québec, vol. 7 (1983), pp. 39–57. Zbl 0531.03007. MR 0699985. 217, 226

[12] Khoussainov, B., and A. Nerode, Automata Theory and Its Applications, vol. 21
of Progress in Computer Science and Applied Logic, Birkhäuser, Boston, 2001.
Zbl 1083.68058. MR 1839464. DOI 10.1007/978-1-4612-0171-7. 216, 224, 227, 230

[13] Loraud, N., “ˇ-shift, systèmes de numération et automates,” Journal de Théorie des
Nombres de Bordeaux, vol. 7 (1995), pp. 473–98. Zbl 0843.11013. MR 1378592. DOI
10.5802/jtnb.153. 217

[14] Ostrowski, A., “Bemerkungen zur Theorie der Diophantischen Approximationen,”
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 1
(1922), pp. 77–98. MR 3069389. DOI 10.1007/BF02940581. 215

[15] Rockett, A. M., and P. Szüsz, Continued Fractions, World Scientific, River Edge, N.J.,
1992. Zbl 0925.11038. MR 1188878. DOI 10.1142/1725. 216

[16] Shallit, J., “Numeration systems, linear recurrences, and regular sets,” Information
and Computation, vol. 113 (1994), pp. 331–47. Zbl 0810.11006. MR 1285236. DOI
10.1006/inco.1994.1076. 217, 226

[17] Villemaire, R., “The theory of hN; C; Vk ; Vl i is undecidable,” Theoretical Computer
Science, vol. 106 (1992), pp. 337–49. Zbl 0773.03008. MR 1192774. DOI 10.1016/
0304-3975(92)90256-F. 217, 225, 230

[18] Zeckendorf, E., “Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas,” Bulletin de la Société Royale des Sciences de Liège,
vol. 41 (1972), pp. 179–82. Zbl 0252.10011. MR 0308032. 216

Acknowledgments

The first author was partially supported by National Science Foundation grant DMS-
1300402 and by University of Illinois at Urbana-Champaign Campus Research Board
award 13086. We would like to thank Christiane Frougny for pointing out references and

http://www.emis.de/cgi-bin/MATH-item?1086.11015
http://www.ams.org/mathscinet-getitem?mr=1997038
https://doi.org/10.1017/CBO9780511546563
http://www.emis.de/cgi-bin/MATH-item?0994.68100
http://www.ams.org/mathscinet-getitem?mr=1838931
http://www.emis.de/cgi-bin/MATH-item?0957.11015
http://www.ams.org/mathscinet-getitem?mr=1463527
https://doi.org/10.1016/S0304-3975(96)00260-5
http://www.emis.de/cgi-bin/MATH-item?0804.11024
http://www.ams.org/mathscinet-getitem?mr=1318968
http://www.emis.de/cgi-bin/MATH-item?0103.24705
http://www.ams.org/mathscinet-getitem?mr=0125010
https://doi.org/10.1002/malq.19600060105
http://arxiv.org/abs/arXiv:1406.0670v4
http://www.emis.de/cgi-bin/MATH-item?0776.11005
http://www.ams.org/mathscinet-getitem?mr=1139094
https://doi.org/10.1007/BF01368783
https://doi.org/10.1007/BF01368783
http://www.emis.de/cgi-bin/MATH-item?06709240
http://www.ams.org/mathscinet-getitem?mr=3569117
https://doi.org/10.1017/jsl.2015.34
http://www.emis.de/cgi-bin/MATH-item?0531.03007
http://www.ams.org/mathscinet-getitem?mr=0699985
http://www.emis.de/cgi-bin/MATH-item?1083.68058
http://www.ams.org/mathscinet-getitem?mr=1839464
https://doi.org/10.1007/978-1-4612-0171-7
http://www.emis.de/cgi-bin/MATH-item?0843.11013
http://www.ams.org/mathscinet-getitem?mr=1378592
https://doi.org/10.5802/jtnb.153
https://doi.org/10.5802/jtnb.153
http://www.ams.org/mathscinet-getitem?mr=3069389
https://doi.org/10.1007/BF02940581
http://www.emis.de/cgi-bin/MATH-item?0925.11038
http://www.ams.org/mathscinet-getitem?mr=1188878
https://doi.org/10.1142/1725
http://www.emis.de/cgi-bin/MATH-item?0810.11006
http://www.ams.org/mathscinet-getitem?mr=1285236
https://doi.org/10.1006/inco.1994.1076
https://doi.org/10.1006/inco.1994.1076
http://www.emis.de/cgi-bin/MATH-item?0773.03008
http://www.ams.org/mathscinet-getitem?mr=1192774
https://doi.org/10.1016/0304-3975(92)90256-F
https://doi.org/10.1016/0304-3975(92)90256-F
http://www.emis.de/cgi-bin/MATH-item?0252.10011
http://www.ams.org/mathscinet-getitem?mr=0308032


232 Hieronymi and Terry Jr.

patiently answering our questions. We are also grateful for the helpful comments of the
anonymous referee that significantly improved the presentation of this article.

Hieronymi
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA
phierony@illinois.edu
http://www.math.uiuc.edu/~phierony

Terry Jr.
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA
aterry@illinois.edu

mailto:phierony@illinois.edu
http://www.math.uiuc.edu/~phierony
mailto:aterry@illinois.edu

	1 Introduction
	2 Ostrowski Addition
	3 Proof of Theorem A
	Recognizability implies definability
	Definability implies recognizability
	An automaton for Algorithm 1
	Automata for Algorithms 2 and 3

	Notes
	References
	Acknowledgments
	Author's addresses

