Ostrowski Numeration Systems, Addition, and Finite Automata

Philipp Hieronymi and Alonza Terry Jr.

Abstract

We present an elementary three-pass algorithm for computing addition in Ostrowski numeration systems. When a is quadratic, addition in the Ostrowski numeration system based on a is recognizable by a finite automaton. We deduce that a subset of $X \subseteq \mathbb{N}^{n}$ is definable in $\left(\mathbb{N},+, V_{a}\right)$, where V_{a} is the function that maps a natural number x to the smallest denominator of a convergent of a that appears in the Ostrowski representation based on a of x with a nonzero coefficient if and only if the set of Ostrowski representations of elements of X is recognizable by a finite automaton. The decidability of the theory of $\left(\mathbb{N},+, V_{a}\right)$ follows.

1 Introduction

A continued fraction expansion $\left[a_{0} ; a_{1}, \ldots, a_{k}, \ldots\right]$ is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}} .
$$

For a real number a, we say that $\left[a_{0} ; a_{1}, \ldots, a_{k}, \ldots\right]$ is the continued fraction expansion of a if $a=\left[a_{0} ; a_{1}, \ldots, a_{k}, \ldots\right]$ and $a_{0} \in \mathbb{Z}, a_{i} \in \mathbb{N}_{>0}$ for $i>0$. Let a be a real number with continued fraction expansion $\left[a_{0} ; a_{1}, \ldots, a_{k}, \ldots\right]$. In this article we study a numeration system due to Ostrowski [14] based on the continued fraction expansion of a. Set $q_{-1}:=0$ and $q_{0}:=1$, and for $k \geq 0$, set

$$
\begin{equation*}
q_{k+1}:=a_{k+1} \cdot q_{k}+q_{k-1} . \tag{1.1}
\end{equation*}
$$

Received July 31, 2014; accepted October 8, 2015
First published online December 23, 2017
2010 Mathematics Subject Classification: Primary 11A67; Secondary 03B25, 68Q25, 68R15
Keywords: Ostrowski numeration system, continued fraction, addition, finite automata, decidability, expansion of Presburger arithmetic
© 2018 by University of Notre Dame 10.1215/00294527-2017-0027

Then every natural number N can be written uniquely as

$$
N=\sum_{k=0}^{n} b_{k+1} q_{k}
$$

where $b_{k} \in \mathbb{N}$ such that $b_{1}<a_{1}, b_{k} \leq a_{k}$, and if $b_{k}=a_{k}$, then $b_{k-1}=0$. We say that the word $b_{n} \cdots b_{1}$ is the Ostrowski representation of N based on a, and we write $\rho_{a}(N)$ for this word. For more details on Ostrowski representations, see for example Allouche and Shallit [2, p. 106] or Rockett and Szüsz [15, Chapter II.4]. When a is the golden ratio $\phi:=\frac{1+\sqrt{5}}{2}$, the continued fraction expansion of a is $[1 ; 1, \ldots]$. In this special case the sequence $\left(q_{k}\right)_{k \in \mathbb{N}}$ is the sequence of Fibonacci numbers. Thus, the Ostrowski representation based on the golden ratio is precisely the better known Zeckendorf [18] representation.

In this article, we will study the following question: Given the continued fraction expansion of a and the Ostrowski representation of two natural numbers based on a, is there an easy way to compute the Ostrowski representation of their sum? Ahlbach, Usatine, Frougny, and Pippenger [1] give an elegant algorithm to calculate the sum of two natural numbers in Zeckendorf representations. In this article we generalize their work and present an elementary three-pass algorithm for computing the sum of two natural numbers given in the Ostrowski representation. To be precise, we show that, given the continued fraction expansion of a, the addition of two n-digit numbers in the Ostrowski representation based on a can be computed by three linear passes over the input sequence and hence in time $O(n)$. If a is a quadratic number, ${ }^{1}$ we establish that the graph of addition in the Ostrowski numeration system based on a can be recognized by a finite automaton (see Theorem B for a precise statement). When a is the golden ratio, this result is due to Frougny [8]. ${ }^{2}$

Ostrowski representations arose in number theory and have strong connections to the combinatorics of words (see, e.g., Berthé [3]). However, our main motivation for studying Ostrowski representations is their application to decidability and definability questions in mathematical logic. The results in this article (in particular, Theorem B below) play a crucial role in the work of the first author [10] on expansions of the real additive group. Here we will present the following application of our work on addition in the Ostrowski numeration system to the study of expansions of Presburger arithmetic (see Theorem A).

Let a be quadratic. Since the continued fraction expansion of a is periodic, there is a natural number $c:=\max _{k \in \mathbb{N}} a_{k}$. Let $\Sigma_{a}=\{0, \ldots, c\}$. So $\rho_{a}(N)$ is a Σ_{a}-word. Let $V_{a}: \mathbb{N} \rightarrow \mathbb{N}$ be the function that maps $x \geq 1$ with Ostrowski representation $b_{n} \cdots b_{1}$ to the least q_{k} with $b_{k+1} \neq 0$ and maps 0 to 1 .
Theorem A Let a be quadratic. A set $X \subseteq \mathbb{N}^{n}$ is definable in $\left(\mathbb{N},+, V_{a}\right)$ if and only if X is a-recognizable. Hence, the theory of $\left(\mathbb{N},+, V_{a}\right)$ is decidable.
We say that a set $X \subseteq \mathbb{N}$ is a-recognizable if $0^{*} \rho_{a}(X)$ is recognizable by a finite automaton, where $0^{*} \rho_{a}(X)$ is the set of all Σ_{a}-words of the form $0 \cdots 0 \rho_{a}(N)$ for some $N \in X$. The definition of a-recognizability for subsets of \mathbb{N}^{n} is slightly more technical, and we postpone it to Section 3. The decidability of the theory of $\left(\mathbb{N},+, V_{a}\right)$ follows immediately from the first part of the statement of Theorem A and Kleene's theorem (see Khoussainov and Nerode [12, Theorem 2.7.2]) that the emptiness problem for finite automata is decidable. Bruyère and Hansel [4, Theorem 16] establish Theorem A when a is the golden ratio. In fact, they show that

Theorem A holds for linear numeration systems whose characteristic polynomial is the minimal polynomial of a Pisot number. A similar result for numeration systems based on $\left(p^{n}\right)_{n \in \mathbb{N}}$, where $p>1$ is an integer, is due to Büchi [6] (for a full proof see Bruyère, Hansel, Michaux, and Villemaire [5]). It is known by Shallit [16] and Loraud [13, Thèoréme 7] that the set \mathbb{N} is a-recognizable if and only if a is quadratic. So in general the conclusion of Theorem A fails when a is not quadratic.

A few remarks about the proof of Theorem A are in order. The proof that every definable set is a-recognizable is rather straightforward, and we follow a similar argument from Villemaire [17]. For the other direction, by Hodgson [11] it is enough to prove that \mathbb{N}, the graph of V_{a}, and the graph of + are a-recognizable. While it is easy to check the a-recognizability of the graph of V_{a}, we have to use our algorithm for addition in Ostrowski numeration systems to show that the graph of + is a-recognizable. Thus, most of the work toward proving Theorem A goes into showing the following result.

Theorem B Let a be a quadratic. Then $\left\{(x, y, z) \in \mathbb{N}^{3}: x+y=z\right\}$ is a-recognizable.

We end this introduction with a brief comment about possible applications of Theorem B to the theory of Sturmian words. ${ }^{3}$ Let a be a real number in $[0,1]$. We define

$$
f_{a}(n):=\lfloor(n+1) a\rfloor-\lfloor n a\rfloor,
$$

and we denote the infinite $\{0,1\}$-word $f_{a}(1) f_{a}(2) \cdots$ by \boldsymbol{f}_{a}. This word is called the Sturmian characteristic word with slope a. If a is a quadratic irrational, then the set $\left\{n \in \mathbb{N}: f_{a}(n)=1\right\}$ is a-recognizable (see [2, Theorem 9.1.15]). Du, Mousavi, Schaeffer, and Shallit [7] use this connection and Theorem B in the case of the golden ratio ϕ to prove results about the Fibonacci word (i.e., the Sturmian characteristic word with slope $\phi-1$). Because of Theorem B the techniques in [7] can be applied to any characteristic Sturmian word whose slope is a quadratic irrational.

Notation We denote the set of natural numbers $\{0,1,2, \ldots\}$ by \mathbb{N}. Definable will always mean definable without parameters. If Σ is a finite set, we denote the set of Σ-words by Σ^{*}. If $a \in \Sigma$ and $X \subseteq \Sigma^{*}$, we denote the set $\{a \ldots a w: w \in X\}$ of Σ-words by $a^{*} X$. If $x \in X^{m}$ for some set X, we write x_{i} for the i th coordinate of x.

2 Ostrowski Addition

Fix a real number a with continued fraction expansion $\left[a_{0} ; a_{1}, \ldots, a_{k}, \ldots\right]$. In this section we present an algorithm to compute the Ostrowski representations based on a of the sum of two natural numbers given in Ostrowski representations based on a. Since we only consider the Ostrowski representations based on a, we will omit the reference to a. In the special case in which a is the golden ratio, our algorithm is exactly the one presented in [1]. Although it is not strictly necessary, the reader might find it useful to read [1, Section 2] first.

Let $M, N \in \mathbb{N}$, and let $x_{n} \ldots x_{1}, y_{n} \ldots y_{1}$ be the Ostrowski representations of M and N. We will describe an algorithm that, given the continued fraction expansion of a, calculates the Ostrowski representations of $M+N$. Let s be the word $s_{n+1} s_{n} \cdots s_{1}$
given by

$$
s_{i}:=x_{i}+y_{i},
$$

for $i=1, \ldots, n$ and $s_{n+1}:=0$. For ease of notation, we set $m:=n+1$.
The algorithm consists of three linear passes over s : one left-to-right, one right-to-left, and one left-to-right. These three passes will change the word s into a word that is the Ostrowski representation of $M+N$. The first pass converts s into a word whose digit at position k is smaller than or equal to a_{k}. The idea of how to achieve this is as follows. We will argue (see Lemma 2.4) that, whenever the digit at position k is larger than or equal to a_{k}, the preceding digit has to be less than a_{k+1}. Using (2.1) we can then decrease the digit at position k by a_{k}, without increasing the one at position $k+1$ above a_{k+1} and without changing the value the word represents. The resulting word might not yet be an Ostrowski representation of $M+N$, because the digit at position k may be a_{k} and not followed by 0 . With the second and third passes we eliminate all such occurrences.

The first step is an algorithm that makes a left-to-right pass over the sequence $s_{m} \cdots s_{1}$ starting at m. That means that it starts with the most significant digit, in this case s_{m}, and works its way down to the least significant digit s_{1}. The algorithm can best be described in terms of a moving window of width 4. At each step, we only consider the entries in this window. After any possible changes are performed, the window moves one position to the right. When the window reaches the last four digits, the changes are carried out as usual. Afterward, one final operation is performed on the last three digits. The precise algorithm is as follows. Given $s=s_{m} \cdots s_{1}$, we will recursively define, for every $k \in \mathbb{N}$ with $3 \leq k \leq m+1$, a word

$$
z_{k}:=z_{k, m} z_{k, m-1} \cdots z_{k, 2} z_{k, 1}
$$

Algorithm 1 Let $k=m+1$. Then set

$$
z_{m+1}:=s_{m} \cdots s_{1}
$$

Let $k \in \mathbb{N}$ with $4 \leq k<m+1$. We now define $z_{k}=z_{k, m} z_{k, m-1} \cdots z_{k, 2} z_{k_{1}}$:

- for $i \notin\{k, k-1, k-2, k-3\}$, we set $z_{k, i}=z_{k+1, i}$;
- the subword $z_{k, k} z_{k, k-1} z_{k, k-2} z_{k, k-3}$ is determined as follows:
(A1) if $z_{k+1, k}<a_{k}, z_{k+1, k-1}>a_{k-1}$, and $z_{k+1, k-2}=0$, then

$$
\begin{aligned}
& z_{k, k} z_{k, k-1} z_{k, k-2} z_{k, k-3} \\
& \quad=\left(z_{k+1, k}+1\right)\left(z_{k+1, k-1}-\left(a_{k-1}+1\right)\right)\left(a_{k-2}-1\right)\left(z_{k+1, k-3}+1\right)
\end{aligned}
$$

(A2) if $z_{k+1, k}<a_{k}, a_{k-1} \leq z_{k+1, k-1} \leq 2 a_{k-1}$, and $z_{k+1, k-2}>0$, then $z_{k, k} z_{k, k-1} z_{k, k-2} z_{k, k-3}=\left(z_{k+1, k}+1\right)\left(z_{k+1, k-1}-a_{k-1}\right)\left(z_{k+1, k-2}-1\right)\left(z_{k+1, k-3}\right) ;$
(A3) otherwise,

$$
z_{k, k} z_{k, k-1} z_{k, k-2} z_{k, k-3}=z_{k+1, k} z_{k+1, k-1} z_{k+1, k-2} z_{k+1, k-3}
$$

Let $k=3$. We now define $z_{3}=z_{3, m} \cdots z_{3,1}$:

- for $i \notin\{1,2,3\}$, we set $z_{3, l}=z_{4, l}$;
- the subword $z_{3,3} z_{3,2} z_{3,1}$ is determined as follows:
(B1) if $z_{4,3}<a_{3}, z_{4,2}>a_{2}$, and $z_{4,1}=0$, then

$$
z_{3,3} z_{3,2} z_{3,1}=\left(z_{4,3}+1\right)\left(z_{4,2}-\left(a_{2}+1\right)\right)\left(a_{1}-1\right)
$$

(B2) if $z_{4,3}<a_{3}, z_{4,2} \geq a_{2}$, and $a_{1} \geq z_{4,1}>0$, then

$$
z_{3,3} z_{3,2} z_{3,1}=\left(z_{4,3}+1\right)\left(z_{4,2}-a_{2}\right)\left(z_{4,1}-1\right)
$$

(B3) if $z_{4,3}<a_{3}, z_{4,2} \geq a_{2}$, and $z_{4,1}>a_{1}$, then

$$
z_{3,3} z_{3,2} z_{3,1}=\left(z_{4,3}+1\right)\left(z_{4,2}-a_{2}+1\right)\left(z_{4,1}-a_{1}-1\right)
$$

(B4) if $z_{4,2}<a_{2}$ and $z_{4,1} \geq a_{1}$, then

$$
z_{3,3} z_{3,2} z_{3,1}=z_{4,3}\left(z_{4,2}+1\right)\left(z_{4,1}-a_{1}\right)
$$

(B5) otherwise,

$$
z_{3,3} z_{3,2} z_{3,1}=z_{4,3} z_{4,2} z_{4,1}
$$

When we speak of the entry at position l after step k, we mean $z_{k, l}$. When $z_{k+1, l} \neq z_{k, l}$, we say that at step k the entry in position l was changed. It follows immediately from the algorithm that the only entries changed at step k are in position $k, k-1, k-2$, or $k-3$.

The goal of Algorithm 1 is to produce a word whose entry at position k is smaller than or equal to a_{k} and which represents the same value as s. The following two propositions make this statement precise.

Proposition 2.1 Algorithm 1 does not change the value represented. That is, for every $k \in \mathbb{N}$ with $3 \leq k \leq m+1$,

$$
\sum_{i=0}^{m} z_{k, i+1} q_{i}=\sum_{i=0}^{m} s_{i+1} q_{i}
$$

Proof It follows immediately from the recursive definition of the q_{i} 's (see (1.1)) that each rule of Algorithm 1 does not change the value represented. Induction on k gives the statement of the proposition.
Proposition 2.2 For $k>1, z_{3, k} \leq a_{k}$ and $z_{3,1} \leq a_{1}-1$.
We will prove the following two lemmas first.
Lemma 2.3 Let $k \in \mathbb{N}$ and $k \geq 3$.
(i) If $z_{k+1, k-1}=2 a_{k-1}+1$, then $z_{k+1, k-2}=0$.
(ii) If $z_{k+1, k-1}=2 a_{k-1}$, then $z_{k+1, k-2} \leq a_{k-2}$.

Proof For (i), let $z_{k+1, k-1}=2 a_{k-1}+1$. It follows immediately from the rules of the algorithm that $z_{k+2, k-1}=2 a_{k-1}+1$ and $z_{m+1, k-1}=2 a_{k-1}$. So x_{k-1} and y_{k-1} are both equal to a_{k-1}. Hence, $x_{k-2}=0, y_{k-2}=0$, and $z_{m+1, k-2}=0$. The first time that the entry in position $k-2$ can be changed is at step $k+1$, when rule (A1) is applied. However, since $z_{k+2, k-1}=2 a_{k-1}+1$, rule (A1) was not applied at step $k+1$. Thus, $z_{k+1, k-2}=z_{m+1, k-2}=0$.

For (ii), let $z_{k+1, k-1}=2 a_{k-1}$. If $x_{k-1}=y_{k-1}=a_{k-1}$, we argue as before to get $z_{k+1, k-2}=0$. Suppose that either $x_{k-1} \neq a_{k-1}$ or $y_{k-1} \neq a_{k-1}$. Because $z_{k+1, k-1}=2 a_{k-1}$, we get that $x_{k-1}+y_{k-1}=2 a_{k-1}-1$ and that the entry in position $k-1$ had to be increased by 1 at step $k+2$. Hence, either $x_{k-1}=a_{k-1}$ or $y_{k-1}=a_{k-1}$. By the definition of Ostrowski representations, $x_{k-2}+y_{k-2} \leq a_{k-2}$. Thus, $z_{k+2, k-2} \leq a_{k-2}$. Since the entry in position $k-1$ was increased by 1 at step $k+2, z_{k+2, k}=a_{k}-1$. Thus, no change is made at step $k+1$. It follows that $z_{k+1, k-2}=x_{k-2}+y_{k-2} \leq a_{k-2}$.

Lemma 2.4 Let $k \in \mathbb{N}$ and $3 \leq k \leq m$.
(i) ${ }_{k}$ If $z_{k+1, k-1}>a_{k-1}$, then $z_{k+1, k}<a_{k}$.
(ii) $)_{k}$ If $z_{k+1, k-1}=a_{k-1}$ and $z_{k+1, k-2}>0$, then $z_{k+1, k}<a_{k}$.

Proof We prove the statements by induction on k. For $k=m$, both (i) m_{m} and (ii) $)_{m}$ hold, because $z_{m+1, m}=0$. For the induction step, suppose that (i) $)_{k+1}$ and (ii) $)_{k+1}$ hold. We need to establish (i) $)_{k}$ and (ii) ${ }_{k}$.

We first show (i) $)_{k}$. Suppose that $z_{k+1, k-1}>a_{k-1}$. Toward a contradiction, assume that $z_{k+1, k} \geq a_{k}$. Since $z_{k+1, k-1}>a_{k-1}$ and the algorithm does not increase the entry in position $k-1$ above a_{k-1} at step $k+1$, we have $z_{k+2, k-1}>a_{k-1}$. Because $z_{k+1, k} \geq a_{k}$ and the algorithm either leaves the entry in position k at step $k+1$ untouched or decreases it by a_{k} or $a_{k}+1$, we get that either $z_{k+2, k}=z_{k+1, k}$ or $z_{k+2, k} \in\left\{2 a_{k}, 2 a_{k}+1\right\}$. We handle these cases separately.

Suppose that $z_{k+2, k} \in\left\{2 a_{k}, 2 a_{k}+1\right\}$. By (i) $k_{k+1}, z_{k+2, k+1}<a_{k+1}$. It follows from Lemma 2.3 that if $z_{k+2, k}=2 a_{k}$, then $z_{k+2, k-1} \leq a_{k-1}$, and if $z_{k+2, k}=2 a_{k}+1$, then $z_{k+2, k-1}=0$. Since one of the first two rules is applied at step $k+1$, we have that $z_{k+1, k-1}<a_{k-1}$. This contradicts our assumption that $z_{k+1, k-1}>a_{k-1}$.

Now, we suppose that $z_{k+2, k}=z_{k+1, k}$ and $z_{k+2, k}=a_{k}$. Because $z_{k+2, k-1}>$ a_{k-1}, we get $z_{k+2, k+1}<a_{k+1}$ by (ii) $)_{k+1}$. Hence, $z_{k+1, k}=z_{k+2, k}-a_{k}$ by rule (A2). This contradicts $z_{k+1, k}=z_{k+2, k}$.

Finally, assume that $z_{k+2, k}=z_{k+1, k}$ and $z_{k+2, k}>a_{k}$. By (i) $k_{k+1}, z_{k+2, k+1}<$ a_{k+1}. Since $z_{k+2, k-1}>a_{k-1}$, we have $z_{k+2, k+1}<2 a_{k+1}$ by Lemma 2.3. Applying rule (A2) gives $z_{k+1, k}=z_{k+2, k}-a_{k}$. As before, this is a contradiction.

We now prove (ii) $)_{k}$. Let $z_{k+1, k-1}=a_{k-1}$ and $z_{k+1, k-2}>0$. Suppose toward a contradiction that $z_{k+1, k} \geq a_{k}$. Then $z_{k+2, k} \geq a_{k}$, because the algorithm never increases the entry at position k at step $k+1$. Since $z_{k+1, k-1}=a_{k-1}$, either $z_{k+2, k-1}=a_{k-1}+1$ (in this case, rule (A2) was applied) or $z_{k+2, k-1}=a_{k-1}$ (in this case, rule (A3) was applied). In both cases, $z_{k+2, k+1}<a_{k+1}$ by (i) ${ }_{k+1}$ and (ii) k_{k+1}. Since $z_{k+2, k-1}>0, z_{k+2, k} \leq 2 a_{k}$ by Lemma 2.3(i). Hence, rule (A2) was applied at step $k+1$, and $z_{k+2, k-1}=a_{k-1}+1$. By Lemma 2.3(ii), $z_{k+2, k}<2 a_{k}$. Thus, $z_{k+1, k}=z_{k+2, k}-a_{k}<a_{k}$, which is a contradiction.

Proof of Proposition 2.2 Suppose that $k \geq 3$. Because the entry at position k is not changed after step k, it is enough to show that $z_{k, k} \leq a_{k}$. We have to consider four different cases depending on the value of $z_{k+2, k}$.

First, consider the case in which $z_{k+2, k}<a_{k}$. Since the algorithm does not increase the entry in position k at step $k+1, z_{k+1, k}<a_{k}$. Thus, $z_{k, k} \leq$ $z_{k+1, k}+1 \leq a_{k}$.

Suppose that $z_{k+2, k}=a_{k}$ and $z_{k+2, k-1}>0$. By Lemma 2.4(ii), $z_{k+2, k+1}<$ a_{k+1}. By rule (A2), $z_{k+1, k}=0$. Hence, $z_{k, k} \leq 1 \leq a_{k}$.

Suppose that $z_{k+2, k}=a_{k}$ and $z_{k+2, k-1}=0$. Then no change is made at step $k+1$. Thus, $z_{k+1, k}=a_{k}$ and $z_{k+1, k-1}=0$. Since no change is made at step k either, $z_{k, k}=a_{k}$.

Finally, consider $z_{k+2, k}>a_{k}$. By Lemma 2.4(i), $z_{k+2, k+1}<a_{k+1}$. Hence, either rule (A 1) or rule (A2) is applied. We get that $z_{k+1, k} \leq a_{k}$. If $z_{k+1, k}=a_{k}$, then $z_{k, k}=a_{k}$. If $z_{k+1, k}<a_{k}$, then $z_{k, k} \leq z_{k+1, k}+1 \leq a_{k}$.

Now suppose that $k<3$. We have to show that $z_{3, k} \leq a_{k}$. We do so by considering several different cases depending on the values of $z_{4,2}$ and $z_{4,1}$. By Lemma 2.4, if $z_{4,2}>a_{2}$ or if $z_{4,2}=a_{2}$ and $z_{4,1}>0$, then $z_{4,3}<a_{3}$. If $z_{4,2}=a_{2}$ and $z_{4,1}=0$, then no changes are made.

Suppose that $z_{4,2}=2 a_{2}+1$. By Lemma 2.3, $z_{4,1}=0$. By rule (B1), $z_{3,2}=a_{2}$, $z_{3,1}=a_{1}-1$, and $z_{3,3}=z_{4,3}+1 \leq a_{3}$.

Now suppose that $z_{4,2}=2 a_{2}$. We get that $z_{4,1} \leq a_{1}$ from Lemma 2.3. Then either rule (B 1) or rule (B 2) is applied. In both cases we get that $z_{3,2}=a_{2}$, $z_{3,1}=z_{4,1}-1 \leq a_{1}-1$, and $z_{3,3}=z_{4,3}+1 \leq a_{3}$.

Consider $a_{2} \leq z_{4,2}<2 a_{2}$ and $z_{4,1}>0$. Here either rule (B2) or rule (B3) is used. Then $z_{3,2} \leq a_{2}, z_{3,1} \leq a_{1}-1$, and $z_{3,3}=z_{4,3}+1 \leq a_{3}$.

The last case we have to consider is $z_{4,2}<a_{2}$. Depending on whether $z_{4,1} \geq a_{1}$, we apply either rule (B4) or rule (B5). Since $z_{4,1} \leq 2 a_{1}-1$, we get $z_{3,1} \leq a_{1}-1$ and $z_{3,2} \leq z_{3,2}+1 \leq a_{2}$ in both cases.

We now describe the second step toward determining the Ostrowski representation of $M+N$. This second algorithm will be a right-to-left pass over z_{3}. Given the word $z_{3, m} z_{3, m-1} \cdots z_{3,2} z_{3,1}$, we will recursively generate a word

$$
w_{k}=w_{k, m+1} w_{k, m} \cdots w_{k, 2} w_{k, 1}
$$

for each $k \in N$ with $k \in \mathbb{N}$ with $2 \leq k \leq m+1$. At each step, only elements in a moving window of length 3 are changed. Because the algorithm moves right to left, we will start by defining w_{2} and then recursively define w_{k} for $k \geq 2$.

Algorithm 2 Let $k=2$. Then set

$$
w_{2}:=0 z_{3, m} z_{3, m-1} \cdots z_{3,2} z_{3,1}
$$

Let $k \in \mathbb{N}$ with $2<k \leq m+1$. We now define $w_{k}=w_{k, m+1} \cdots w_{k, 1}$:

- for $i \notin\{k, k-1, k-2\}$, we set $w_{k, i}:=w_{k-1, i}$;
- if $w_{k-1, k}<a_{k}, w_{k-1, k-1}=a_{k-1}$, and $w_{k-1, k-2}>0$, set

$$
w_{k, k} w_{k, k-1} w_{k, k-2}:=\left(w_{k-1, k}+1\right) 0\left(w_{k-1, k-2}-1\right)
$$

otherwise,

$$
w_{k, k} w_{k, k-1} w_{k, k-2}:=w_{k-1, k} w_{k-1, k-1} w_{k-1, k-2}
$$

Again it follows immediately from (1.1) that this algorithm does not change the value represented:

$$
\sum_{k=0}^{m} w_{m+1, k+1} q_{k}=\sum_{k=0}^{m} z_{3, k+1} q_{k}
$$

By Proposition 2.2 and the rules of Algorithm 2, $w_{k, i} \leq a_{k}$ for every $k=2, \ldots$, $m+1$ and $i=1, \ldots, m+2$.

Lemma 2.5 There is no $k \in \mathbb{N}$ such that

- $w_{m+1, k}=a_{k}$,
- $w_{m+1, k-1}<a_{k-1}$,
- $w_{m+1, k-2}=a_{k-2}$, and
- $w_{m+1, k-3}>0$.

Proof Toward a contradiction, suppose that there is such a k. We will first show that $w_{k-2, k-3}>0, w_{k-2, k-2}=a_{k-2}$, and $w_{k-2, k-1}=a_{k-1}$.

Suppose that $w_{k-2, k-3}=0$. Then the algorithm would not have made any changes at step $k-2$. Thus, $w_{k-1, k-3}=0$. Because the entry will not be changed at a step later than step $k-1, w_{m+1, k-3}=0$. However, this contradicts $w_{m+1, k-3}>0$. Thus, $w_{k-2, k-3}>0$.

Suppose that $w_{k-2, k-2}<a_{k-2}$. Then $w_{k-1, k-2}=w_{k-2, k-2}$. This implies that $w_{k, k-2}<a_{k-2}$ and $w_{m+1, k-2}<a_{k}$. This is a contradiction against our assumption that $w_{m+1, k-2}=a_{k-2}$. Hence, $w_{k-2, k-2}=a_{k-2}$.

Now suppose that $w_{k-2, k-1}<a_{k-1}$. Since $w_{k-2, k-2}=a_{k-2}$ and $w_{k-2, k-3}>0$, $w_{k-1, k-2}=0$. Thus $w_{m+1, k-2}=0$, contradicting $w_{m+1, k-2}=a_{k-2}$. So $w_{k-2, k-1}=a_{k-1}$.

It follows that $w_{k-1, k-1}=w_{k-2, k-1}=a_{k-1}$ and $w_{k-1, k-2}=w_{k-1, k-2}=a_{k-2}$. We will now argue that $w_{k-1, k}<a_{k}$.

Suppose toward a contradiction that $w_{k-1, k}=a_{k}$. Then $w_{k, k}=a_{k}$ and $w_{k, k-1}=a_{k-1}$. Since $w_{m+1, k-1}<a_{k-1}$, we have $w_{k, k+1}<a_{k+1}$. Thus, $w_{k+1, k}=0$. Hence, $w_{m+1, k}=0$, which is a contradiction. So $w_{k-1, k}<a_{k}$.

We conclude that the entry at position $k-2$ is changed at step k. Therefore, $w_{k, k-2}=w_{k-1, k-2}-1=a_{k-2}-1$. So $w_{m+1, k-2}=a_{k-2}-1$. This contradicts our original assumption that $w_{m+1, k-2}=a_{k-2}$.

The third and final step of our algorithm is a left-to-right pass over w_{m+1}. The moving window is again of length 3 , and we use the same rule as in step 2. Given the word $w_{m+1, m+1} \cdots w_{m+1,1}$, we will recursively generate a word

$$
v_{k}:=v_{k, m+2} \cdots v_{k, 1}
$$

for each $k \in N$ with $k \in \mathbb{N}$ with $3 \leq k \leq m+3$. Because the algorithm moves left to right, we will start by defining w_{m+3} and then recursively define w_{k} for $k \leq m+3$.
Algorithm 3 Let $k=m+3$. Then set

$$
v_{m+3}:=0 w_{m+1, m+1} \cdots w_{m+1,1} .
$$

Let $k \in \mathbb{N}$ with $3 \leq k \leq m+2$. We now define $v_{k}=v_{k, m+2} \cdots v_{k, 1}$:

- for $i \notin\{k, k-1, k-2\}$, we set $v_{k, i}:=v_{k+1, i}$;
- if $v_{k+1, k}<a_{k}, v_{k+1, k-1}=a_{k-1}$, and $v_{k+1, k-2}>0$, then set

$$
v_{k, k} v_{k, k-1} v_{k, k-2}:=\left(v_{k+1, k}+1\right) 0\left(v_{k+1, k-2}-1\right)
$$

otherwise

$$
v_{k, k} v_{k, k-1} v_{k, k-2}:=v_{k+1, k} v_{k+1, k-1} v_{k+1, k-2}
$$

As before, (1.1) implies that this algorithm does not change the value represented:

$$
\sum_{k=0}^{m} w_{m+1, k+1} q_{k}=\sum_{k=0}^{m} v_{3, k+1} q_{k}
$$

Moveover, we have $v_{k, i} \leq a_{k}$ for every $k=3, \ldots, m+3$ and $i=1, \ldots, m+2$. We will now show that v_{3} is indeed the Ostrowski representation of $M+N$. It is enough to prove the following proposition.
Proposition 2.6 Let $l \geq 3$. Then there is no $k \geq l-1$ such that $v_{l, k}=a_{k}$ and $v_{l, k-1}>0$.

Before we give the proof of Proposition 2.6, we need one more lemma.
Lemma 2.7 Let $l \in\{3, \ldots, m+3\}$. Then there is no $k \in \mathbb{N}$ such that

- $v_{l, k}=a_{k}$,
- $v_{l, k-1}<a_{k-1}$,
- $v_{l, k-2}=a_{k-2}$, and
- $v_{l, k-3}>0$.

Proof We prove the lemma by induction on l. By Lemma 2.5, there is no such k for $m+3$. Suppose that the statement holds for $l+1$. We want to show the statement for l. Toward a contradiction, suppose that there is a k such that

$$
\begin{align*}
v_{l, k} & =a_{k}, \quad v_{l, k-1}<a_{k-1} \\
v_{l, k-2} & =a_{k-2}, \quad \text { and } \quad v_{l, k-3}>0 . \tag{2.1}
\end{align*}
$$

By the induction hypothesis, it is enough to check that no change was made at step l; that is, $v_{l, i}=v_{l+1, i}$ for $i \in\{k, \ldots, k-3\}$. Since the algorithm only modifies the entries at position $l, l+1$, or $l+2$, we can assume that $k \in\{l-2, \ldots, l+3\}$. We consider each case separately.

First, suppose that $k=l-2$. We get that $v_{l, i}=v_{l+1, i}$ for $i \in\{k-1, k-2, k-3\}$, because they are not in the moving window at step l. The only possible change is at position k. Since $v_{l, l-2}<v_{l+1, l-2}$ by the induction hypothesis and $v_{l, l-2}=a_{l-2}$, we get $v_{l, k}=v_{l+1, k}$. So no change is made.

Suppose that $k=l-1$. If a change is made at step l, then $v_{l, k}=0$. But this contradicts (2.1). Hence, no change is made in this case.

Suppose that $k=l$. If a change is made at step l, then $v_{l, k-2}=v_{l+1, k-2}-1<$ a_{k-2}. As before, this contradicts (2.1). Thus, no change is made.

Suppose that $k=l+1$. If a change is made at step l, then $v_{l, k-2}=0$, contradicting (2.1). So no change is made in this case either.

Suppose that $k=l+2$. If a change is made at step l, then $v_{l, k-3}=0$. This again contradicts (2.1), and hence, no change is made.

Finally suppose that $k=l+3$. By the induction hypothesis, $v_{l+1, k-3}=0$. Since $v_{l, k-3}>0$, we have $v_{l+1, k-4}=a_{k-4}$ and $v_{l+1, k-5}>0$. Then

$$
\begin{array}{ll}
v_{l+1, k-2}=a_{k-2}, & \\
v_{l+1, k-3}=0 \\
v_{l+1, k-4}=a_{k-4}, & \text { and } \quad v_{l+1, k-5}>0
\end{array}
$$

This contradicts the induction hypothesis.
Proof of Proposition 2.6 We prove this statement by induction on l. For $l=m+3$ the statement holds trivially, because $v_{m+3, m+2}=0$. Now suppose that the statement holds for $l+1$ but fails for l. Hence, there is $k \geq l-1$ such that $v_{l, k}=a_{k}$ and $v_{l, k-1}>0$. Since $v_{l+1, i}=v_{l, i}$ for $i>l$, we have $k \leq l+1$. We now consider the three remaining cases $k=l+1, k=l$, and $k=l-1$ individually.

If $k=l+1$, then $v_{l+1, k}=a_{l+1, k}$. By the induction hypothesis, $v_{l+1, k-1}=0$. But in order for $v_{l, k-1}>0$ to hold, we must have $v_{l+1, k-2}=a_{k-2}$ and $v_{l+1, k-3}>0$. This contradicts Lemma 2.7.

If $k=l$, then either $v_{l+1, k}=a_{k}$ or $v_{l+1, k}=a_{k}-1$. Suppose that $v_{l+1, k}=a_{k}-1$. Then $v_{l+1, k-1}=a_{k}$ and $v_{l+1, k-2}>0$. This implies that $v_{l, k-1}=0$, which contradicts $v_{l, k-1}>0$. Suppose that $v_{l+1, k}=a_{k}$. By the
induction hypothesis, $v_{l+1, k-1}=0$. But then no change is made at step l, and hence, $v_{l, k-1}=0$. This is a contradiction against $v_{l, k-1}>0$.

If $k=l-1$, then no change is made at step l, since $v_{l, l-1}=a_{l-1}$. Hence, $v_{l+1, l-1}=v_{l, l-1}=a_{l-1}$ and $v_{l+1, l-2}=v_{l, l-2}>0$. Since no change is made at step l, we get that $v_{l+1, l}=a_{l}$. This contradicts the induction hypothesis.

Corollary 2.8 The word $v_{3, m+2} \cdots v_{3,1}$ is the Ostrowski representation of $M+N$.

3 Proof of Theorem A

In this section we will prove Theorem A. Let a be a quadratic irrational number. Let $\left[a_{0} ; a_{1}, \ldots, a_{n}, \ldots\right]$ be its continued fraction expansion. Since the continued fraction expansion of a is periodic, it is of the form

$$
\left[a_{0} ; a_{1}, \ldots, a_{\xi-1}, \overline{a_{\xi}, \ldots, a_{\nu}}\right]
$$

where $v-\xi$ is the length of the repeating block and the repeating block starts at ξ. We can choose ξ and v such that $\xi>4$ and $v-\xi \geq 3 .{ }^{4}$ Set $\mu:=\max _{i} a_{i}$. Set $m:=2 \mu+1$. Set $\Sigma_{a}:=\{0, \ldots, m\}$.

We first remind the reader of the definitions of finite automata and recognizability. For more details, we refer the reader to [12]. Let Σ be a finite set. We denote by Σ^{*} the set of words of finite length on Σ.

Definition 3.1 A nondeterministic finite automaton \mathcal{A} over Σ is a quadruple (S, I, T, F), where S is a finite nonempty set, called the set of states of \mathcal{A}, I is a subset of S, called the set of initial states, $T \subseteq S \times \Sigma \times S$ is a nonempty set, called the transition table of \mathcal{A}, and F is a subset of S, called the set of final states of \mathcal{A}. An automaton $\mathcal{A}=(S, I, T, F)$ is deterministic if I contains exactly one element, and for every $s \in S$ and $w \in \Sigma^{*}$ there is exactly one $s^{\prime} \in S$ such that $\left(s, w, s^{\prime}\right) \in T$. We say that an automaton \mathcal{A} on Σ accepts a word $w=w_{n} \cdots w_{1} \in \Sigma^{*}$ if there is a sequence $s_{n}, \ldots, s_{1}, s_{0} \in S$ such that $s_{n} \in I, s_{0} \in F$, and for $i=1, \ldots, n$, $\left(s_{i}, w_{i}, s_{i-1}\right) \in T$. A subset $L \subseteq \Sigma^{*}$ is recognized by \mathcal{A} if L is the set of Σ-words that are accepted by \mathcal{A}. We say that $L \subseteq \Sigma^{*}$ is recognizable if L is recognized by some deterministic finite automaton.

It is well known (see [12, Theorem 2.3.3]) that a set is recognizable if it is recognized by some nondeterministic finite automaton.

Let Σ be a set containing 0 . Let $z=\left(z_{1}, \ldots, z_{n}\right) \in\left(\Sigma^{*}\right)^{n}$, and let m be the maximal length of z_{1}, \ldots, z_{n}. We add to each z_{i} the necessary number of 0 's to get a word z_{i}^{\prime} of length m. The convolution ${ }^{5}$ of z is defined as the word $z_{1} * \cdots * z_{n} \in\left(\Sigma^{n}\right)^{*}$ whose i th letter is the element of Σ^{n} consisting of the i th letters of $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$.

Definition 3.2 A subset $X \subset\left(\Sigma^{*}\right)^{n}$ is Σ-recognizable if the set

$$
\left\{z_{1} * \cdots * z_{n}:\left(z_{1}, \ldots, z_{n}\right) \in X\right\}
$$

is Σ^{n}-recognizable.
We remind the reader that every natural number N can be written as $N=$ $\sum_{k=0}^{n} b_{k+1} q_{k}$, where $b_{k} \in \mathbb{N}$ such that $b_{1}<a_{1}, b_{k} \leq a_{k}$, and if $b_{k}=a_{k}$, then $b_{k-1}=0$, and that we denoted the Σ_{a}-word $b_{n} \cdots b_{1}$ by $\rho_{a}(N)$.

Definition 3.3 Let $X \subseteq \mathbb{N}^{n}$. We say that X is a-recognizable if the set

$$
\left\{\left(0^{l_{1}} \rho_{a}\left(N_{1}\right), \ldots, 0^{l_{n}} \rho_{a}\left(N_{n}\right)\right):\left(N_{1}, \ldots, N_{n}\right) \in X, l_{1}, \ldots, l_{n} \in \mathbb{N}\right\}
$$

is Σ_{a}-recognizable.
In this section we will prove that a subset $X \subseteq \mathbb{N}^{n}$ is a-recognizable if and only if X is definable in $\left(\mathbb{N},+, V_{a}\right)$.

Recognizability implies definability We will first show that, whenever a set $X \subseteq \mathbb{N}^{n}$ is a-recognizable, X is definable in $\left(\mathbb{N},+, V_{a}\right)$. The proof here is an adjusted version of the proofs in [17] and [4].

First note that $<$ is definable in $\left(\mathbb{N},+, V_{a}\right)$ and so is $V_{a}(\mathbb{N})=\left\{q_{k}: k \in \mathbb{N}\right\}$. For convenience, we write I for $V_{a}(\mathbb{N})$. We denote the successor function on I by s_{I}.

Definition 3.4 For $j \in\{1, \ldots, m\}$, let $\epsilon_{j} \subseteq I \times \mathbb{N}$ be the set of $(x, y) \in I \times \mathbb{N}$ with

$$
\begin{aligned}
\exists z \in & \mathbb{N} \exists t \in \mathbb{N}\left(z<x \wedge z+j x<s_{I}(x) \wedge V_{a}(t)>x \wedge V_{a}(x+t)\right. \\
& =x \wedge y=z+j x+t) \\
& \vee \exists z \in \mathbb{N}\left(z<x \wedge y<s_{I}(x) \wedge y=z+j x\right)
\end{aligned}
$$

Let $\epsilon_{0} \subseteq I \times \mathbb{N}$ be the set of $(x, y) \in I \times \mathbb{N}$ with $\bigwedge_{j=1}^{m} \neg \epsilon_{j}(x, y)$.
This definition is inspired by [17, Lemma 2.3]. Obviously, ϵ_{j} is definable in $\left(\mathbb{N},+, V_{a}\right)$. Because of the greediness of the Ostrowski representation, $\epsilon_{j}(x, y)$ holds if and only if $x=q_{k}$ for some $k \in \mathbb{N}$ and the coefficient of q_{k} in the Ostrowski representation of y is j. We directly get the following lemma.

Lemma 3.5 Let $l, n \in \mathbb{N}$, and let $\sum_{k} b_{k+1} q_{k}$ be the Ostrowski representation of n. Then $b_{l+1}=j$ if and only if $\epsilon_{j}\left(q_{l}, n\right)$.

Definition 3.6 Let I_{e} be the set of all $y \in I$ with

$$
\left.\exists z \in \mathbb{N} \epsilon_{1}(1, z) \wedge \epsilon_{1}(y, z) \wedge \forall x \in I\left(\epsilon_{1}(x, z) \leftrightarrow \neg \epsilon_{1} s_{I}(x), z\right)\right)
$$

and let I_{o} be the set of all $y \in I$ with

$$
\exists z \in \mathbb{N}\left(\neg \epsilon_{1}(1, z)\right) \wedge \epsilon_{1}(y, z) \wedge \forall x \in I\left(\epsilon_{1}(x, z) \leftrightarrow \neg \epsilon_{1}\left(s_{I}(x), z\right)\right) .
$$

Obviously both I_{e} and I_{o} are definable in $\left(\mathbb{N},+, V_{a}\right), I=I_{e} \cup I_{o}$, and since $q_{0}=1$,

$$
I_{e}=\left\{q_{k}: k \text { even }\right\} \quad \text { and } \quad I_{o}=\left\{q_{k}: k \text { odd }\right\}
$$

Definition 3.7 Let $U_{e} \subseteq \mathbb{N}$ be the set of all $y \in \mathbb{N}$ with

$$
\forall z \in I_{o} \epsilon_{0}(z, y) \wedge \forall z \in I_{e}\left(\epsilon_{0}(z, y) \vee \epsilon_{1}(z, y)\right),
$$

and let $U_{o} \subseteq \mathbb{N}$ be the set of all $y \in \mathbb{N}$ with

$$
\forall z \in I_{e} \epsilon_{0}(z, y) \wedge \forall z \in I_{o}\left(\epsilon_{0}(z, y) \vee \epsilon_{1}(z, y)\right)
$$

Again it is easy to see that U_{e} and U_{o} are definable in $\left(\mathbb{N},+, V_{a}\right)$. We get the following lemma from Lemma 3.5.

Lemma 3.8 Let $n \in \mathbb{N}$, and let $\sum_{k} b_{k+1} q_{k}$ be the Ostrowski representation of n.
(i) $n \in U_{e}$ if and only if, for all even $k, b_{k+1} \leq 1$, and for all odd $k, b_{k+1}=0$.
(ii) $n \in U_{o}$ if and only if, for all odd $k, b_{k+1} \leq 1$, and for all even $k, b_{k+1}=0$.

Definition 3.9 Let $\epsilon \subseteq I \times\left(U_{e} \times U_{o}\right)$ be the set of all $\left(x,\left(y_{1}, y_{2}\right)\right)$ with

$$
\left(x \in I_{e} \rightarrow \epsilon_{1}\left(x, y_{1}\right)\right) \wedge\left(x \in I_{o} \rightarrow \epsilon_{1}\left(x, y_{2}\right)\right) .
$$

Theorem 3.10 Let $X \subseteq \mathbb{N}^{n}$ be a-recognizable. Then X is definable in $\left(\mathbb{N},+, V_{a}\right)$.
Proof Let $X \subseteq \mathbb{N}^{n}$ be a-recognizable by a finite automaton $\mathcal{A}=(S, I, T, F)$. Without loss of generality we can assume that the set of states S is $\{1, \ldots, t\}$ for some $t \in \mathbb{N}$, and $I=\{1\}$. Let φ be the formula defining the following subset Z of U^{t} :

$$
\left\{\left(u_{1}, \ldots, u_{t}\right) \in U^{t}: \forall q \in I \bigwedge_{i=1}^{t}\left(\epsilon\left(q, u_{i}\right) \rightarrow \bigwedge_{j=1, j \neq i}^{t} \neg \epsilon\left(q, u_{j}\right)\right)\right\} .
$$

So Z is the set of tuples $\left(u_{1}, \ldots, u_{t}\right) \in U^{t}$ such that for $q \in I$ there is at most one $i \in\{1, \ldots, t\}$ such that $\epsilon\left(q, u_{i}\right)$. Note that $x \in X$ if there is a run $s_{1} \cdots s_{m}$ of \mathcal{A} on the word given by the Ostrowski representation of the coordinates of x such that $s_{1}=1$ and $s_{m} \in F$. The idea now is to code such a run as an element of Z. To be precise, a tuple $\left(u_{1}, \ldots, u_{t}\right) \in Z$ will code a run $s_{1} \cdots s_{m}$ if, for each $q_{i} \in I, s_{i}$ is the unique element k of $\{1, \ldots, t\}$ such that $\epsilon\left(q_{i}, u_{k}\right)$. Thus, $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ if and only if x satisfies the following formula in $\left(\mathbb{N},+, V_{a}\right)$:

$$
\begin{aligned}
& \exists u_{1}, \ldots, u_{t} \in U \exists q \in I \varphi\left(u_{1}, \ldots, u_{t}\right) \wedge \epsilon\left(1, u_{1}\right) \wedge \bigvee_{l \in F} \epsilon\left(q, u_{l}\right) \\
& \quad \wedge \bigwedge_{\left(l,\left(\rho_{1}, \ldots, \rho_{n}\right), k\right) \in T} \forall z \in I\left((z>q) \rightarrow \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} \neg \epsilon_{j}\left(z, x_{i}\right)\right) \\
& \wedge\left[\left(z \leq q \wedge \epsilon\left(z, u_{l}\right) \wedge \bigwedge_{i=1}^{n} \epsilon_{\rho_{i}}\left(z, x_{i}\right)\right) \rightarrow \epsilon\left(s_{I}(z), u_{k}\right)\right] .
\end{aligned}
$$

Definability implies recognizability We will prove that if a subset $X \subseteq \mathbb{N}^{n}$ is definable in $\left(\mathbb{N},+, V_{a}\right)$, then it is a-recognizable. By [11] it suffices to show that the set \mathbb{N} and the relations $\left\{(x, y) \in \mathbb{N}^{2}: x=y\right\},\left\{(x, y, z) \in \mathbb{N}^{3}: x+y=z\right\}$, and $\left\{(x, y) \in \mathbb{N}^{2}: V_{a}(x)=y\right\}$ are all a-recognizable. It is well known that \mathbb{N} is a-recognizable (see, e.g., [16, Theorem 8]), and by using that knowledge it is easy to check that $\left\{(x, y) \in \mathbb{N}^{2}: x=y\right\}$ and $\left\{(x, y) \in \mathbb{N}^{2}: V_{a}(x)=y\right\}$ are a-recognizable. We are now going to show that $\left\{(x, y, z) \in \mathbb{N}^{3}: x+y=z\right\}$ is a-recognizable.

By the work in the previous section, we have an algorithm to compute addition in the Ostrowski representation based on a. This algorithm consists of four steps, and we will now show that each of the four steps can be recognized by a finite automaton. Given two words $z=z_{n} \cdots z_{1}, z^{\prime}=z_{n}^{\prime} \cdots z_{1}^{\prime} \in \rho_{a}(\mathbb{N})$, the first step is to compute the Σ_{a}-word $\left(z_{n}+z_{n}^{\prime}\right) \cdots\left(z_{1}+z_{1}^{\prime}\right)$, which we will denote by $z+z^{\prime}$. It is straightforward to verify that the set $\left\{z * z^{\prime} *\left(z+z^{\prime}\right): z, z^{\prime} \in \rho_{a}(\mathbb{N})\right\}$ is recognizable by a finite automaton. For $z, z^{\prime} \in \Sigma_{a}^{*}$, we will write $z \rightsquigarrow_{i} z^{\prime}$ if Algorithm i produces z^{\prime} on input z. In the following, we will prove that the set $\left\{z * z^{\prime}: z, z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow_{i} z^{\prime}\right\}$ is recognizable by a finite automaton for $i=1,2,3$. From these results it is immediate that

$$
\begin{aligned}
& \left\{z * z^{\prime} * z^{\prime \prime} * u_{0} * u_{1} * u_{2}: z, z^{\prime}, z^{\prime \prime} \in \rho_{a}(\mathbb{N}), u_{0}, u_{1}, u_{2} \in \Sigma_{a}^{*}\right. \\
& \left.\quad u_{0}=z+z^{\prime}, u_{0} \rightsquigarrow_{1} u_{1} \rightsquigarrow_{2} u_{2} \rightsquigarrow_{3} z^{\prime \prime}\right\}
\end{aligned}
$$

is recognizable by a finite automaton. Since recognizability is preserved under projections (see [12, Theorem 2.3.9]), $\left\{(x, y, z) \in \mathbb{N}^{3}: x+y=z\right\}$ is a-recognizable by Corollary 2.8. Thus, every set $X \subseteq \mathbb{N}^{n}$ definable in $\left(\mathbb{N},+, V_{a}\right)$ is a-recognizable.

An automaton for Algorithm 1 We will now construct a nondeterministic automaton \mathcal{A}_{1} that recognizes the set $\left\{z * z^{\prime}: z, z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow_{1} z^{\prime}\right\}$. Before giving the definition of \mathcal{A}_{1}, we need to introduce some notation. Let $A \subseteq \mathbb{N}_{\leq m}^{4} \times \mathbb{N}_{\leq m}^{4} \times \mathbb{N}_{\leq m}^{4}$ be the set of tuples (u, v, w) with

$$
w=\left\{\begin{array}{l}
\left(v_{1}+1, v_{2}-\left(u_{2}+1\right), u_{3}-1, v_{4}+1\right) \\
\text { if } v_{1}<u_{1}, v_{2}>u_{2}, \text { and } v_{3}=0, \\
\left(v_{1}+1, v_{2}-u_{2}, v_{3}-1, v_{4}\right) \\
\text { if } v_{1}<u_{1}, u_{2} \leq v_{2} \leq 2 u_{2}, \text { and } v_{3}>0, \\
\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \\
\text { otherwise. }
\end{array}\right.
$$

Let $B \subseteq \mathbb{N}_{\leq m}^{3} \times \mathbb{N}_{\leq m}^{3} \times \mathbb{N}_{\leq m}^{3}$ be the set of tuples (u, v, w) with

$$
w=\left\{\begin{array}{l}
\left(v_{1}+1, v_{2}-\left(u_{2}+1\right), u_{3}-1\right) \\
v_{1}<u_{1}, v_{2}>u_{2}, \text { and } v_{3}=0, \\
\left(v_{1}+1, v_{2}-u_{2}, v_{3}-1\right) \\
v_{1}<u_{1}, v_{2} \geq u_{2}, \text { and } u_{1} \geq v_{1}>0, \\
\left(v_{1}+1, v_{2}-u_{2}+1, v_{1}-u_{1}-1\right) \\
v_{1}<u_{1}, v_{2} \geq u_{2}, \text { and } v_{1}>u_{1}, \\
\left(v_{1}, v_{2}+1, v_{1}-u_{1}\right) \\
\text { if } v_{2}<u_{2} \text { and } v_{1} \geq u_{1}, \\
\left(v_{1}, v_{2}, v_{3}\right) \\
\text { otherwise. }
\end{array}\right.
$$

Note that A corresponds to the rules (A1), (A2), and (A3) of Algorithm 1, while B corresponds to the rules (B1)-(B5) of Algorithm 1. The values of the variable u represent the relevant part of the continued fraction, the values of the variable v are used to code the entries in the moving window before any changes are carried out, and the values of the variable w correspond to the entries in the moving window after the changes are carried out. For $i \in\{4, \ldots, v\}$ and $l \in\{0,1\}$,

$$
P(i, l):= \begin{cases}\left(a_{i}, a_{i-1}, a_{i-2}, a_{\nu}\right) & i=\xi+2 \text { and } l=1, \\ \left(a_{i}, a_{i-1}, a_{v}, a_{\nu-1}\right) & i=\xi+1 \text { and } l=1, \\ \left(a_{i}, a_{\nu}, a_{\nu-1}, a_{\nu-2}\right) & i=\xi \text { and } l=1, \\ \left(a_{i}, a_{i-1}, a_{i-2}, a_{i-3}\right) & \text { otherwise. }\end{cases}
$$

We first explain informally the construction of \mathscr{A}_{1}. Suppose we take $z=z_{l} \ldots$ $z_{1} \in \Sigma_{a}^{*}$. Now perform Algorithm 1 on z, and let the word $z^{\prime}=z_{l}^{\prime} \cdots z_{1}^{\prime}$ be the output. To carry out the operations at step k in Algorithm 1, we need to know the values of $a_{k}, a_{k-1}, a_{k-2}, a_{k-3}$. Because of the periodicity of the continued fraction expansion of a, there is $i \leq v$ such that $a_{k}=a_{i}$. Let l be 1 if $k>v$ and 0 otherwise. Then $P(i, l)=\left(a_{k}, a_{k-1}, a_{k-2}, a_{k-3}\right)$. Hence, to reconstruct $\left(a_{k}, a_{k-1}, a_{k-2}, a_{k-3}\right)$, it
is enough to save i and whether or not $k \leq v$. Moreover, to perform the operations at step k in Algorithm 1, we also use the values of the last three entries in the moving window after the changes in the previous step are carried out but before the window moves to the right. Let us denote the triple consisting of these entries by $v=\left(v_{1}, v_{2}, v_{3}\right) \in \Sigma_{a}^{3}$. So before the operations at step k are performed, the values in the moving window are $\left(v_{1}, v_{2}, v_{3}, z_{k-3}\right)$. Note that, at step k in the algorithm, we are reading in z_{k-3} and not z_{k}. However, the value of z_{k}^{\prime} is determined at the same step. Indeed, at step k with $k \geq 4$, the entries in the moving window are changed as follows:

$$
\left(v_{1}, v_{2}, v_{3}, z_{k-3}\right) \mapsto\left(z_{k}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right),
$$

for a certain triple $\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right) \in \Sigma_{a}^{3}$ with $A\left(P(i, l), v_{1}, v_{2}, v_{3}, z_{k-3}, z_{k}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$. The values in the moving window for step $k-1$ will be $\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, z_{k-4}\right)$. Because the value of z_{k}^{\prime} is only determined at step k, and thus, at the same time z_{k-3}^{\prime} is being read, we are required to store the value of z_{k}^{\prime} for three steps. To save this information when moving from state to state, we introduce another triple $\left(w_{1}, w_{2}, w_{3}\right) \in \Sigma_{a}^{3}$. This triple will always contain the last three digits of z^{\prime}. That means that before step $k,\left(w_{1}, w_{2}, w_{3}\right)=\left(z_{k}^{\prime}, z_{k-1}^{\prime}, z_{k-2}^{\prime}\right)$. We now define the set of states of \mathcal{A}_{1} as the set of quadruples (i, l, v, w), where $i \leq v, l \in\{0,1\}, v, w \in \Sigma_{a}^{3}$. The idea is that in each state of the automaton the pair (i, l) codes the relevant part of the continued fraction expansion, v contains the entries of the moving window, and $w \in \Sigma_{a}^{3}$ contains the values of z_{k}^{\prime} that we need to save. The automaton moves from one of these states to another according to the rules described in Algorithm 1.

Here is the definition of the automaton $\mathscr{A}_{1}=\left(S_{1}, I_{1}, T_{1}, F_{1}\right)$.
(1) The set S_{1} of states of \mathscr{A}_{1} is

$$
\begin{aligned}
& \left\{(i, 1, v, w): \xi \leq i \leq v, v, w \in \Sigma_{a}^{3}\right\} \\
& \quad \cup\left\{(i, 0, v, w): 3 \leq i \leq v, v, w \in \Sigma_{a}^{3}\right\}
\end{aligned}
$$

(2) The set I_{1} of initial states is

$$
\{(i, l,(0,0,0),(0,0,0)) \in S: i \geq 4\}
$$

(3) The transition table T_{1} contains the tuples $(s,(x, y), t) \in S_{1} \times \Sigma_{a}^{2} \times S_{1}$ that satisfy $w^{\prime}=\left(w_{2}, w_{3}, y\right)$ and one of the following conditions:
(a) $i \neq \xi,\left(j, l^{\prime}\right)=(i-1, l), A\left(P(i, l), v, x, w_{1}, v^{\prime}\right)$;
(b) $i=\xi, l=1,\left(j, l^{\prime}\right)=(v, l), A\left(P(i, l), v, x, w_{1}, v^{\prime}\right)$;
(c) $i=\xi, l=0,\left(j, l^{\prime}\right)=(i-1, l), A\left(P(i, l), v, x, w_{1}, v^{\prime}\right)$;
(d) $i=4, j=3, A\left(P(4, l), v, x, w_{1}, v^{\prime}\right), B\left(a_{3}, a_{2}, a_{1}, v^{\prime}, w_{2}, w_{3}, y\right)$,
where $s=(i, l, v, w), w=\left(w_{1}, w_{2}, w_{3}\right)$, and $t=\left(j, k, v^{\prime}, w^{\prime}\right)$;
(4) The set F_{1} of final states is $\left\{(i, l, w, y) \in S_{1}: i=3\right\}$.

We leave it to the reader to check the details that \mathcal{A} indeed recognizes the set $\left\{z * z^{\prime}: z, z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow_{1} z^{\prime}\right\}$. The automata we constructed are nondeterministic, but as mentioned above there is a deterministic finite automaton that recognizes the same set.

Automata for Algorithms 2 and 3 We now describe the nondeterministic automata \mathcal{A}_{2} and \mathcal{A}_{3} recognizing the sets $\left\{z * z^{\prime}: z, z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow_{2} z^{\prime}\right\}$ and $\left\{z * z^{\prime}: z\right.$, $\left.z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow{ }_{3} z^{\prime}\right\}$. Again, we have to fix some notation first. Let $C \subseteq \mathbb{N}_{\leq m}^{3} \times \mathbb{N}_{\leq m}^{3} \times$
$\mathbb{N}_{\leq m}^{3}$ be the set of triples $(u, v, w) \in C$ such that

$$
w= \begin{cases}\left(v_{1}+1,0, v_{3}-1\right) & \text { if } v_{1}<u_{1}, v_{2}=u_{2}, \text { and } v_{3}>0 ; \\ \left(v_{1}, v_{2}, v_{3}\right) & \text { otherwise } .\end{cases}
$$

The relation C represents the operation performed in both Algorithms 2 and 3. As for A and B above, the values of the variable u correspond to the relevant part of the continued fraction, while the values of the variables v and w represent the entries in the moving window, before and after any changes are carried out. For $i \in\{3, \ldots, \nu\}$ and $l \in\{0,1\}$,

$$
Q(i, l):= \begin{cases}\left(a_{i}, a_{i-1}, a_{\nu}\right) & i=\xi+1 \text { and } l=1 \\ \left(a_{i}, a_{\nu}, a_{v-1}\right) & i=\xi \text { and } l=1 \\ \left(a_{i}, a_{i-1}, a_{i-2}\right) & \text { otherwise }\end{cases}
$$

We start with an informal description of the automaton \mathcal{A}_{2}. Let $z=z_{l} \cdots z_{1} \in \Sigma_{a}^{*}$, and suppose that $z^{\prime}=z_{l}^{\prime} \cdots z_{1}^{\prime}$ is the output of Algorithm 2 on input z. To perform the operations at step k in Algorithm 2, we again need to know a certain part of the continued fraction expansion of a : in this case, $\left(a_{k}, a_{k-1}, a_{k-2}\right)$. As before, it is enough to know the natural numbers $i \leq v$ with $a_{k}=a_{i}$ and whether $k<v$. Set l to be 1 if $k>v$ and 0 otherwise. Then $Q(i, l)=\left(a_{k}, a_{k-1}, a_{k-2}\right)$. When constructing \mathcal{A}_{2}, we have to be careful: Algorithm 2 runs from the right to the left, but the automaton reads the input from the left to the right. Let $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in \Sigma_{a}^{2}$ be such that $\left(z_{k}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ are the entries in the moving window before the changes at step k are made. Then at step k, the entries change as follows:

$$
\left(z_{k}, v_{1}^{\prime}, v_{2}^{\prime}\right) \mapsto\left(v_{1}, v_{2}, z_{k-2}^{\prime}\right),
$$

for some pair $\left(v_{1}, v_{2}\right) \in \Sigma_{a}^{2}$ with $C\left(Q(i, l), z_{k}, v_{1}^{\prime}, v_{2}^{\prime}, v_{1}, v_{2}, z_{k-2}^{\prime}\right)$. So when the automaton reads in $\left(z_{k-2}, z_{k-2}^{\prime}\right)$, the value of z_{k} is used to determine z_{k-2}^{\prime}. Hence, in contrast to \mathcal{A}_{1}, the automaton \mathcal{A}_{2} has to remember the value of z_{k} and not the value of z_{k}^{\prime}. We define the states of \mathcal{A}_{2} to be tuples $(i, l, v, w) \in\{0, \ldots, m\} \times\{0,1\} \times$ $\Sigma_{a}^{2} \times \Sigma_{a}^{2}$. The pair v is again used to save the entries of the moving window, and w is needed to remember the previously read entries of z. The automaton moves from one of these states to another according to the rules described in Algorithm 2. However, since the automaton reads the input backward, the automaton will go from a state (i, l, v, w) to a state $\left(i^{\prime}, l^{\prime}, v^{\prime}, w^{\prime}\right)$ if $Q(i, l)$ and $Q\left(i^{\prime}, l^{\prime}\right)$ are the correct parts of the continued fraction expansion of a and the algorithm transforms $\left(z_{k}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ to $\left(v_{1}, v_{2}, z_{k-2}^{\prime}\right)$.

Here is the definition of the automaton $\mathscr{A}_{2}=\left(S_{2}, I_{2}, T_{2}, F_{2}\right)$.
(1) The set S_{2} of states of \mathcal{A}_{2} is

$$
\begin{aligned}
& \left\{(i, 1, v, w): \xi \leq i \leq v, v, w \in \Sigma_{a}^{2}\right\} \\
& \quad \cup\left\{(i, 0, v, w): 2 \leq i \leq \xi, v, w \in \Sigma_{a}^{2}\right\}
\end{aligned}
$$

(2) The set I_{2} of initial states is

$$
\{(i, l,(0,0,0),(0,0,0)) \in S: i \geq 3\}
$$

(3) The transition table T_{2} contains the tuples $(s,(x, y), t) \in S_{2} \times \Sigma_{a}^{2} \times S_{2}$ that satisfy $w^{\prime}=\left(w_{2}, x\right)$ and one of the following conditions:
(a) $i \neq \xi,\left(j, l^{\prime}\right)=(i-1, l), C\left(Q(i, l), w_{1}, v^{\prime}, v, y\right)$;
(b) $i=\xi, l=1,\left(j, l^{\prime}\right)=(v, l), C\left(Q(i, l), w_{1}, v^{\prime}, v, y\right)$;
(c) $i=\xi, l=0,\left(j, l^{\prime}\right)=(i-1, l), C\left(Q(i, l), w_{1}, v^{\prime}, v, y\right)$;
(d) $i=3, j=2, C(Q(i, 0), w, x, v, y)$,
where $s=(i, l, v, w), w=\left(w_{1}, w_{2}\right)$, and $t=\left(j, k, v^{\prime}, w^{\prime}\right)$.
(4) The set F_{2} of final states is $\left\{(i, l, w, y) \in S_{2}: i=3\right\}$.

As in the case of Algorithm 1, we leave it to the reader to verify that \mathscr{A}_{2} recognizes the set $\left\{z * z^{\prime}: z, z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow_{2} z^{\prime}\right\}$. As before, while \mathcal{A}_{2} is nondeterministic, there are deterministic automata recognizing the same set as \mathcal{A}_{2}.

It is left to construct the automaton for Algorithm 3. The only difference between Algorithms 2 and 3 is the direction in which the algorithm runs over the input. Hence, the only adjustment we need to make to \mathcal{A}_{2} is to address the change in direction. Let $\mathcal{A}_{3}=\left(S_{2}, I_{2}, T_{3}, F_{2}\right)$ be the automaton that has the same states as \mathcal{A}_{2}, but whose transition table T_{3} contains the tuples $(s,(x, y), t) \in S_{2} \times \Sigma_{a}^{2} \times S_{2}$ that satisfy $w^{\prime}=\left(w_{2}, y\right)$ and one of the following conditions:
(a) $i \neq \xi,\left(j, l^{\prime}\right)=(i-1, l), C\left(Q(i, l), v, x, w_{1}, v^{\prime}\right)$;
(b) $i=\xi, l=1,\left(j, l^{\prime}\right)=(v, l), C\left(Q(i, l), v, x, w_{1}, v^{\prime}\right)$;
(c) $i=\xi, l=0,\left(j, l^{\prime}\right)=(i-1, l), C\left(Q(i, l), v, x, w_{1}, v^{\prime}\right)$;
(d) $i=3, j=2, C(Q(i, 0), v, x, w, y)$,
where $s=(i, l, v, w), w=\left(w_{1}, w_{2}\right)$, and $t=\left(j, k, v^{\prime}, w^{\prime}\right)$.
The set $\left\{z * z^{\prime}: z, z^{\prime} \in \Sigma_{a}^{*}, z \rightsquigarrow_{3} z^{\prime}\right\}$ is recognized by A_{3}. So there is also a deterministic automaton that recognizes this set. This completes the proof of Theorem A.

Notes

1. A real number a is quadratic if it is a solution to a quadratic equation with rational coefficients.
2. In private communication Frougny [9] proved, whenever the continued fraction expansion of a has period 1, the stronger statement that addition in the Ostrowski numeration system associated with a can be obtained by three linear passes, one left-to-right, one right-to-left, and one left-to-right, where each of the passes defines a finite sequential transducer.
3. When preparing this article, the authors were completely unaware of the connection between Sturmian words and Ostrowski representations. We would like to thank the anonymous referee for pointing out this connection.
4. It might be the case that neither ξ nor v are minimal, but this is irrelevant here.
5. Here we followed the presentation in [17]. For a general definition of convolution see [12].

References

[1] Ahlbach, C., J. Usatine, C. Frougny, and N. Pippenger, "Efficient algorithms for Zeckendorf arithmetic," Fibonacci Quarterly, vol. 51 (2013), pp. 249-55. Zbl 1350.11016. MR 3093678. 216, 217
[2] Allouche, J.-P., and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. Zbl 1086.11015. MR 1997038. DOI 10.1017/CBO9780511546563. 216, 217
[3] Berthé, V., "Autour du système de numération d’Ostrowski," Bulletin of the Belgian Mathematical Society, Simon Stevin, vol. 8 (2001), pp. 209-39. Zbl 0994.68100. MR 1838931. 216
[4] Bruyère, V., and G. Hansel, "Bertrand numeration systems and recognizability," Theoretical Computer Science, vol. 181 (1997), pp. 17-43. Zbl 0957.11015. MR 1463527. DOI 10.1016/S0304-3975(96)00260-5. 216, 225
[5] Bruyère, V., G. Hansel, C. Michaux, and R. Villemaire, "Logic and p-recognizable sets of integers," Bulletin of the Belgian Mathematical Society, Simon Stevin, vol. 1 (1994), pp. 191-238. Zbl 0804.11024. MR 1318968. 217
[6] Büchi, J. R., "Weak second-order arithmetic and finite automata," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 6 (1960), pp. 66-92. Zbl 0103.24705. MR 0125010. DOI 10.1002/malq.19600060105. 217
[7] Du, C. F., H. Mousavi, L. Schaeffer, and J. Shallit, "Decision algorithms for Fibonacciautomatic words, with applications to pattern avoidance," preprint, arXiv:1406.0670v4 [cs.FL]. 217
[8] Frougny, C., "Representations of numbers and finite automata," Mathematical Systems Theory, vol. 25 (1992), pp. 37-60. Zbl 0776.11005. MR 1139094. DOI 10.1007/ BF01368783. 216
[9] Frougny, C., personal communication, July 2014. 230
[10] Hieronymi, P., "Expansions of the ordered additive group of real numbers by two discrete subgroups," Journal of Symbolic Logic, vol. 81 (2016), pp. 1007-27. Zbl 06709240. MR 3569117. DOI 10.1017/jsl.2015.34. 216
[11] Hodgson, B. R., "Décidabilité par automate fini," Annales des Sciences Mathématiques du Québec, vol. 7 (1983), pp. 39-57. Zbl 0531.03007. MR 0699985. 217, 226
[12] Khoussainov, B., and A. Nerode, Automata Theory and Its Applications, vol. 21 of Progress in Computer Science and Applied Logic, Birkhäuser, Boston, 2001. Zbl 1083.68058. MR 1839464. DOI 10.1007/978-1-4612-0171-7. 216, 224, 227, 230
[13] Loraud, N., " β-shift, systèmes de numération et automates," Journal de Théorie des Nombres de Bordeaux, vol. 7 (1995), pp. 473-98. Zbl 0843.11013. MR 1378592. DOI 10.5802/jtnb.153. 217
[14] Ostrowski, A., "Bemerkungen zur Theorie der Diophantischen Approximationen," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 1 (1922), pp. 77-98. MR 3069389. DOI 10.1007/BF02940581. 215
[15] Rockett, A. M., and P. Szüsz, Continued Fractions, World Scientific, River Edge, N.J., 1992. Zbl 0925.11038. MR 1188878. DOI 10.1142/1725. 216
[16] Shallit, J., "Numeration systems, linear recurrences, and regular sets," Information and Computation, vol. 113 (1994), pp. 331-47. Zbl 0810.11006. MR 1285236. DOI 10.1006/inco.1994.1076. 217, 226
[17] Villemaire, R., "The theory of $\left\langle\mathbf{N},+, V_{k}, V_{l}\right\rangle$ is undecidable," Theoretical Computer Science, vol. 106 (1992), pp. 337-49. Zbl 0773.03008. MR 1192774. DOI 10.1016/ 0304-3975(92)90256-F. 217, 225, 230
[18] Zeckendorf, E., "Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas," Bulletin de la Société Royale des Sciences de Liège, vol. 41 (1972), pp. 179-82. Zbl 0252.10011. MR 0308032. 216

Acknowledgments

The first author was partially supported by National Science Foundation grant DMS1300402 and by University of Illinois at Urbana-Champaign Campus Research Board award 13086. We would like to thank Christiane Frougny for pointing out references and
patiently answering our questions. We are also grateful for the helpful comments of the anonymous referee that significantly improved the presentation of this article.

Hieronymi
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA
phierony@illinois.edu
http://www.math.uiuc.edu/~phierony
Terry Jr.
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA
aterry@illinois.edu

