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Decidable Fragments of the Simple Theory of Types
with Infinity and NF

Anuj Dawar, Thomas Forster, and Zachiri McKenzie

Abstract We identify complete fragments of the simple theory of types with
infinity (TSTI) and Quine’s new foundations (NF) set theory. We show that TSTI
decides every sentence � in the language of type theory that is in one of the
following forms:

(A) � D 8x
r1

1 � � � 8x
rk

k
9y

s1

1 � � � 9y
sl

l
� where the superscripts denote the types of the vari-

ables, s1 > � � � > sl , and � is quantifier-free,
(B) � D 8x

r1

1 � � � 8x
rk

k
9ys

1 � � � 9ys
l
� where the superscripts denote the types of the vari-

ables and � is quantifier-free.
This shows that NF decides every stratified sentence � in the language of set
theory that is in one of the following forms:

(A0) � D 8x1 � � � 8xk9y1 � � � 9yl � where � is quantifier-free and � admits a stratification
that assigns distinct values to all of the variables y1; : : : ; yl ,

(B0) � D 8x1 � � � 8xk9y1 � � � 9yl � where � is quantifier-free and � admits a stratification
that assigns the same value to all of the variables y1; : : : ; yl .

1 Introduction

Roland Hinnion [3] showed that every consistent 9� sentence in the language of set
theory is a theorem of new foundations (NF) or, equivalently, every finite binary
structure can be embedded in every model of NF. Both these formulations invite
generalizations. On the one hand we find results like every countable binary structure
can be embedded in every model of NF (this is Forster’s [1, Theorem 4]), and on the
other we can ask about the status of sentences with more quantifiers: 8�9� sentences
in the first instance; it is the latter that will be our concern here.

It is elementary to check that NF does not decide all 8�9� sentences, since the
existence of Quine atoms (x D ¹xº) is consistent with, and independent of, NF.
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However “.8x/.x ¤ ¹xº/” is not stratified, and this invites the conjecture that (i) NF
decides all stratified 8�9� sentences and that (ii) all unstratified 8�9� sentences can
be proved both relatively consistent and independent by means of Rieger–Bernays
permutation methods. We consider limb (i) of this conjecture here.

The foregoing is all about NF; the connection with the simple theory of types with
infinity (TSTI) arises because of work of Specker [7], [8]: NF decides all stratified
8�9� sentences of the language of set theory if and only if TSTICambiguity decides
all 8�9� sentences of the language of type theory.

Conjecture All models of TSTI agree on all 8�9� sentences.

It is toward a proof of this conjecture that our efforts in this paper are directed.
Observe that the statement that there is a total order of V is consistent with and

independent of TST, and it can be said with three blocks of quantifiers:

.9O/
�
.8xy 2 O/.x � y _ y � x/ ^ .8uv/

�
�
u ¤ v ! .9x 2 O/.u 2 x ” v … x/

��
;

making it 918691.

2 Background and Definitions

The simple theory of types is the simplification of the ramified theory of types, the
underlying system of Russell and Whitehead [6], that was independently discovered
by Frank Ramsey and Leon Chwistek. Following Mathias [4] we use TSTI and
TST to abbreviate the simple theory of types with and without the axiom of infinity,
respectively. These theories are naturally axiomatized in a many-sorted language
with sorts for each n 2 N.

Definition 2.1 We use LTST to denote the N-sorted language endowed with
binary relation symbols 2n for each sort n 2 N. There are variables xn; yn; zn; : : :

for each sort n 2 N, and well-formed LTST-formulae are built up inductively from
atomic formulae of the form xn 2n ynC1 and xn D yn by using the connectives
quantifiers of first-order logic.

We refer to sorts of LTST as types. We will attempt to stick to the convention of denot-
ing LTST-structures by using calligraphy letters (M; N ; : : :). An LTST-structure M

consists of domains Mn for each type n 2 N and interpretations of the relations
2M

n � Mn �MnC1 for each type n 2 N; we write M D hM0; M1; : : : ; 2
M
0 ; 2

M
1 ; : : :i.

If M D hM0; M1; : : : ; 2
M
0 ; 2

M
1 ; : : :i is an LTST-structure, then we call the elements

of M0 atoms.

Definition 2.2 We use TST to denote the LTST-theory with the following axioms:
(Extensionality) for all n 2 N,

8xnC1
8ynC1

�
xnC1

D ynC1
” 8zn.zn

2n xnC1
” zn

2n ynC1/
�
I

(Comprehension) for all n 2 N and for all well-formed LTST-formulae �.xn; Ez/,

8Ez9ynC1
8xn

�
xn

2n ynC1
” �.xn; Ez/

�
:

Comprehension ensures that every successor type is closed under the set-theoretic
operations: union ([), intersection (\), difference (n), and symmetric difference
(4). For all n 2 N, we use ;nC1 to denote the point at type n C 1 which contains no
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points from type n, and we use V nC1 to denote the point at type n C 1 that contains
every point from type n. The Wiener–Kuratowski ordered pair allows us to code
ordered pairs, denoted hx; yi, as objects in TST which have type two higher than the
type of x and y. Functions, as usual, are thought of as collections of ordered pairs.
This means that a function f W X �! Y will be coded by an object in TST that has
type two higher than the type of X and Y . The theory TSTI is obtained from TST by
asserting the existence of a Dedekind infinite collection at type 1.

Definition 2.3 We use TSTI to denote the LTST-theory obtained from TST by
adding the axiom

9x1
9f 3.f 3

W x1
�! x1 is injective but not surjective/:

Let X be a set. If the LTST-structure M D hM0; M1; : : : ; 20; 21; : : :i is defined by
Mn D P n.X/ and 2M

n D2� P n.X/ � P nC1.X/ for all n 2 N, then M ˆ TST. If
m 2 N and jX j D m, then M is the unique, up to isomorphism, model of TST with
exactly m atoms and we say that M is finitely generated by m atoms. Alternatively, if
X is Dedekind infinite, then M ˆ TSTI. This shows that ZFC proves the consistency
of TSTI. In fact, in [4] it is shown that TSTI is equiconsistent with Mac Lane set
theory.

We say that an L0-theory T decides an L0-sentence � if and only if T ` � or
T ` :�. The completeness theorem implies that T decides � if and only if � holds
in all L0-structures M ˆ T or :� holds in all L0-structures M ˆ T .

Definition 2.4 We say that an LTST-sentence � is 9�8� if and only if � D

9x
r1

1 � � � 9x
rk

k
8y

s1

1 � � � 8y
sl

l
� , where � is quantifier-free.

Definition 2.5 We say that an LTST-sentence � is 8�9� if and only if � D

8x
r1

1 � � � 8x
rk

k
9y

s1

1 � � � 9y
sl

l
� , where � is quantifier-free.

We will show that TSTI decides a significant fragment of the 8�9� sentences. (Thus,
it also decides the 9�8� sentences that are logically equivalent to the negation of
these 8�9� sentences.) We achieve this result by showing that every sentence or
negation of a sentence in this fragment that is true in some model of TSTI is true in
all models of TST that are finitely generated by sufficiently many atoms.

Definition 2.6 We say that an LTST-sentence � has the finitely generated model
property if and only if, if there exists an N ˆ TSTI C �, then there exists a k 2 N
such that, for all m � k, if M ˆ TST is finitely generated by m atoms, then M ˆ �.

Note that if � is a class of LTST-sentences that have the finitely generated model
property and � is closed under negations, then TST decides every sentence in � .

Quine [5] introduces a set theory by identifying a syntactic condition on formulae
in the single sorted language of set theory that captures the restricted comprehension
available in TST. This set theory has been dubbed “new foundations” (NF) after the
title of [5]. We will use L to denote the language of set theory—the language of first-
order logic endowed with a binary relation symbol 2 whose intended interpretation
is membership. Before giving the axioms of NF we first recall Quine’s definition of
the class of stratified formulae. If � is an L-formula, then we use Var.�/ to denote
the set of variables (both free and bound) which appear in �.

Definition 2.7 Let �.x1; : : : ; xn/ be an L-formula. We say that
� W Var.�/ �! N is a stratification of � if and only if
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(i) “x 2 y” is a subformula of �, then �.“y”/ D �.“x”/ C 1;
(ii) “x D y” is a subformula of �, then �.“y”/ D �.“x”/.

If there exists a stratification of �, then we say that � is stratified.

Let � be an L-formula. Note that � W Var.�/ �! N is a stratification of � if and
only if the formula obtained by decorating every variable appearing in � with the type
given by � yields a well-formed LTST-formula. Conversely, let � be a well-formed
LTST-formula, and let � an L-formula obtained for � by deleting the types from the
variables appearing in � while ensuring (by relabeling variables) that no two distinct
variables in � become the same variable in �. Then the L-formula � is stratified,
and the function which sends a variable in � to the type index of the corresponding
variable in � is a stratification.

Definition 2.8 Let � be an L-formula with stratification � W Var.�/ �! N.
We use �.�/ to denote the LTST-formula obtained by assigning each variable “x”
appearing in � the type �.“x”/.

NF is the L-theory with the axiom of extensionality and comprehension for all strat-
ified L-formulae.

Definition 2.9 We use NF to denote the L-theory with the following axioms:
(Extensionality) 8x8y.x D y ” 8z.z 2 x ” z 2 y//,
(Stratified comprehension) for all stratified �.x; Ez/,

8Ez9y8x
�
x 2 y ” �.x; Ez/

�
:

We direct the interested reader to Forster [2] for a detailed treatment of NF. One
interesting feature of NF is that it refutes the axiom of choice and so proves the
axiom of infinity (see [7]). There is a strong connection between the theories NF
and TSTI. Specker [8] shows that models of NF can be obtained from models
of TSTI plus the scheme � ” �C, for all LTST-sentences �, where �C is
obtained from � by incrementing the types of all the variables appearing in �. Con-
versely, let M D hM; 2Mi be an L-structure with M ˆ NF. The LTST-structure
N D hN0; N1; : : : ; 2

N
0 ; 2

N
1 ; : : :i defined by Nn D M and 2N

n D2M is such that
N ˆ TSTI. Moreover, if � is an L-sentence with stratification � W Var.�/ �! N
and M ˆ �, then N ˆ �.�/. This immediately shows that a decidable fragment of
TSTI yields a decidable fragment of NF.

Theorem 2.1 Let � be an L-sentence with stratification � W Var.�/ �! N. If
TSTI decides �.�/, then NF decides �.

3 9�8� Sentences Have the Finitely Generated Model Property

In this section we prove that all 9�8� sentences have the finitely generated
model property. This result follows from the fact that if N is a model of TSTI,
a

r1

1 ; : : : ; a
rk

k
2 N with r1 � � � � � rk , and M is a model of TST that is finitely

generated by sufficiently many atoms, then there is an embedding of M into N with
a

r1

1 ; : : : ; a
rk

k
in the range. Given k 2 N we define the function Gk W N �! N by

recursion:

Gk.0/ D k and Gk.n C 1/ D

 
Gk.n/

2

!
C k: (1)
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Lemma 3.1 Let N ˆ TSTI, and let a
r1

1 ; : : : ; a
rk

k
2 N with r1 � � � � � rk . If

M ˆ TST is finitely generated by at least Gk.rk/ atoms, then there exists a sequence
hfn j n 2 Ni such that, for all n 2 N,

(i) fn W Mn �! Nn is injective,
(ii) for all x 2 Mn and for all y 2 MnC1,

M ˆ x 2n y if and only if N ˆ fn.x/ 2n fnC1.y/;

(iii)
a

r1

1 ; : : : ; a
rk

k
2

[
m2N

rng.fm/:

Proof Let N D hN0; N1; : : : ; 2
N
0 ; 2

N
1 ; : : :i be such that N ˆ TSTI, and let

a
r1

1 ; : : : ; a
rk

k
2 N with r1 � � � � � rk . Let M D hM0; M1; : : : ; 2

M
0 ; 2

M
1 ; : : :i be

such that M ˆ TST is finitely generated and jM0j � Gk.rk/. We begin by defining
C � N such that jC \N0j � Gk.rk/ and, for any two points x ¤ y in C that are not
atoms, there exists a point z in C which N believes is in the symmetric difference of
x and y. Define C0 D ¹a

r1

1 ; : : : ; a
rk

k
º � N . Note that jC0 \Nrk

j � Gk.0/ D k, and
for all 0 � m < rk , jC0 \ Nmj � k. For 0 < n � rk we recursively define Cn � N

which satisfies
(I) jCn \ Nrk�nj � Gk.n/,

(II) for all 0 � m < rk � n, jCn \ Nmj � k.
Suppose that n < rk and that Cn � N has been defined and satisfies (I) and (II). For
all y; z 2 Nrk�n with y ¤ z, let 
¹y;zº 2 Nrk�.nC1/ be such that

N ˆ 
¹y;zº 2rk�.nC1/ y4z:

Define
CnC1 D Cn [

®

¹y;zº

ˇ̌
¹y; zº 2 ŒNrk�n \ Cn�2

¯
:

It follows from (I) and (II) that

jCnC1 \ Nrk�.nC1/j � jCn \ Nrk�.nC1/j C

 
jCn \ Nrk�nj

2

!
� k C

�
Gk.n/

2

�
D Gk.n C 1/;

and for all 0 � m < rk � .n C 1/, jCnC1 \ Nmj � k. Now, let C D Crk
. This

recursion ensures that jC \ N0j � Gk.rk/.
We now turn to defining the family of maps hfn j n 2 Ni which embed M into

N . We define the sequence hfn j n 2 Ni by induction. Let C 0 D C \ N0. Let
f0 W M0 �! N0 be an injection such that C 0 � rng.f0/. Suppose that hf0; : : : ; fni

has been defined such that
(I0) for all 0 � j � n, fj W Mj �! Nj is injective,

(II0) for all 0 � j < n, for all x 2 Mj , and for all y 2 Mj C1,

M ˆ x 2j y if and only if N ˆ fj .x/ 2j fj C1.y/;

(III0) for all 0 � j � n, C \ Nj � rng.fj /.
If 0 � j � n and x 2 Mj C1, then we use fj “x to denote the point in Nj C1 such
that N ˆ fj “x D ¹fj .y/ j M ˆ y 2j xº. Note that, since M is finitely generated,
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for all x 2 Mj C1, fj “x exists in N . We define fnC1 W MnC1 �! NnC1 by

fnC1.x/ D

´

 if 
 2 C \ NnC1 and N ˆ .fn“x D 
 \ fn“.V nC1/M/:

fn“x otherwise.

We first need to show that the map fnC1 is well defined. Suppose that �1; �2 2

C \ NnC1 with �1 ¤ �2, and suppose that x 2 MnC1 are such that

N ˆ
�
fn“x D �1 \fn“.V nC1/M

�
and N ˆ

�
fn“x D �2 \fn“.V nC1/M

�
:

Now, there is a 
 2 C \ Nn such that N ˆ .
 2n �14�2/. By (III0), 
 2 rng.fn/,
which is a contradiction. Therefore, fnC1 is well defined. The fact that fn is injective
ensures that fnC1 is injective.

We now turn to showing that the sequence hf0; : : : ; fnC1i satisfies (II0).
Let x 2 Mn, and let y 2 MnC1. There are two cases. First, suppose that
fnC1.y/ D 
 2 C . Therefore, N ˆ .fn“y D 
 \ f “.V nC1/M/. If M ˆ x 2n y,
then N ˆ fn.x/ 2n fn“y and so N ˆ fn.x/ 2n fnC1.y/. Conversely, if
N ˆ fn.x/ 2n 
 , then N ˆ fn.x/ 2n fn“y and so M ˆ x 2n y. The second case
is when fnC1.y/ D fn“y. In this case it is clear that

M ˆ x 2n y if and only if N ˆ fn.x/ 2n fnC1.y/:

This shows that the sequence hf0; : : : ; fnC1i satisfies (II0). This concludes the induc-
tion step of the construction and shows that we can construct a sequence hfn j n 2 Ni

that satisfies (i)–(iii).

This embedding property allows us to show that every 9�8� sentence has the finitely
generated model property.
Theorem 3.2 Let � D 9x

r1

1 � � � 9x
rk

k
8y

s1

1 � � � 8y
sl

l
� , where r1 � � � � � rk and �

is quantifier-free. If N ˆ TSTI C � and M ˆ TST is finitely generated by at least
Gk.rk/ atoms, then M ˆ �.
Proof Let N D hN0; N1; : : : ; 2

N
0 ; 2

N
1 ; : : :i be such that N ˆ TSTI C �. Let

M D hM0; M1; : : : ; 2
M
0 ; 2

M
1 ; : : :i be such that M ˆ TST and M is finitely gener-

ated by at least Gk.rk/ atoms. Let a
r1

1 ; : : : ; a
rk

k
2 N be such that

N ˆ 8y
s1

1 � � � 8y
sl

l
�Œa

r1

1 ; : : : ; a
rk

k
�:

Using Lemma 3.1 we can find a sequence hfn j n 2 Ni such that
(i) fn W Mn �! Nn is injective,
(ii) for all x 2 Mn and for all y 2 MnC1,

M ˆ x 2n y if and only if N ˆ fn.x/ 2 fnC1.y/;

(iii)
a

r1

1 ; : : : ; a
rk

k
2

[
m2N

rng.fm/:

Let b
r1

1 ; : : : ; b
rk

k
2 M be such that, for all 1 � j � k, frj

.b
rj

j / D a
rj

j . Let
c

s1

1 ; : : : ; c
sl

l
2 M. Since N ˆ �Œa

r1

1 ; : : : ; a
rk

k
; fs1

.c
s1

1 /; : : : ; fsl
.c

sl

l
/�, it follows that

M ˆ �Œb
r1

1 ; : : : ; b
rk

k
; c

s1

1 ; : : : ; c
sl

l
�:

Therefore,
M ˆ 8y

s1

1 � � � 8y
sl

l
�Œb

r1

1 ; : : : ; b
rk

k
�;

which proves the theorem.
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4 Decidable Fragments of the 8�9� Sentences

In this section we will show that TSTI decides every 8�9� sentence � that is in one
of the following forms:

(A) � D 8x
r1

1 � � � 8x
rk

k
9y

s1

1 � � � 9y
sl

l
� , where s1 > � � � > sl and � is quantifier-

free;
(B) � D 8x

r1

1 � � � 8x
rk

k
9ys

1 � � � 9ys
l
� , where � is quantifier-free.

By applying Theorem 2.1 it then follows that NF decides every stratified L-sentence
� that is in one of the following forms:

(A0) � D 8x1 � � � 8xk9y1 � � � 9yl� , where � is quantifier-free and � W

Var.�/ �! N is a stratification of � that assigns distinct values to all
of the variables y1; : : : ; yl ;

(B0) � D 8x1 � � � 8xk9y1 � � � 9yl� , where � is quantifier-free and � W

Var.�/ �! N is a stratification of � that assigns the same value to all
of the variables y1; : : : ; yl .

Throughout this section we will fix k; l 2 N and a sequence r1 � � � � � rk that
will represent the types of the universally quantified variables in a 8�9� sentence.
Let k0 be the number of distinct elements in the list r1; : : : ; rk . Let K1; : : : ; Kk0 be
the multiplicities of the elements in the list r1; : : : ; rk , so k D

P
1�i�k0 Ki , and let

K D max¹K1; : : : ; Kk0 ; lº. We also fix structures N D hN0; N1; : : : ; 2
N
0 ; 2

N
1 ; : : :i

with N ˆ TSTI and M D hM0; M1; : : : ; 2
M
0 ; 2

M
1 ; : : :i with M ˆ TST finitely

generated by at least .2K/k0C2 atoms. Let a
r1

1 ; : : : ; a
rk

k
2 M.

Our approach will be to define color classes Ci;j , the elements of which we will
call colors, and functions cM

i;j W Mi �! Ci;j and cN
i;j W Ni �! Ci;j , which we will

call colorings, for all i 2 N and for all 0 � j � k0. For all 0 < j � k0, the colorings
cM

i;j will be defined using the elements a
r1

1 ; : : : ; a
rj 0

j 0 where j 0 D
P

1�m�j Km, and
in the process of defining the colorings cN

i;j we will construct corresponding elements
b

r1

1 ; : : : ; b
rj 0

j 0 2 N . The colorings will be designed with the following properties.
(i) For a fixed color ˛ in some Ci;j , the property of being an element of N that is

given color ˛ by cN
i;j will be definable by an LTST-formula, ˆi;j;˛ , with parameters

over N .
(ii) The color given to an element x in M (or N ) by the coloring cM

i;j (resp., cN
i;j )

will tell us which quantifier-free LTST-formulae with parameters a
r1

1 ; : : : ; a
rj 0

j 0 (resp.,
b

r1

1 ; : : : ; b
rj 0

j 0 ), where j 0 D
P

1�m�j Km, are satisfied by x in M (resp., N ).
(iii) For every color ˇ in Ci;j , the color given to an element x in M (or N ) by the

coloring cM
iC1;j (resp., cN

iC1;j ) will tell us whether or not there is an element y in M

(resp., N ) such that M ˆ y 2i x (resp., N ˆ y 2i x) and y is given color ˇ by cM
i;j

(resp., cN
i;j ).

(iv) For every color ˇ in Ci;j , the color given to an element x in M (or N ) by the
coloring cM

iC1;j (resp., cN
iC1;j ) will tell us whether or not there is an element y in M

(resp., N ) such that M ˆ y …i x (resp., N ˆ y …i x) and y is given color ˇ by cM
i;j

(resp., cN
i;j ).

Note that, since M is finitely generated, the analogue of condition (i) automati-
cally holds for M.
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Before defining the color classes Ci;j and the colorings cM
i;j and cN

i;j we first intro-
duce the following definitions.

Definition 4.1 Let m 2 N. We say that a color ˛ 2 Ci;j is m-special with respect
to a coloring f W X �! Ci;j if and only ifˇ̌®

x 2 X
ˇ̌

f .x/ D ˛
¯ˇ̌

D m:

If ˛ 2 Ci;j is 0-special, then we say that ˛ is forbidden.

Definition 4.2 Let m 2 N. We say that a color ˛ 2 Ci;j is m-abundant with
respect to a coloring f W X �! Ci;j if and only ifˇ̌®

x 2 X
ˇ̌

f .x/ D ˛
¯ˇ̌

� m:

Definition 4.3 Let J 2 N. We say that colorings f W X �! Ci;j and
g W Y �! Ci;j are J -similar if and only if, for all 0 � m < J and for all ˛ 2 Ci;j ,

˛ is m-special w.r.t. f if and only if ˛ is m-special w.r.t. g:

The color classes Ci;j and colorings cM
i;j and cN

i;j for all i 2 N and for all 0 � j � k0

will be defined by a 2-dimensional recursion. At each stage of the construction we
will ensure that cM

i;j and cN
i;j are .2K/k0�j C2-similar.

Let C0;0 D ¹0º. Define cM
0;0 W M0 �! C0;0 by

cM
0;0.x/ D 0 for all x 2 M0:

Define cN
0;0 W N0 �! C0;0 by

cN
0;0.x/ D 0 for all x 2 N0:

Let ˆ0;0;0.x0/ be the LTST-formula x0 D x0. Note that, for all x 2 N0,

N ˆ ˆ0;0;0Œx� if and only if cN
0;0.x/ D 0:

Lemma 4.1 The colorings cM
0;0 and cN

0;0 are .2K/k0C2-similar.

Proof This follows immediately from the fact that jM0j � .2K/k0C2.

We now turn to defining the color classes Ci;0 and colorings cM
i;0 W Mi �! Ci;0 and

cN
i;0 W Ni �! Ci;0 for all i 2 N. Suppose that we have defined the color class Cn;0

with a canonical ordering, colorings cM
n;0 W Mn �! Cn;0 and cN

n;0 W Ni �! Cn;0,
and LTST-formulae ˆn;0;˛.xn/ for all ˛ 2 Cn;0 with the following properties:

(I) cM
n;0 and cN

n;0 are .2K/k0C2-similar,
(II) for all ˛ 2 Cn;0 and for all x 2 Nn,

N ˆ ˆn;0;˛Œx� if and only if cN
n;0.x/ D ˛:

Let Cn;0 D ¹˛1; : : : ; ˛qº be the enumeration obtained from the canonical order-
ing. Define CnC1;0 D 22�q—the set of all 0–1 sequences of length 2 � q. Define
cM

nC1;0 W MnC1 �! CnC1;0 such that, for all x 2 MnC1,

cM
nC1;0.x/ D hf1; : : : ; fq; g1; : : : ; gqi;

where

fi D

´
0 if, for all y 2 Mn; it holds that if cM

n;0.y/ D ˛i , then M ˆ y …n x;

1 if there exists y 2 Mn such that cM
n;0.y/ D ˛i and M ˆ y 2n x;
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and

gi D

´
0 if, for all y 2 Mn; it holds that if cM

n;0.y/ D ˛i , then M ˆ y 2n x;

1 if there exists y 2 Mn such that cM
n;0.y/ D ˛i and M ˆ y …n x:

Example 4.1 Using this definition we get C1;0 D ¹h0; 0i; h1; 0i; h0; 1i; h1; 1iº.
There are no x 2 M1 which are given the color h0; 0i by cM

1;0. The only point in
M1 which is given the color h1; 0i by cM

1;0 is .V 1/M. Similarly, the only point in M1

which is given the color h0; 1i by cM
1;0 is .;1/M. Every other point in M1 is given the

color h1; 1i by cM
1;0.

We define the coloring cN
nC1;0 W NnC1 �! CnC1;0 identically. Define cN

nC1;0 W

NnC1 �! CnC1;0 such that, for all x 2 NnC1,

cN
nC1;0.x/ D hf1; : : : ; fq; g1; : : : ; gqi;

where

fi D

´
0 if, for all y 2 Nn; it holds that if cN

n;0.y/ D ˛i , then N ˆ y …n x;

1 if there exists y 2 Nn such that cN
n;0.y/ D ˛i and N ˆ y 2n x;

and

gi D

´
0 if, for all y 2 Nn; it holds that if cN

n;0.y/ D ˛i , then N ˆ y 2n x;

1 if there exists y 2 Nn such that cN
n;0.y/ D ˛i and N ˆ y …n x:

We first show that there are LTST-formulae ˆnC1;0;ˇ , for all ˇ 2 CnC1;0, that
satisfy condition (II) above for the coloring cN

nC1;0.

Lemma 4.2 For all ˇ 2 CnC1;0, there is an LTST-formula ˆnC1;0;ˇ .xnC1/ such
that, for all x 2 NnC1,

N ˆ ˆnC1;0;ˇ Œx� if and only if cN
nC1;0.x/ D ˇ:

Proof For all 1 � i � q, let ˆn;0;˛i
.xn/ be such that, for all x 2 Nn,

N ˆ ˆn;0;˛i
Œx� if and only if cN

n;0.x/ D ˛i :

Let ˇ D hf1; : : : ; fq; g1; : : : ; gqi 2 CnC1;0. For all 1 � i � q and j 2 ¹0; 1º define
the LTST-formula ‚

ˇ
i;j .xnC1/ by

‚
ˇ
i;0.xnC1/ is

´
8yn.ˆn;0;˛i

.yn/ ) yn …n xnC1/ if fi D 0;

9yn.yn 2 xnC1 ^ ˆn;0;˛i
.yn// if fi D 1;

‚
ˇ
i;1.xnC1/ is

´
8yn.ˆn;0;˛i

.yn/ ) yn 2n xnC1/ if gi D 0;

9yn.yn … xnC1 ^ ˆn;0;˛i
.yn// if gi D 1:

Define ˆnC1;0;ˇ .xnC1/ to be the LTST-formula^
1�i�q

^
j 2¹0;1º

‚
ˇ
i;j .xnC1/:

It follows from the definition of cN
nC1;0 that, for all x 2 NnC1,

N ˆ ˆnC1;0;ˇ Œx� if and only if cN
nC1;0.x/ D ˇ:
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We now turn to showing that cM
nC1;0 and cN

nC1;0 are .2K/k0C2-similar. To prove this
we introduce the following sets:

FORn D
®
i 2 Œq�

ˇ̌
˛i is forbidden w.r.t. cM

n;0 and cN
n;0

¯
;

m-SPCn D
®
i 2 Œq�

ˇ̌
˛i is m-special w.r.t. cM

n;0 and cN
n;0

¯
for 1 � m < .2K/k0C2;

ABNn D
®
i 2 Œq�

ˇ̌
˛i is .2K/k0C2-abundant w.r.t. cM

n;0 and cN
n;0

¯
:

We classify the colors in CnC1;0 which are forbidden, 1-special, and abundant with
respect to cM

nC1;0 and cN
nC1;0.

Lemma 4.3 Let ˇ 2 CnC1;0 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. The color ˇ is
forbidden with respect to cM

nC1;0 and cN
nC1;0 if and only if either

(i) there exists an i 2 Œq� with i … FORn such that fi D gi D 0, or
(ii) there exists an i 2 1-SPCn such that fi D gi D 1, or
(iii) there exists an i 2 FORn such that fi D 1 or gi D 1.

Proof It is clear that if any of the conditions (i)–(iii) hold, then the color ˇ is
forbidden. Conversely, suppose that none of the conditions (i)–(iii) hold. We need
to show that ˇ is not forbidden with respect to cM

nC1;0 and cN
nC1;0. We first construct

a point in N that is given color ˇ by cN
nC1;0. For all 1 � i � q, let ˆn;0;˛i

.xn/ be
such that, for all x 2 Nn,

N ˆ ˆn;0;˛i
Œx� if and only if cN

n;0.x/ D ˛i :

Let ‚1.xn/ be the LTST-formula _
gi D0

ˆn;0;˛i
.xn/:

We work inside N . Let X1 D ¹xn j ‚1.xn/º. Note that comprehension ensures that
X1 exists. Let

B D ABNn [

[
2�m<.2K /k0C2

m-SPCn;

and let A D ¹i 2 B j fi D gi D 1º. Let ‚2.xn/ be the LTST-formula_
i2A

ˆn;0;˛i
.xn/:

Let X2 D ¹xn j ‚2.xn/º. Again, comprehension ensures that X2 exists. For all
i 2 A, let xi 2 Nn be such that cN

n;0.xi / D ˛i . Now, let X D X1[.X2n¹xi j i 2 Aº/.
Comprehension guarantees that X exists in N , and our construction ensures that
cN

nC1;0.X/ D ˇ. An identical construction shows that if none of the conditions
(i)–(iii) hold, then there is a point X in M such that cM

nC1;0.X/ D ˇ.

Lemma 4.4 Let ˇ 2 CnC1;0 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. The color ˇ is
1-special with respect to cM

nC1;0 and cN
nC1;0 if and only if ˇ is not forbidden with

respect to cM
nC1;0 and cN

nC1;0 and, for all i 2 Œq� with i … FORn, fi D 0 or gi D 0.

Proof Suppose that ˇ is not forbidden with respect to cM
nC1;0 and cN

nC1;0, and sup-
pose that, for all i 2 Œq� with i … FORn, fi D 0 or gi D 0. If x is a point that
is given color ˇ by cM

nC1;0 or cN
nC1;0, then x is completely determined in M or N ,

respectively. Therefore, ˇ is 1-special.
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Conversely, suppose that ˇ is not forbidden, and suppose that there exists an
i 2 Œq� with i … FORn such that fi D gi D 1. We will show that ˇ is not 1-special
with respect to cM

nC1;0 or cN
nC1;0. We first construct two distinct points of N that are

given color ˇ by cN
nC1;0. For all 1 � i � q, let ˆn;0;˛i

.xn/ be such that, for all
x 2 Nn,

N ˆ ˆn;0;˛i
Œx� if and only if cN

n;0.x/ D ˛i :

We work inside N . Let A D ¹i 2 Œq� j fi D gi D 1º. Since ˇ is not forbidden, for
all i 2 A, we can find xi ; yi 2 Nn such that cN

n;0.xi / D cN
n;0.yi / D ˛i and xi ¤ yi .

Let ‚1.xn/ be the LTST-formula _
gi D0

ˆn;0;˛i
.xn/:

Let ‚2.xn/ be the LTST-formula _
i2A

ˆn;0;˛i
.xn/:

Let X1 D ¹xn j ‚1.xn/º, and let X2 D ¹xn j ‚2.xn/º. Comprehension
guarantees that both X1 and X2 exist. Let X D X1 [ .X2n¹xi j i 2 Aº/,
and let Y D X1 [ .X2n¹yi j i 2 Aº/. Now, this construction ensures that
cN

nC1;0.X/ D cN
nC1;0.Y / D ˇ and X ¤ Y . Therefore, ˇ is not 1-special with respect

to cN
nC1;0. An identical construction shows that ˇ is not 1-special with respect to

cM
nC1;0.

Lemma 4.5 Let ˇ 2 CnC1;0 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. If ˇ is not for-
bidden with respect to cM

nC1;0 and cN
nC1;0 and there exists an i 2 ABNn such that

fi D gi D 1, then ˇ is .2K/k0C2-abundant with respect to cM
nC1;0 and cN

nC1;0.

Proof Suppose that ˇ is not forbidden with respect to cM
nC1;0 and cN

nC1;0, and sup-
pose that there exists an i 2 ABNn such that fi D gi D 1. We first construct
.2K/k0C2 distinct points in N that are given color ˇ by cN

nC1;0. For all 1 � i � q,
let ˆn;0;˛i

.xn/ be such that, for all x 2 Nn,

N ˆ ˆn;0;˛i
Œx� if and only if cN

n;0.x/ D ˛i :

We work inside N . Let u 2 ABNn be such that fu D gu D 1. Let A D

¹i 2 Œq� j fi D gi D 1º. For all i 2 A with i ¤ u, let xi 2 Nn be such that
cN

n;0.xi / D ˛i . Let y1; : : : ; y.2K /k0C2 2 Nn be such that, for all 1 � v � .2K/k0C2,
cN

n;0.yv/ D ˛u and, for all 1 � v1 < v2 � .2K/k0C2, yv1
¤ yv2

. Let ‚1.xn/ be the
LTST-formula _

gi D0

ˆn;0;˛i
.xn/:

Let ‚2.xn/ be the LTST-formula _
i2A

ˆn;0;˛i
.xn/:

Let X1 D ¹xn j ‚1.xn/º, and let X2 D ¹xn j ‚2.xn/º. Comprehension guarantees
that X1 and X2 exist. For all 1 � v � .2K/k0C2, let

Yv D X1 [
�
X2n

�
¹xi j i 2 A ^ i ¤ uº [ ¹yvº

��
:
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This construction ensures that, for all 1 � v1 < v2 � .2K/k0C2, Yv1
¤ Yv2

and, for
all 1 � v � .2K/k0C2, cN

nC1;0.Yv/ D ˇ. Therefore, ˇ is .2K/k0C2-abundant with
respect to cN

nC1;0. An identical construction shows that ˇ is .2K/k0C2-abundant with
respect to cM

nC1;0.

This allows us to show that the colorings cM
nC1;0 and cN

nC1;0 are .2K/k0C2-similar.

Lemma 4.6 The colorings cM
nC1;0 and cN

nC1;0 are .2K/k0C2-similar.

Proof Lemma 4.3 shows that, for all ˇ 2 CnC1;0,

ˇ is forbidden w.r.t. cM
nC1;0 if and only if ˇ is forbidden w.r.t. cN

nC1;0:

Lemma 4.4 shows that, for all ˇ 2 CnC1;0,

ˇ is 1-special w.r.t. cM
nC1;0 if and only if ˇ is 1-special w.r.t. cN

nC1;0:

Let ˇ 2 CnC1;0 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. Lemma 4.5 shows that if ˇ is
not forbidden with respect to cM

nC1;0 and cN
nC1;0 and there is an i 2 ABNn such that

fi D gi D 1, then ˇ is .2K/k0C2-abundant with respect to both cM
nC1;0 and cN

nC1;0.
The remaining case is if ˇ is not forbidden or 1-special and, for all i 2 ABNn, fi D 0

or gi D 0. Let
B D

[
2�m<.2K /k0C2

m-SPC:

In this case the number of x 2 MnC1 (2 NnC1, resp.) with color ˇ is completely
determined by the number of y 2 Mn (2 Nn, resp.) with color ˛i such that i 2 B and
fi D gi D 1. Therefore, the colorings cM

nC1;0 and cN
nC1;0 are .2K/k0C2-similar.

Therefore, by induction, for all i 2 N, the colorings cM
i;0 W Mi �! Ci;0 and

cN
i;0 W Ni �! Ci;0 are .2K/k0C2-similar.

We now turn to defining the color classes Ci;j and the colorings cM
i;j W Mi �! Ci;j

and cN
i;j W Ni �! Ci;j for 1 � j � k0 and i 2 N. Let 0 � n < k0. Suppose that

the color classes Ci;n have been defined for all i 2 N, and suppose that each of these
color classes has a canonical ordering. Let j 0 D

P
1�m�n Km, and suppose that

b
r1

1 ; : : : ; b
rj 0

j 0 2 N have been chosen. Moreover, suppose that, for all i 2 N and
for all ˛ 2 Ci;n, the colorings cM

i;n W Mi �! Ci;n and cN
i;n W Ni �! Ci;n and the

LTST-formulae ˆi;n;˛.xi ; Ez/ have been defined with the following properties:
(I0) cM

i;n and cN
i;n are .2K/k0�nC2-similar;

(II0) for all x 2 Ni ,

N ˆ ˆi;n;˛Œx; b
r1

1 ; : : : ; b
rj 0

j 0 � if and only if cN
i;n.x/ D ˛:

Observe that rj 0C1 D � � � D rj 0CKnC1
, and let r D rj 0C1. We will define the color

classes Ci;nC1 and colorings cM
i;nC1 W Mi �! Ci;nC1 and cN

i;nC1 W Ni �! Ci;nC1

such that, for all i 2 N, cM
i;nC1 and cN

i;nC1 are .2K/k0�nC1-similar and the coloring
cN

i;nC1 is definable in N . In the process of achieving this goal we will identify points
br

j 0C1; : : : ; br
j 0CKnC1

2 Nr .
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For all 0 � i < r � 1, define

Ci;nC1 D Ci;n;

cM
i;nC1 D cM

i;n;

cN
i;nC1 D cN

i;n:

We now define the color class Cr�1;nC1 and the colorings cM
r�1;nC1 W Mr�1 �!

Cr�1;nC1 and cN
r�1;nC1 W Nr�1 �! Cr�1;nC1. Let Cr�2;nC1 D Cr�2;n D

¹˛1; : : : ; ˛qº be obtained from the canonical ordering. Consider ar
j 0C1; : : : ;

ar
j 0CKnC1

2 Mr , and use Na1; : : : ; NaKnC1
to denote this sequence of elements. Define

Cr�1;nC1 D 2KnC1 � Cr�1;n—the set of all 0–1 sequences of length KnC1 C 2 � q.
Define cM

r�1;nC1 W Mr�1 �! Cr�1;nC1 such that, for all x 2 Mr�1,

cM
r�1;nC1.x/ D hF1; : : : ; FKnC1

; f1; : : : ; fq; g1; : : : ; gqi;

where
cM

r�1;n.x/ D hf1; : : : ; fq; g1; : : : ; gqi

and

Fp D

´
0 if M ˆ x …r�1 Nap;

1 if M ˆ x 2r�1 Nap;
for all 1 � p � KnC1:

Lemma 4.7 There exists Nb1; : : : ; NbKnC1
2 Nr such that cM

r�1;nC1 and the coloring
cN

r�1;nC1 W Nr�1 �! Cr�1;nC1, defined such that, for all x 2 Nr�1,

cN
r�1;nC1.x/ D hF1; : : : ; FKnC1

; f1; : : : ; fq; g1; : : : ; gqi;

where cN
r�1;n.x/ D hf1; : : : ; fq; g1; : : : ; gqi

and Fp D

´
0 if N ˆ x …r�1

Nbp;

1 if N ˆ x 2r�1
Nbp;

for all 1 � p � KnC1; (2)

are .2K/k0�nC1-similar.

Proof Let Cr�1;n D ¹˛1; : : : ; ˛q0º be obtained from the canonical ordering. For
all 1 � i � q0 and for all � 2 2KnC1 , define X i

� � Mr�1 by

X i
� D

®
x 2 Mr�1

ˇ̌ �
cM

r�1;n.x/ D ˛i

�
^ .8v 2 KnC1/

�
�.v/ D 1 ” M ˆ x 2r�1 Nav

�¯
:

Note that, for all 1 � i � q0, the sets hX i
� j � 2 2KnC1i partition the elements of

Mr�1 that are given color ˛i by cM
r�1;n into 2KnC1 pieces. For each 1 � i � q0

choose a sequence hZi
� j � 2 2KnC1i such that, for all � 2 2KnC1 ,

(i) Zi
� 2 Nr ;

(ii) for all z 2 Nr�1 with N ˆ .z 2r�1 Zi
� /, cN

r�1;n.z/ D ˛i ;
(iii) if jX i

� j < .2K/k0�nC1, then j¹z 2 N j N ˆ z 2r�1 Zi
� ºj D jX i

� j;
(iv) if jX i

� j � .2K/k0�nC1, then j¹z 2 N j N ˆ z 2r�1 Zi
� ºj � .2K/k0�nC1.

To see that we can make this choice, we work inside N . For all 1 � i � q0, let
ˆr�1;n;˛i

.xr�1; Ez/ be such that, for all x 2 Nr�1,

N ˆ ˆr�1;n;˛i
Œx; b

r1

1 ; : : : ; b
rj 0

j 0 � if and only if cN
r�1;n.x/ D ˛i :
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For all 1 � i � q0, let Wi D ¹xr�1 j ˆr�1;n;˛i
.xr�1; b

r1

1 ; : : : ; b
rj 0

j 0 /º. Compre-
hension ensures that the Wi ’s exist. For all 1 � i � q0 and for all � 2 2KnC1 , Zi

�

can be chosen to be a finite or cofinite subset of Wi . Moreover, the fact that cM
r�1;n

and cN
r�1;n are .2K/k0�nC2-similar ensures that for all 1 � i � q0 we can choose the

sequence hZi
� j � 2 2KnC1i to satisfy condition (iii) above.

Now, for all 1 � p � KnC1, let Nbp 2 Nr be such that

N ˆ Nbp D

[
1�i�q0

[
�22

KnC1

s.t. �.p/D1

Zi
� :

This construction ensures that the colorings cM
r�1;nC1 and cN

r�1;nC1 defined by (2)
are .2K/k0�nC1-similar.

Let br
j 0C1; : : : ; br

j 0CKnC1
2 N be the points Nb1; : : : ; NbKnC1

produced in the proof of
Lemma 4.7, and let cN

r�1;nC1 be defined by (2). Therefore, cM
r�1;nC1 and cN

r�1;nC1

are .2K/k0�nC1-similar. We can immediately observe that the coloring cN
r�1;nC1 is

definable in N by an LTST-formula with parameters b
r1

1 ; : : : ; b
rj 0CKnC1

j 0CKnC1
.

Lemma 4.8 For all ˛ 2 Cr�1;nC1, there exists an LTST-formula
ˆr�1;nC1;˛.xr�1; Ez/ such that, for all x 2 Nr�1,

N ˆ ˆr�1;nC1;˛Œx; b
r1

1 ; : : : ; b
rj 0CKnC1

j 0CKnC1
� if and only if cN

r�1;nC1.x/ D ˛:

Let t D
P

1�m�nC1 Km. Lemmas 4.7 and 4.8 show that we can define colorings
cM

r�1;nC1 and cN
r�1;nC1 and LTST-formulae ˆr�1;nC1;˛.xr�1; Ez/ for all ˛ 2 Cr�1;nC1

which satisfy the following properties:
(I00) cM

r�1;nC1 and cN
r�1;nC1 are .2K/k0�nC1-similar;

(II00) for all x 2 Nr�1,

N ˆ ˆr�1;nC1;˛Œx; b
r1

1 ; : : : ; b
rt
t � if and only if cN

r�1;nC1.x/ D ˛:

We now turn to defining the color classes Ci;nC1 and the colorings cM
i;nC1 W

Mi �! Ci;nC1 and cN
i;nC1 W Ni �! Ci;nC1 for all i � r . Let i � r � 1. Sup-

pose that the color class Ci;nC1 has been defined with a canonical ordering. Sup-
pose, also, that the colorings cM

i;nC1 W Mi �! Ci;nC1 and cN
i;nC1 W Ni �! Ci;nC1

and the LTST-formulae ˆi;nC1;˛.xi ; Ez/ have been defined and satisfy the following
properties:

(I000) cM
i;nC1 and cN

i;nC1 are .2K/k0�nC1-similar;
(II000) for all x 2 Ni ,

N ˆ ˆi;nC1;˛Œx; b
r1

1 ; : : : ; b
rt
t � if and only if cN

i;nC1.x/ D ˛:

We “lift” the color class Ci;nC1 and the colorings cM
i;nC1 and cN

i;nC1 in the
same way that we “lifted” the color classes Ci;0 and the colorings cM

i;0 and cN
i;0

above. Let Ci;nC1 D ¹˛1; : : : ; ˛qº be obtained from the canonical ordering.
Define CiC1;nC1 D 22�q—the set of all 0–1 sequences of length 2 � q. Define
cM

iC1;nC1 W MiC1 �! CiC1;nC1 such that, for all x 2 MiC1,

cM
iC1;nC1.x/ D hf1; : : : ; fq; g1; : : : ; gqi;
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where

fp D

´
0 if, for all y 2 Mi ; it holds that if cM

i;nC1.y/ D ˛p , then M ˆ y …i x;

1 if there exists y 2 Mi such that cM
i;nC1.y/ D ˛p and M ˆ y 2i x;

and

gp D

´
0 if, for all y 2 Mi ; it holds that if cM

i;nC1.y/ D ˛p , then M ˆ y 2i x;

1 if there exists y 2 Mi such that cM
i;nC1.y/ D ˛p and M ˆ y …i x:

Again, we define cN
iC1;nC1 identically. Define cN

iC1;nC1 W NiC1 �! CiC1;nC1 such
that, for all x 2 NiC1,

cN
iC1;nC1.x/ D hf1; : : : ; fq; g1; : : : ; gqi;

where

fp D

´
0 if, for all y 2 Ni ; it holds that if cN

i;nC1.y/ D ˛p , then N ˆ y …i x;

1 if there exists y 2 Ni such that cN
i;nC1.y/ D ˛p and N ˆ y 2i x;

and

gp D

´
0 if, for all y 2 Ni ; it holds that if cN

i;nC1.y/ D ˛p , then N ˆ y 2i x;

1 if there exists y 2 Ni such that cN
i;nC1.y/ D ˛p and N ˆ y …i x:

We first observe that there exist LTST-formulae ˆiC1;nC1;ˇ .xiC1; Ez/ for each
ˇ 2 CiC1;nC1 which witness the fact that the coloring cN

iC1;nC1 satisfies condi-
tion (II000).

Lemma 4.9 For all ˇ 2 CiC1;nC1, there is an LTST-formula ˆiC1;nC1;ˇ .xiC1; Ez/

such that, for all x 2 NiC1,

N ˆ ˆiC1;nC1;ˇ Œx; b
r1

1 ; : : : ; b
rt
t � if and only if cN

iC1;nC1.x/ D ˇ:

Proof This is identical to the proof of Lemma 4.2 using the fact that cN
i;nC1 satisfies

condition (II000).

We now turn to showing that cM
iC1;nC1 and cN

iC1;nC1 are .2K/k0�nC1-similar. To do
this we prove analogues of Lemmas 4.3, 4.4, and 4.5:

FORnC1
i D

®
v 2 Œq�

ˇ̌
˛v is forbidden w.r.t. cM

i;nC1 and cN
i;nC1

¯
;

m-SPCnC1
i D

®
v 2 Œq�

ˇ̌
˛v is m-special w.r.t. cM

i;nC1 and cN
i;nC1

¯
for 1 � m < .2K/k0�nC1;

ABNnC1
i D

®
v 2 Œq�

ˇ̌
˛v is .2K/k0�nC1-abundant w.r.t. cM

i;nC1 and cN
i;nC1

¯
:

Lemma 4.10 Let ˇ 2 CiC1;nC1 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. The color ˇ

is forbidden with respect to cM
iC1;nC1 and cN

iC1;nC1 if and only if either

(i) there exists a v 2 Œq� with v … FORnC1
i such that fv D gv D 0, or

(ii) there exists a v 2 1-SPCnC1
i such that fv D gv D 1, or

(iii) there exists a v 2 FORnC1
i such that fv D 1 or gv D 1.

Proof This is identical to the proof of Lemma 4.3.
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Lemma 4.11 Let ˇ 2 CiC1;nC1 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. The color ˇ

is 1-special with respect to cM
iC1;nC1 and cN

iC1;nC1 if and only if ˇ is not forbidden
with respect to cM

iC1;nC1 and cN
iC1;nC1 and, for all v 2 Œq� with v … FORnC1

i , fv D 0

or gv D 0.

Proof This is identical to the proof of Lemma 4.4.

Lemma 4.12 Let ˇ 2 CiC1;nC1 with ˇ D hf1; : : : ; fq; g1; : : : ; gqi. If ˇ is not
forbidden with respect to cM

iC1;nC1 and cN
iC1;nC1 and there exists a v 2 ABNnC1

i

with fv D gv D 1, then ˇ is .2K/k0�nC1-abundant with respect to cM
iC1;nC1 and

cN
iC1;nC1.

Proof This is identical to the proof of Lemma 4.5.

These results allow us to show that cM
iC1;nC1 and cN

iC1;nC1 are .2K/k0�nC1-similar.

Lemma 4.13 The colorings cM
iC1;nC1 and cN

iC1;nC1 are .2K/k0�nC1-similar.

Proof This is identical to the proof of Lemma 4.6 when using Lemmas 4.10, 4.11,
and 4.12.

This recursion allows us to define the color classes Cn;k0 and colorings cM
n;k0 and

cN
n;k0 , for all n 2 N, and elements b

r1

1 ; : : : ; b
rk

1 2 N . The above arguments show
that, for all n 2 N, cM

n;k0 and cN
n;k0 are 2K-similar. We have constructed the colorings

cM
n;k0 and cN

n;k0 so that the color assigned to a point x 2 M (or N ) completely captures
the set of quantifier-free formulae with parameters a

r1

1 ; : : : ; a
rk

k
(resp., b

r1

1 ; : : : ; b
rk

k
)

that are satisfied by x.

Lemma 4.14 Let n 2 N, and let �.x
r1

1 ; : : : ; x
rk

k
; xn/ be a quantifier-free

LTST-formula. If x 2 Mn and y 2 Nn are such that cM
n;k0.x/ D cM

n;k0.y/, then

M ˆ �Œa
r1

1 ; : : : ; a
rk

k
; x� if and only if N ˆ �Œb

r1

1 ; : : : ; b
rk

k
; y�:

Proof This follows immediately from the definition of the colorings cM
n;k0 and cN

n;k0 .

Our construction also ensures that if x 2 MnC1 (or NnC1), then the color assigned
to x by cM

nC1;k0 (resp., cN
nC1;k0 ) tells us, for all ˛ 2 Cn;k0 , whether there exists a point

y 2 Mn (resp., Nn) such that cM
n;k0.y/ D ˛ (resp., cN

n;k0.y/ D ˛) and y is in the
relationship 2n or …n to x in M (resp., N ).

Lemma 4.15 Let x 2 MnC1 and y 2 NnC1, and let ˛ 2 Cn;k0 . If cM
nC1;k0.x/ D

cN
nC1;k0.y/, then

.9z 2 Mn/
�
cM

n;k0.z/ D ˛ ^ M ˆ z 2n x
�

if and only if

.9z 2 Nn/
�
cN

n;k0.z/ D ˛ ^ N ˆ z 2n y
�
;

and

.9z 2 Mn/
�
cM

n;k0.z/ D ˛ ^ M ˆ z …n x
�

if and only if

.9z 2 Nn/
�
cN

n;k0.z/ D ˛ ^ N ˆ z …n y
�
:
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Proof This follows immediately from the definition of the colorings cM
nC1;k0 and

cN
nC1;k0 .

This allows us to show that an LTST-sentence of form (A) or (B) which is true in N

is also true in M.

Theorem 4.16 Let � D 8x
r1

1 � � � 8x
rk

k
9ys

1 � � � 9ys
l
� be an LTST-formula with �

quantifier-free. If N ˆ �, then M ˆ �.

Proof Suppose that N ˆ �. Let a
r1

1 ; : : : ; a
rk

k
2 M. Using a

r1

1 ; : : : ; a
rk

k
and the

construction we presented above we can define the color classes Cn;k0 and colorings
cM

n;k0 and cN
n;k0 , for all n 2 N, and elements b

r1

1 ; : : : ; b
rk

k
2 N . The colorings cM

n;k0

and cN
n;k0 are 2K-similar and satisfy Lemma 4.14. Let e1; : : : ; el 2 Ns be such that

N ˆ �Œb
r1

1 ; : : : ; b
rk

k
; e1; : : : ; el �:

For all 1 � i � l , let di 2 Ms be such that cM
s;k0.di / D cN

s;k0.ei / and, for all
1 � j < i , dj ¤ di if and only if ei ¤ ej . The fact that l < 2K and the fact
that cM

s;k0 and cN
s;k0 are 2K-similar ensure we can find d1; : : : ; dl 2 Ms satisfying

these conditions. Now, since the variables ys
1; : : : ; ys

l
all have the same type in � , the

only atomic or negatomic subformulae of � are of the form ys
i D ys

j , ys
i 2s x

rj

j if
rj D s C 1, x

ri

i 2ri
ys

j if s D ri C 1, x
ri

i 2ri
x

rj

j if rj D ri C 1, or one of negations
of these. Therefore, by Lemma 4.14,

M ˆ �Œa
r1

1 ; : : : ; a
rk

k
; d1; : : : ; dl �:

Since the a
r1

1 ; : : : ; a
rk

k
2 M were arbitrary, this shows that M ˆ �.

Theorem 4.17 Let � D 8x
r1

1 � � � 8x
rk

k
9y

s1

1 � � � 9y
sl

l
� be an LTST-sentence with

s1 > � � � > sl and � quantifier-free. If N ˆ �, then M ˆ �.

Proof Suppose that N ˆ �. Let a
r1

1 ; : : : ; a
rk

k
2 M. Using a

r1

1 ; : : : ; a
rk

k
and the

construction we presented above, we can define the color classes Cn;k0 and colorings
cM

n;k0 and cN
n;k0 , for all n 2 N, and elements b

r1

1 ; : : : ; b
rk

k
2 N . The colorings cM

n;k0

and cN
n;k0 are 2K-similar and satisfy Lemma 4.14. Let e

s1

1 ; : : : ; e
sl

l
2 N be such that

N ˆ �Œb
r1

1 ; : : : ; b
rk

k
; e

s1

1 ; : : : ; e
sl

l
�:

We inductively choose d
s1

1 ; : : : ; d
sl

l
2 M. Let d

s1

1 2 M be such that cM
s1;k0.d

s1

1 / D

cN
s1;k0.e

s1

1 /. Suppose that 1 � i < l , and suppose that we have chosen d
si

i 2 M

with cM
si ;k0.d

si

i / D cN
si ;k0.e

si

i /. If si ¤ siC1 C 1, then let d
siC1

iC1 2 M be such that
cM

siC1;k0.d
siC1

iC1 / D cN
siC1;k0.e

siC1

iC1 /. If si D siC1 C 1 and N ˆ e
siC1

iC1 2siC1
e

si

i ,
then let d

siC1

iC1 2 M be such that cM
siC1;k0.d

siC1

iC1 / D cN
siC1;k0.e

siC1

iC1 / and M ˆ

d
siC1

iC1 2siC1
d

si

i . If si D siC1 C 1 and N ˆ e
siC1

iC1 …siC1
e

si

i , then let d
siC1

iC1 2 M

be such that cM
siC1;k0.d

siC1

iC1 / D cN
siC1;k0.e

siC1

iC1 / and M ˆ d
siC1

iC1 …siC1
d

si

i .
Lemma 4.15, the fact that 1 < 2K , and the fact that cM

siC1;k0 and cN
siC1;k0 are

2K-similar ensure that we can find d
siC1

iC1 2 M satisfying these conditions. Now,
since the variables y

s1

1 ; : : : ; y
sl

l
all have distinct types in � , the only atomic or

negatomic subformulae of � are of the form y
siC1

iC1 2siC1
y

si

i if si D siC1 C 1,
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y
si

i 2si
x

rj

j if rj D si C 1, x
ri

i 2ri
y

sj

j if sj D ri C 1, x
ri

i 2ri
x

rj

j if rj D ri C 1,
or one of the negations of these. Therefore, by Lemma 4.14,

M ˆ �Œa
rk

1 ; : : : ; a
rk

k
; d

s1

1 ; : : : ; d
sl

l
�:

Since the a
r1

1 ; : : : ; a
rk

k
2 M were arbitrary, this shows that M ˆ �.

Since N is an arbitrary model of TSTI and M is an arbitrary sufficiently large finitely
generated model of TST, Theorems 4.16 and 4.17 show that any LTST-sentence of
form (A) or (B) has the finitely generated model property. Combining this with
Theorem 3.2 shows that TSTI decides any sentence of form (A) or (B).

Corollary 4.18 If � D 8x
r1

1 � � � 8x
rk

k
9y

s1

1 � � � 9y
sl

l
� is an LTST-sentence with

s1 > � � � > sl and � quantifier-free, then TST decides �.

Corollary 4.19 If � D 8x
r1

1 � � � 8x
rk

k
9ys

1 � � � 9ys
l
� is an LTST-sentence with �

quantifier-free, then TST decides �.

Combining these results with Theorem 2.1 shows that sentences of form (A0) or (B0)
are decided by NF.

Corollary 4.20 If � D 8x1 � � � 8xk9y1 � � � 9yl� is an L-formula with � quanti-
fier-free and � W Var.�/ �! N is a stratification of � that assigns the same value to
all of the variables y1; : : : ; yl , then NF decides �.

Corollary 4.21 If � D 8x1 � � � 8xk9y1 � � � 9yl� is an L-formula with � quanti-
fier-free and � W Var.�/ �! N is a stratification of � that assigns distinct values to
all of the variables y1; : : : ; yl , then NF decides �.

It is interesting to note that the only use of the axiom of infinity in the above argu-
ments is to ensure that the bottom type is externally infinite. Thus, our arguments
show that all models of TST with infinite bottom type agree on all sentences of form
(A) and all sentences of form (B).
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