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Decidable Fragments of the Simple Theory of Types
with Infinity and NF

Anuj Dawar, Thomas Forster, and Zachiri McKenzie

Abstract  We identify complete fragments of the simple theory of types with
infinity (TSTI) and Quine’s new foundations (NF) set theory. We show that TSTI
decides every sentence ¢ in the language of type theory that is in one of the
following forms:
(A) ¢ = inl e Vx,?‘ 3 yf‘ ---d ylS’ 0 where the superscripts denote the types of the vari-
ables, s1 > --- > 57, and 6 is quantifier-free,
B) ¢ = Vx;‘ ~~~Vx;k 3yf--- Hyls 6 where the superscripts denote the types of the vari-
ables and 6 is quantifier-free.
This shows that NF decides every stratified sentence ¢ in the language of set
theory that is in one of the following forms:

(A') ¢ = Vxq---VxiIyr---3y;0 where 0 is quantifier-free and ¢ admits a stratification

that assigns distinct values to all of the variables y1, ..., y;,
(B') ¢ = Vx1---Vxg3yy---3y;0 where 0 is quantifier-free and ¢ admits a stratification
that assigns the same value to all of the variables y1,...,y;.

1 Introduction

Roland Hinnion [3] showed that every consistent 3* sentence in the language of set
theory is a theorem of new foundations (NF) or, equivalently, every finite binary
structure can be embedded in every model of NF. Both these formulations invite
generalizations. On the one hand we find results like every countable binary structure
can be embedded in every model of NF (this is Forster’s [1, Theorem 4]), and on the
other we can ask about the status of sentences with more quantifiers: V*3* sentences
in the first instance; it is the latter that will be our concern here.

It is elementary to check that NF does not decide all V*3* sentences, since the
existence of Quine atoms (x = {x}) is consistent with, and independent of, NF.
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However “(Vx)(x # {x})” is not stratified, and this invites the conjecture that (i) NF
decides all stratified V*3* sentences and that (ii) all unstratified V*3* sentences can
be proved both relatively consistent and independent by means of Rieger—Bernays
permutation methods. We consider limb (i) of this conjecture here.

The foregoing is all about NF; the connection with the simple theory of types with
infinity (TSTI) arises because of work of Specker [7], [8]: NF decides all stratified
V*3* sentences of the language of set theory if and only if TSTI+ ambiguity decides
all V*3* sentences of the language of type theory.

Conjecture  All models of TSTI agree on all V*3* sentences.

It is toward a proof of this conjecture that our efforts in this paper are directed.
Observe that the statement that there is a total order of V' is consistent with and
independent of TST, and it can be said with three blocks of quantifiers:

A0)[(Yxy € 0)(x Sy Vy € x) A (Yuv)
x(u#v—>@3xe0)uecx < v¢x),
making it 3'v63!,

2 Background and Definitions

The simple theory of types is the simplification of the ramified theory of types, the
underlying system of Russell and Whitehead [6], that was independently discovered
by Frank Ramsey and Leon Chwistek. Following Mathias [4] we use TSTI and
TST to abbreviate the simple theory of types with and without the axiom of infinity,
respectively. These theories are naturally axiomatized in a many-sorted language
with sorts for each n € N.

Definition 2.1 We use £L1st to denote the N-sorted language endowed with
binary relation symbols €, for each sort n € N. There are variables x", y",z", ...
for each sort n € N, and well-formed Lrsp-formulae are built up inductively from
atomic formulae of the form x" €, y"*! and x» = y” by using the connectives
quantifiers of first-order logic.

We refer to sorts of Lrst as types. We will attempt to stick to the convention of denot-
ing Lrsr-structures by using calligraphy letters (M, N, ...). An Lrsr-structure M
consists of domains M, for each type n € N and interpretations of the relations
e,’f‘g M,, x My, for each type n € N; we write M = (Mo, My, ..., E#, G‘IM, co)
If M= (My, Mq,..., e(';“, e'{“, ...) is an Lgr-structure, then we call the elements
of My atoms.

Definition 2.2 We use TST to denote the £1sr-theory with the following axioms:
(Extensionality) for all n € N,

Vxn+lvyn+1(xn+l — yn+1 - VZ"(Z" €n anrl - Zn €n ynJrl));
(Comprehension) for all n € N and for all well-formed £rsr-formulae ¢ (x", Z),
VZA" VR (x" €,y = (2", D).

Comprehension ensures that every successor type is closed under the set-theoretic
operations: union (U), intersection (M), difference (\), and symmetric difference
(A). Forall n € N, we use @" 1! to denote the point at type n + 1 which contains no
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points from type 7, and we use V" *! to denote the point at type n + 1 that contains
every point from type n. The Wiener—Kuratowski ordered pair allows us to code
ordered pairs, denoted (x, y), as objects in TST which have type two higher than the
type of x and y. Functions, as usual, are thought of as collections of ordered pairs.
This means that a function f : X —> Y will be coded by an object in TST that has
type two higher than the type of X and Y. The theory TSTI is obtained from TST by
asserting the existence of a Dedekind infinite collection at type 1.

Definition 2.3 We use TSTI to denote the Lrsr-theory obtained from TST by
adding the axiom

Ax13F3(f3 - x! — x!is injective but not surjective).

Let X be a set. If the Lygr-structure M = (Mo, Mq,..., g, €1, ...) is defined by
M, = £"(X) and e;flze P P(X) x PHY(X) forall n € N, then M = TST. If
m € Nand | X| = m, then M is the unique, up to isomorphism, model of TST with
exactly m atoms and we say that M is finitely generated by m atoms. Alternatively, if
X is Dedekind infinite, then M |= TSTI. This shows that ZFC proves the consistency
of TSTL. In fact, in [4] it is shown that TSTI is equiconsistent with Mac Lane set
theory.

We say that an &£’-theory T decides an £’-sentence ¢ if and only if T F ¢ or
T F —¢. The completeness theorem implies that 7 decides ¢ if and only if ¢ holds
in all £’-structures M = T or —¢ holds in all £’-structures M = T.

Definition 2.4 We say that an £rgr-sentence ¢ is I*V* if and only if ¢ =
Axy' - AV - V)"0, where 6 is quantifier-free.

Definition 2.5 We say that an Lysr-sentence ¢ is V*3* if and only if ¢ =
Vxp' e Vo k3yit -+ 3y, 6, where 6 is quantifier-free.

We will show that TSTI decides a significant fragment of the V*3* sentences. (Thus,
it also decides the 3*V* sentences that are logically equivalent to the negation of
these V*3* sentences.) We achieve this result by showing that every sentence or
negation of a sentence in this fragment that is true in some model of TSTI is true in
all models of TST that are finitely generated by sufficiently many atoms.

Definition 2.6 We say that an £rgr-sentence ¢ has the finitely generated model
property if and only if, if there exists an N |= TSTI + ¢, then there exists a k € N
such that, for all m > k, if M }= TST is finitely generated by m atoms, then M = ¢.

Note that if I is a class of £rsr-sentences that have the finitely generated model
property and I" is closed under negations, then TST decides every sentence in I".

Quine [5] introduces a set theory by identifying a syntactic condition on formulae
in the single sorted language of set theory that captures the restricted comprehension
available in TST. This set theory has been dubbed “new foundations” (NF) after the
title of [5]. We will use &£ to denote the language of set theory—the language of first-
order logic endowed with a binary relation symbol € whose intended interpretation
is membership. Before giving the axioms of NF we first recall Quine’s definition of
the class of stratified formulae. If ¢ is an £-formula, then we use Var(¢) to denote
the set of variables (both free and bound) which appear in ¢.

Definition 2.7 Let ¢(xy,...,x,) be an E-formula. We say that
o : Var(¢) —> Nis a stratification of ¢ if and only if
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(i) “x € y”is a subformula of ¢, then o (“y”) = o (“x”) + 1;
(ii) “x = y”is a subformula of ¢, then 6 (“y”") = o (“x”).

If there exists a stratification of ¢, then we say that ¢ is stratified.

Let ¢ be an £L-formula. Note that o : Var(¢) —> N is a stratification of ¢ if and
only if the formula obtained by decorating every variable appearing in ¢ with the type
given by o yields a well-formed £ysr-formula. Conversely, let 6 be a well-formed
£Lrsr-formula, and let ¢ an £-formula obtained for 6 by deleting the types from the
variables appearing in 6 while ensuring (by relabeling variables) that no two distinct
variables in € become the same variable in ¢. Then the £-formula ¢ is stratified,
and the function which sends a variable in ¢ to the type index of the corresponding
variable in 0 is a stratification.

Definition 2.8 Let ¢ be an £-formula with stratification o : Var(¢) — N.
We use ¢(©) to denote the Lrgr-formula obtained by assigning each variable “x”
appearing in ¢ the type o (“x”).

NF is the £-theory with the axiom of extensionality and comprehension for all strat-
ified £-formulae.

Definition 2.9 We use NF to denote the £-theory with the following axioms:
(Extensionality) VxVy(x =y <= Vz(z ex <= z €Y)),
(Stratified comprehension) for all stratified ¢ (x, Z),

VZAyVx(x € y <= ¢(x.2)).

We direct the interested reader to Forster [2] for a detailed treatment of NF. One
interesting feature of NF is that it refutes the axiom of choice and so proves the
axiom of infinity (see [7]). There is a strong connection between the theories NF
and TSTI. Specker [8] shows that models of NF can be obtained from models
of TSTI plus the scheme ¢ <= ¢, for all Lrsr-sentences ¢, where ¢t is
obtained from ¢ by incrementing the types of all the variables appearing in ¢». Con-
versely, let M = (M, eM) be an £-structure with M = NF. The £Lrsr-structure
N = (No,Ni,...,€), €V, ...) defined by N, = M and € =eM is such that
N | TSTIL. Moreover, if ¢ is an £-sentence with stratification o : Var(¢) — N
and M |= ¢, then N = ¢(©. This immediately shows that a decidable fragment of
TSTI yields a decidable fragment of NF.

Theorem 2.1 Let ¢ be an L-sentence with stratification o : Var(¢) — N. If
TSTI decides $@, then NF decides ¢.

3 3*V* Sentences Have the Finitely Generated Model Property

In this section we prove that all 3*V* sentences have the finitely generated
model property. This result follows from the fact that if N is a model of TSTI,
ai'.....a}f € N withry < --- < rg, and M is a model of TST that is finitely
generated by sufficiently many atoms, then there is an embedding of M into N with
a? e ,a,rck in the range. Given k € N we define the function Gy : N — N by
recursion:

Gi(0)=k and Gp(n+1)= (G"z(”)) +k. )
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Lemma 3.1 Let N = TSTI, and let agl,...,alrf € Nwithr; < -+ <rg. If
M = TST is finitely generated by at least Gy (ry) atoms, then there exists a sequence
(fn | n € N) such that, for all n € N,
(i) fu: M, —> N, is injective,
(ii) forall x € M,, and forall y € My 41,
MEx€py if and only if NE fu(X) €n fus1(y),
(iii)
at'.....af € U mg( fin).
meN

Proof Let N = (Ny, Ny,. ..,GO‘N, G‘f/, ...) be such that & | TSTI, and let
a?,...,alrf € Nwithr; <+ <. Let M = (Mo,Ml,...,Eg{,E‘{%,...) be
such that M |= TST is finitely generated and |My| > Gy (rr). We begin by defining
C C N such that |C N Ny| < Gg (rx) and, for any two points x 7 y in C that are not
atoms, there exists a point z in C which N believes is in the symmetric difference of
x and y. Define Cy = {a;1 .. ,a,rc"} C M. Note that [Co N N, | < G (0) =k, and
forall0 <m < rg, |Co N Ny| < k. For 0 < n < ry we recursively define C, € N
which satisfies

(D |Cn N Nry—n| < Gi(n),

D) forall0 <m < ry —n, |Cy, N Ny | < k.
Suppose that n < r and that C,, € N has been defined and satisfies (I) and (II). For
all y,z € Ny, with y # z, let yy,, 23 € Ny, _(n41) be such that

N E Vo.zy €n—tt1) YAOZ.
Define
Cot1 = Co Uy | (0.2} € [Npe—n N Cu]?}.
It follows from (I) and (II) that

C, NNy, — Gy (n
|Crt1 N Nrk—(n+1)| <|C.n Nrk—(n+l)| + (| " ) T n|) <k+ ( k2( ))

= Ge(n + 1),

and forall 0 < m < rg — (n + 1), |Cyy1 N Ny| < k. Now, let C = C,. This
recursion ensures that |C N No| < Gg(rg).

We now turn to defining the family of maps (f, | n € N) which embed M into
N. We define the sequence (f, | n € N) by induction. Let C’ = C N Np. Let
fo : My —> Ny be an injection such that C’ C rng( fo). Suppose that { fo, ..., fu)
has been defined such that

(I') forall0 < j <n, fj : M; — N; is injective,

(I') forall0 < j <n,forallx € M;,andforall y € M; 41,

MEXE;Y if and only if NE fix)e; fir1(y),
M1y forall0 < j <n,C N N; Crg(f;).

If0<j <nandx € Mj4, then we use f;“x to denote the point in N;; such
that N |= f;“x = {fj(y) | M = y €; x}. Note that, since M is finitely generated,
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forall x € M;4q, f;j“x exists in N. We define fr41 : Mpy1 —> Nyg1 by

f (x) = 14 lfl/ eCn Nn+1 and N ': (fn“x =y a fn“(Vn+1)M)_
" Jfax otherwise.

We first need to show that the map f,+; is well defined. Suppose that £;,&, €
C N Nyp41 with & # &, and suppose that x € M, 4+ are such that

NE (fx =604 ) and N (fx = &0 L507HY).
Now, there isay € C N N, such that N | (y €, §1A&). By (IIl'), y € rng( fy),
which is a contradiction. Therefore, f;+1 is well defined. The fact that f;, is injective
ensures that f,,4 is injective.

We now turn to showing that the sequence (fp,..., fu+1) satisfies (IT').
Let x € M,, and let y € M,;;. There are two cases. First, suppose that
Ja+1(y) =y € C. Therefore, N = (fo“y = y N f“V"THM). If M | x €, y,
then N = fu(x) €, fu“y and so N E f,(x) €, fat1(y). Conversely, if
NE fulx) €, y,then N E f,(x) €, [,y and so M = x €, y. The second case
is when f,,+1(y) = f»“y. In this case it is clear that

MExXx€e, y if and only if NE fu(x) €n fusr1().

This shows that the sequence { fo, . .., fu+1) satisfies (II'). This concludes the induc-
tion step of the construction and shows that we can construct a sequence ( f, | n € N)
that satisfies (i)—(iii). O]

This embedding property allows us to show that every 3*V* sentence has the finitely
generated model property.
Theorem 3.2 Let ¢ = HXII ---Elx;k Vyf‘ ---Vyls’ 0, wherery < --- < ry and 0
is quantifier-free. If N |= TSTI + ¢ and M = TST is finitely generated by at least
G (rr) atoms, then M = ¢.
Proof Let N = (No,Ny,...,€y, e, ...) be such that & | TSTI + ¢. Let
M = (Mo, My, ..., 634, e{“, ...) be such that M = TST and M is finitely gener-
ated by at least G () atoms. Letaj', ... a;X € N be such that
N E VY -V 0al, .. ak].

Using Lemma 3.1 we can find a sequence ( f, | n € N) such that

(i) fn: M, — N, is injective,

(ii) forall x € M,, and forall y € M, 41,

MExe,y ifandonlyif N fu(x) € far1(y),

(iii)
al',....af € U g( fin).
meN
Let b{',....b* € M be such that, for all 1 < j < k, fr,(b}) = a}. Let
ei's.ooqh € Mo Since N = Olatt. .. ak, fi (1Y), ... Sy ()], it follows that
ME O] BT e,
Therefore,

MEVyi - Vy oY, b,
which proves the theorem. O
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4 Decidable Fragments of the V*3* Sentences

In this section we will show that TSTI decides every V*3* sentence ¢ that is in one
of the following forms:

(A) ¢ = Vxi'---Vx;F3y]"---3y)" 0, where 51 > -+ > s5; and 6 is quantifier-
free;
B) ¢ = Vx{‘ ---Vx,ik Jyi - Elyl 0, where 0 is quantifier-free.

By applying Theorem 2.1 it then follows that NF decides every stratified £-sentence
¢ that is in one of the following forms:

(A ¢ = Vxy---Vxidy;---3y;0, where 6 is quantifier-free and o
Var(¢) —> N is a stratification of ¢ that assigns distinct values to all
of the variables yq,..., y;;

B) ¢ = Vxy---Vxpdy;---3y;0, where 6 is quantifier-free and o
Var(¢) —> N is a stratification of ¢ that assigns the same value to all
of the variables yq,..., y;.

Throughout this section we will fix k,/ € N and a sequence r; < --- < ry that
will represent the types of the universally quantified variables in a V*3* sentence.
Let k’ be the number of distinct elements in the list r1,...,r;. Let Ky, ..., Kis be
the multiplicities of the elements in the list ry,...,rg, s0 k = Zr <i<p Ki, and let
K = max{Ky,..., Ky, l}. We also fix structures N = (Ny, Ny, ..., GO‘N, e‘l’v, L))
with & = TSTI and M = (Mo, My,..., €, e}, ...) with M | TST finitely
generated by at least (2K)k/+2 atoms. Let a;‘ AU alrck € M.

Our approach will be to deﬁne color classes €; ], the elements of which we will
call colors, and functions c :M; — € ; and c : N — €; ;, which we will
call colorings, foralli € N and forall0 < j <k’ For all0 < j < k’, the colorings
c"‘i will be defined using the elements a? b a;{/ where j' =3, _, _; Km, and
in the process of defining the colorings c ' we will construct corresponding elements
bi',....b j{ € N. The colorings will be designed with the following properties.

(i) For a fixed color a in some C; ;, the property of being an element of N that is
given color o by c W111 be definable by an Lrgr-formula, ®; ; o, with parameters
over N.

(ii) The color given to an element x in M (or ) by the coloring c (resp c"v )
will tell us which quantifier-free £ rsr-formulae with parameters al ey a j, (resp.,
b;‘ e, b;{’), where j' = lems_i K, are satisfied by x in M (resp., N).

(iii) For every color ,8 in €; ;, the color given to an element x in M (or ') by the
coloring C; 41,5 (resp., cl T ]) will tell us whether or not there is an element y in M
(resp., N) such that M |= y €; x (resp., N = y €; x) and y is given color 8 by ci,j
(resp., ¢; )

@iv) For every color ,3 in €;_;, the color given to an element x in M (or ) by the
coloring cl t1,; (resp., cl *1,;) will tell us whether or not there is an element y in M
(resp., N) such that M = y ¢; x (resp., N =y ¢; x) and y is given color 8 by ci’j
(resp., ¢; )

Note that since M is finitely generated, the analogue of condition (i) automati-
cally holds for M.



440 Dawar, Forster, and McKenzie

Before defining the color classes €; ; and the colorings clfM/. and clle. we first intro-
duce the following definitions.

Definition 4.1 Let m € N. We say that a color « € €; ; is m-special with respect
to a coloring f : X — €; ; if and only if

{xeX | f(x) =a}| =m.

If o € €; ; is O-special, then we say that « is forbidden.

Definition 4.2  Let m € N. We say that a color « € €; ; is m-abundant with
respect to a coloring f : X — €; ; if and only if

fxeX | f(x) =a}|=m.
Definition 4.3 Let J € N. We say that colorings f : X — € ; and
g:Y — € ; are J-similar if and only if, forall 0 <m < J and forall o € €; ;,

o is m-special w.r.t. f if and only if « is m-special w.r.t. g.

The color classes €;,; and colorings clfMj and c;Nj foralli € Nandforall0 < j <k’
will be defined by a 2-dimensional recursion. At each stage of the construction we
will ensure that c% and c;A; are (2K)K'=7+2_gimilar.

Let €p,0 = {0}. Define c(',AfO : My —> €p,0 by
c{)‘fo(x) =0 forall x € My.
Define co"tfo : No —> €0 by
co‘/"fo(x) =0 forall x € Ny.
Let @ 9,0(x?) be the Lrsr-formula x° = x°. Note that, for all x € Ny,

N E Do,0,0[x] if and only if cbl\,fo(x) =0.
Lemma 4.1 The colorings c(‘ffo and C({o are (2K)k/+2-similar.

Proof  This follows immediately from the fact that | M| > (2K)¥'+2. O

We now turn to defining the color classes €; ¢ and colorings c;”% :M; — €; and
c;’,\g : N; — € forall i € N. Suppose that we have defined the color class €,
with a canonical ordering, colorings c;;‘fo : M, — €, and c;ﬁfo : Ny — €0,
and Lrgr-formulae ®, o o (x") for all « € €, ¢ with the following properties:
1)) c;fo and c;ﬁfo are (2X)K'+2_gimilar,
D) foralla € €, and for all x € N,
N E @poalx]  ifandonlyif  ¢¥o(x) =0

Let €, 0 = {o1,...,a4} be the enumeration obtained from the canonical order-
ing. Define €,41,0 = 2%7—the set of all 0-1 sequences of length 2 - g. Define
C;ﬁl,o :Myu41 — Cuq1,0 such that, forall x € M, 41,

crﬁl,o(x) = (fl""squglw--,gq)y
where

5= 0 if, forall y € M, itholds that if ¢;,(y) = ;. then M |= y &, x,
" |1 if there exists y € M, such that C;,A,{o(y) =o;and M E y €, x,



Decidable Fragments of TSTI 441

~_Jo if forall y € M,. itholds that if ¢;,(y) = e, then M |= y €, x.
§i 1 if there exists y € M, such that cn”fo(y) =o;and M = y ¢, x.

Example 4.1 Using this definition we get €10 = {(0,0), (1,0), (0, 1), (1,1)}.
There are no x € M; which are given the color (0, 0) by ciAfO. The only point in
M which is given the color (1, 0) by CiA,{O is (V). Similarly, the only point in M
which is given the color (0, 1) by cl% is (81)™. Every other point in M| is given the
color (1, 1) by cl'AfO.

We define the coloring c,“xrl o : Nny1 —> Cuy1,0 identically. Define c;fﬁrl 0 -
Np41 —> €u41,0 such that, for all x € Ny4q,

N
Crr1,0(X) = (f1,-oo  fq 81+ &)
where

£ = 0 if, forall y € N,, it holds that ifc;ﬁfo(y) =a;, then N =y &, x,
"7 |1 if there exists y € N, such that c;{‘fo(y) =o;and N E y €, x,

- )0 if, forall y € Ny, itholds that ifc;fo(y) =aj, then N E y €, x,
8 = 1 if there exists y € N, such that crf‘fo(y) =a;and N |y ¢, x.

We first show that there are Lysr-formulae ®,11,0, for all B € €, 1,9, that
satisfy condition (II) above for the coloring C;ﬁ—l,o-

Lemma 4.2 For all B € €, 11,0, there is an Lysr-formula Oy, 0 (x"*1Y) such
that, for all x € Ny4+1,

NE ®urropl]  ifandonlyif ¢y o(x) = B.
Proof Foralll <i <g,let ®, o4, (x") be such that, for all x € N,
N E Dy 0,0, [X] if and only if c;ﬁfo (x) = a;.
Let8 = (fi,.... fq.81,-...8¢) € Cny1,0. Foralll <i <gandj € {0, 1} define
the £1sr-formula @fi ; (x™" 1) by

OF (x"*1) is VY (®p0.0; (V") = ¥ & X" if fi =0,
Ho Iy (y" € X"TUA Bpoa, (V") if fi =1,

@}3 (Xn+l) is Vyn(qDI’L,O,Ot,’ (yn) = yn €n xn+1) if gi = 07
i,1 Elyn(yn ¢ xn+1 A q)n,O,ai (yn)) ifg,' = 1.
Define ®,41,0,5(x"*!) to be the Lrgr-formula
ARAN At
1<i<q je{0,1}
It follows from the definition of C;;Aﬁrl,o that, for all x € Ny 41,

N E @up10p0x]  ifandonlyif ¢ o(x) = B. O
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We now turn to showing that c;ﬁ_l o and c;ﬁ_l o are (2K )k""2

we introduce the following sets:

FOR, = {i € [q] | o is forbidden w.r.t. ;)% and c;%;}.

-similar. To prove this

m-SPC, = {i € [q] | oy is m-special w.rt. ¢; and Vo) for 1 <m < (2K)F'+2,
ABN, = {i € [q] | o is (2%)¥ "2-abundant w.r.t. ¢;*) and ¢;¥,}.

We classity the colors in €,41,0 which are forbidden, 1-special, and abundant with
respect to Cﬁl,o and c,ﬁl’o.

Lemma 4.3 Let f € Cop1owith = (f1,.... f4.81,--..8q). The color B is
forbidden with respect to C;ﬁ-l,o and c;f_/i_l,o if and only if either
(i) there exists ani € [q] withi ¢ FOR,, such that f; = g; =0, or
(ii) there exists ani € 1-SPC,, such that f; = g; = 1, or
(iii) there exists ani € FOR,, such that f; = 1 or g; = 1.

Proof It is clear that if any of the conditions (i)-(iii) hold, then the color § is
forbidden. Conversely, suppose that none of the conditions (i)—(iii) hold. We need
to show that B is not forbidden with respect to C;ﬁl,o and c;ﬁH,o' We first construct

a point in N that is given color § by C;:Yi-l,O' Forall1 <i < g, let @, 4, (x") be
such that, for all x € N,;,

N E Du0,0; [X] if and only if c,“xo (x) = o4.
Let ®1(x") be the £rsr-formula

\/ q)n,O,ot,- (xn)
8i=0

We work inside . Let X1 = {x" | ®1(x")}. Note that comprehension ensures that
X exists. Let
B = ABN,, U U m-SPC,,,
25m<(2K)k/+2

andlet A ={i € B| f; = gi = 1}. Let ©®,(x") be the Lysr-formula

\/ CI>n,0,oz,' (xn)

i€A
Let X, = {x" | ®,(x")}. Again, comprehension ensures that X, exists. For all
i € A,letx; € N, besuch that ¢;¥o(xi) = e;. Now, let X = X;U(X2\{x; | i € A}).
Comprehension guarantees that X exists in N, and our construction ensures that
c,ﬁ_I’O(X ) = B. An identical construction shows that if none of the conditions

(i)—(iii) hold, then there is a point X in M such that Crﬁ—l,O(X ) = B. O

Lemma 4.4 Let f € Cop1owith = (f1,.... f4.81,---.8q). The color B is
1-special with respect to c;ﬁ_m and C;i\-/q-l,o if and only if B is not forbidden with
respect to c;ffH’O and C;ﬁH,o and, for all i € [q) withi ¢ FOR,, f; =0org; = 0.

Proof  Suppose that § is not forbidden with respect to Cﬁl’o and C;fvﬂ’o, and sup-
pose that, for all i € [¢] withi ¢ FOR,, f; = 0 or g; = 0. If x is a point that
is given color 8 by c;ﬁl’o or C;;\Q'I,O’ then x is completely determined in M or N,
respectively. Therefore, § is 1-special.
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Conversely, suppose that B is not forbidden, and suppose that there exists an
i € [¢q] withi ¢ FOR,, such that f; = g; = 1. We will show that § is not 1-special
with respect to c;ﬁl’o or C;zAfH,o- We first construct two distinct points of N that are
given color B by c;ﬁrl,o. Forall 1 <i < q, let ®,,4,(x") be such that, for all
X € Ny,
NE @uoq[x] ifandonlyif  ¢o(x) = a;.

We work inside N. Let A = {i € [¢q] | fi = gi = 1}. Since B is not forbidden, for
alli € A, we can find x;, y; € N, such that c;;*’fo(x,-) = c;f’fo(yi) = o; and x; # ;.
Let ®1(x") be the £1sr-formula

\/ cI)n,O,oti (xn)

8i=0
Let ®,(x™") be the £rsr-formula

\/ D00 (x").

i€A
Let X; = {x" | ©1(x™)}, and let X; = {x" | ©,(x")}. Comprehension
guarantees that both X; and X, exist. Let X = X; U (Xo\{x; | i € A4}),
and let Y = X; U (Xo\{y; | i € A}). Now, this construction ensures that
c;ﬁ_l’o(X) = c;ffH’O(Y) = B and X # Y. Therefore, 8 is not 1-special with respect
to C;ﬁu,o- An identical construction shows that 8 is not 1-special with respect to

M
Cn+1,00 O

Lemma 4.5 Letf € Cop1owith = (f1,.... f4.81,---.8q) If B is not for-
bidden with respect to c,ﬁ_l,o and c;ffH,o and there exists an i € ABN,, such that
fi = gi = 1, then B is X)X *2-abundant with respect to c;ffH,O and c;{il,o.

Proof  Suppose that § is not forbidden with respect to C;lAil,o and c,ﬁl,o, and sup-
pose that there exists an i € ABN,, such that f; = g; = 1. We first construct
(2K)k'+2 distinct points in N that are given color f by c;;\ﬁrl’o. Foralll <i <g,
let @, 0,4; (x") be such that, for all x € N,,

N | Pp o0, [X] if and only if c;fo (x) = oj.

We work inside N. Let u € ABN, be such that f,, = g, = 1. Let A =
{ielql| fi = g = 1}. Foralli € A withi # u, let x; € N, be such that
c;fo(xi) =o;. Let yp,..., V@eKyk'+2 € N, be such that, forall 1 < v < (ZK)k/+2,
c;ﬁfo(yv) = a, and, forall 1 < vy < vy < QK)F+2 3, # y,,. Let @ (x") be the

Lrsr-formula
\/ P 0,0; (x").
8i=0

Let ®,(x™) be the £1sr-formula

\/ cbn,O,ot,- (xn).

i€A
Let X1 = {x" | ©1(x")}, and let X, = {x" | ®,(x™)}. Comprehension guarantees
that X; and X» exist. Forall 1 < v < 2K)¥'*2 Jet

Yy =Xy U(Xo\(b | € AAT #ubU{n}).
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This construction ensures that, forall 1 < v; < vy < (ZK)k/+2, Yy, #* Y,, and, for
all 1 < v < KK F2 N | (V) = B. Therefore, B is (2X)%'*2-abundant with
respect to c;fﬁrl’o. An identical construction shows that 8 is (2K )k'+2—abundant with
respect to c;;‘il’o. O

This allows us to show that the colorings c;ﬁ_l’o and C;ﬁ—l,o are (2K )k/+2-similar.

Lemma 4.6 The colorings C;ﬁ-l,o and C;ﬁ—l,O are (2K)k/+2-similar.
Proof Lemma 4.3 shows that, for all 8 € €,41,0,

B is forbidden w.r.t. c;lAfH’o ifandonly if ~ f is forbidden w.r.t. C,‘f;l’o.
Lemma 4.4 shows that, for all 8 € €,41,0,

B is 1-special w.r.t. Cﬁl,o if and only if B is 1-special w.r.t. C;;YH,O'

Let B € €q10 wWith 8 = (f1...., fg.81.....8¢). Lemma 4.5 shows that if § is
not forbidden with respect to C;ﬁl,o and c,ﬁ_l’o and there is an i € ABN,, such that
fi = gi = 1, then B is (2X)*¥'*2.abundant with respect to both c;ﬁ_l’o and C;zAcrl,o-
The remaining case is if B is not forbidden or 1-special and, foralli € ABN,,, f; =0
org; =0. Let
B = |J  m-spc
2<m<(2K)k'+2

In this case the number of x € M, +1 (€ N,4+1, resp.) with color 8 is completely
determined by the number of y € M,, (¢ Ny, resp.) with color «; suchthati € B and
fi = gi = 1. Therefore, the colorings c;ﬁl,o and c;ﬁrl’o are (2K)K'+2 gimilar. O

Therefore, by induction, for all i € N, the colorings c;’,% : M; — € and
e Ny —> € 9 are (2K)F T2 gimilar.
We now turn to defining the color classes €; ; and the colorings c M; — €,

and ¢}, ;i Ni — G jforl < j <k'andi € N. Let0 <n < k/ Supposethat
the color classes €; , have been defined for all 1 e N, and suppose that each of these

color classes has a canonical ordering. Let j' = ), <m<n Km, and suppose that
b1, .. br.j " € N have been chosen. Moreover, suppose that, for all i € N and
for all @ € €, ,, the colormgs c :M; — €, and c : Ni — €, and the

Lrsr-formulae @; , o (xF, Z) have been defined with the following properties:

@) M andc ' are (2K )K" =n+2_gimilar;

ar) for all x € Nl,

N @inglx. b b1 ifandonlyif /% (x) =a.

Observe that rjr g = -+« = rj +Kn+1’ and let r = rj/qq. We will define the color

classes €; ,+1 and colormgs M : M; — € py1 and v

2K)k —n+1

i,n+1 N — \ei,n—l—l

such that, for all i € N, Ci,n+1 and ci’nJrl are (

i,n+1
-similar and the coloring

, is definable in . In the process of achieving this goal we will identify points

p
.,b_l.,JrKnle € N;.

N
Ci,n+

;
Do
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Forall 0 <i <r — 1, define

Cint1 = Cin,
M M
Cin+1 = Cins

N —
ci,n+l - Cl,n‘

We now define the color class €,_; ,+1 and the colorings cr”fl ni1 - M1 —>

N . _ —

\er—l,n+l and Cr—1n+1 - Ny—1 —> t}r—l,n+1- Let 'er—Z,n—H = Cr—a2n =

{ar, ..., 04} be obtained from the canonical ordering. Consider a;, FRTRUR
- _ _ .

T S M;,anduse ay, ..., dk, , to denote this sequence of elements. Define

Croint1 = 2Kn+1 €,_1,,—the set of all 0-1 sequences of length K,,+1 +2-¢.
Define c;"fl’n+1 i M,_1 —> €,_1 41 such that, forall x € M,_y,

M1 () = (Fioo o Frppy s fieeeo fg. 8101 8q)

where
C;Ail,n(x) =(f1,.--. f4.81,---.8q)
and
0 iftM _1dp,
F,= ! '=X¢rlcfp forall 1 < p < Ky,
LM E X &y dp,
Lemma 4.7 There exists by, . . . ,Z;KHH € N, such that Cﬁl,n+l and the coloring

c;’il,nJrl : Ny—1 —> €1 n+1, defined such that, for all x € N,_,

c;’il,nﬂ(x) =(F1,.... F, s f100oos Jq 810, 84)s
where c;’il’n(x) ={f1,---, f4.81,---.,8q)

0 ifN _1 by,
and F, = UNEXEr1bp o < p < Kooy, @
1L if N Ex €—1bp,
are (2K)k/_"+1—similar.
Proof Let€,_;, = {a1,...,04} be obtained from the canonical ordering. For

all1 <i <gq’andforall o € 2K7+1 define X! € M,_; by

X, ={xeM_| (e, ,(x) = a;)

r—1,n

A (VU € Kn+1)(0(v) =1 << M '= X €r—1 (_lv)}

Note that, for all 1 < i < ¢/, the sets (X | o € 2Kn+1) partition the elements of
M, _ that are given color «; by cr”fl , into 2Kn+1 pieces. Foreach 1 < i < ¢’

choose a sequence (Z | o € 2Kn+1) such that, for all o € 2Kn+1,
(i) ZL € Ny;
(i) forallz € N,y with N |= (z €1 ZL), ¥ ,(2) = s
(i) if |X2] < QKN =41 then[{z € N | N = 2 €,y Zy = |XL);
(iv) if [X1] > QK+ then [{z e N | N =z €,y ZL}| > QK)K' 1,
To see that we can make this choice, we work inside N. Forall 1 < i < ¢/, let
D, _1,n,q; (x" 71, Z) be such that, for all x € N,_y,

N E @ tng[x.b]'.....b7 ] ifandonlyif ¢, (x) =o.
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Forall 1 <i < g let Wy = {x"7' | @1 (x""1b]".....5}")}. Compre-
hension ensures that the W;’s exist. Forall 1 <i < ¢’ and forall o € 2Knt1, Z(’;
can be chosen to be a finite or cofinite subset of W;. Moreover, the fact that ¢* 1n
and ¢V 1. Are (2K)F'=n+2_gimilar ensures that for all I < i < ¢’ we can choose the
sequence (Z! | o € 2Kn+1) to satisfy condition (iii) above.
Now, forall 1 < p < K, 11, let b, € N, be such that
Neb,= | | Z.

1<i<q’ ;e Kn+1
st.o(p)=1

This construction ensures that the colorings ¢* | | 41 and e 11 defined by (2)

are (2K)K'=n+1 _gimilar. O

Let b;,_H, el b;’+K,,+1 € N be the points by, ... ,bKnJrl produced in the proof of

Lemma 4.7, and let c;’\il,nJrl be defined by (2). Therefore, c;"fl,nJrl and c;AiLnJrl
’

are (2K)¥'=n+1_gimilar. We can immediately observe that the coloring c;’\i Lnat 18
. . rir4 g

definable in N by an £Lrsr-formula with parameters b, ..., b jf ++Kn:— +11 )

Lemma 4.8 For all o € €_1u41, there exists an Lysr-formula
@, 1 nt1.0(x"7L, Z) such that, for all x € Ny_y,

Tj’+K . .
N E Or_1pt1,alx, b1 ’bj/-i-K,,n_;l] if and only if cr‘Ail’nH(x) = a.

Let? = ) u<pt1 Km. Lemmas 4.7 and 4.8 show that we can define colorings
c;"fljnJrl and cﬁl’nﬂ and Lrsr-formulae @, »41.4(x "1, Z) foralla € €—1 41
which satisfy the following properties:

"y ey, and e | are 2K)K =+ similar;

(I1") for all x € N,_q,

N E ®r_tntralx. b .. 0" ifandonlyif ¥, (x) =0

We now turn to defining the color classes €; 41 and the colorings clfAfL 41
M; — €; 41 and clff;Jrl : Ni — €y foralli > r. Leti > r —1. Sup-
pose that the color class €; 41 has been defined with a canonical ordering. Sup-
pose, also, that the colorings c;Ale : M; — € 441 and c;A:H_l Ny — Cinpa
and the £rsr-formulae ®; ;41,4 (x*,Z) have been defined and satisfy the following
properties:

@) ¢, and ¢ . are (2K)F =+ gimilar;

Ir”y forall x € N;,

N E ®inyralx.by'.... 0] ifandonlyif ¢, (x) =0.

We “lift” the color class €;,4+1 and the colorings ¢,  ~ and ¢V 41 in the

i,n+1
same way that we “lifted” the color classes €; o and the colorings c;’% and clfA(f)
above. Let €;,4+1 = {o1,...,04) be obtained from the canonical ordering.
Define €;+1,+1 = 2%7—the set of all 0-1 sequences of length 2 - ¢q. Define

ci"ff_l,nﬂ :M; 11 —> €it1,41 such that, forall x € M; 44,

clfA-li{-I,n—i-l(x) = (flv'--quvglw--vgq)s
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where

/= 0 if, forall y € M;, it holds that ifc;ffﬂrl(y) =ap, then M =y ¢; x,
7)1 if there exists ¥y € M; such that c;Ale(y) =apand M =y €; x,

and
_JO if,forall y € M;, it holds that if clf””,g“(y) =op, then M=y €; x,
& 1 if there exists y € M; such that clf’jflﬂ(y) =apand M =y ¢; x.

: N
Again, we define i in+t

that, for all x € Nj41,

| identically. Define c;’ffi_l,nﬂ : Niy1 —> Ciq1,n+1 such

N1 () = (floeos fg 8100 84),
where

/= 0 if, forall y € N;, it holds that ifclff;ﬂ(y) =op, then N |Ey & x,
P77 )1 if there exists y € N; such that ci“};ﬂ(y) =opand N Ey € x,

)0 if, for all y € N;, it holds that ifc;’};lﬂ(y) =oap, then N Ey € x,
8r = 1 if there exists y € N; such that Cf,,\:z+1(y) =opand N =y & x.

We first observe that there exist Lrsr-formulae ®; 1y ,414(x ™!, Z) for each

B € Cit1.n+1 which witness the fact that the coloring CEA-/H,n 4 satisfies condi-
tion (II"”).

Lemma 4.9 Forall B € €; 1,41, thereis an Lrsr-formula P; 11 41,8 (xit1,2)
such that, for all x € Nj41,

N E ®jpiap1pl.b]', ... b1 ifandonlyif  c¥ 1 (x) =B
Proof  This is identical to the proof of Lemma 4.2 using the fact that c;’}; 4 satisfies
condition (II"”). O

; M N K\k'—n+1_g; s
We now turn to showing that ¢, ,; and ¢/3, . are 2%) -similar. To do

this we prove analogues of Lemmas 4.3, 4.4, and 4.5:
FOR?""1 = {v € [q] | ay is forbidden w.r.t. cl‘-’}le and c{};_‘_l},
m-SPCIH! = {v € [q] | oy is m-special w.r.t. ¢ and ¥, |}
forl <m < (ZK)k/_”H,
ABN!*! = {v €q] | ay is (25)¥ 1 _abundant w.r.t. c;’}le and c;’};H}.
Lemma 4.10  Let B € Ciy1pnr1 withB = (f1,.... f4.81,-...8q). The color B
is forbidden with respect to cﬂl’nﬂ and CEA-/H,n+1 if and only if either

(i) there exists av € [q] withv ¢ FOR;H'1 such that f, = gy =0, or
(ii) there existsa v € 1-SPC:"H such that f, = g, = 1, or
(iii) there existsa v € FOR;hLl such that f, = 1org, = 1.

Proof  This is identical to the proof of Lemma 4.3. O
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Lemma 4.11 Let B € Cipiny1 with = (f1,..., fg.81.,....8q¢). The color B
is 1-special with respect to ci"ff_l,nH and clfA_f_l,n+1 if and only if B is not forbidden
with respect to ci"ﬁl’n_H and Cﬁl,n-ﬂ and, for all v € [q] with v ¢ FOR;’H, fo=0
or g, = 0.

Proof  This is identical to the proof of Lemma 4.4. O

Lemma 4.12 Let B € Cipypnt1 with B = (f1..... fq.81.---.8¢)- If B is not
forbidden with respect to c;"f_l a1 and c;’f{_l w1 and there exists a v € ABNI'."H

with f, = gy = 1, then B is X)X ="+t abundant with respect to ¢cM , and

i+1,n+
cw
i+1,n+1°
Proof This is identical to the proof of Lemma 4.5. O
These results allow us to show that c;"il’nﬂ and c;’\frl’n+1 are (ZK)k/_"H-similar.

pand e are QKT gimilar.

Lemma 4.13 The colorings ¢ EAP

M
i+1l,n+

Proof  This is identical to the proof of Lemma 4.6 when using Lemmas 4.10, 4.11,

and 4.12. O]
This recursion allows us to define the color classes €, ¢/ and colorings c;le, and
c;:vk,, for all n € N, and elements b{‘ e ,b?"' € N. The above arguments show

that, foralln € N, c;f‘k/ and c;lN s are 2K _similar. We have constructed the colorings
c;ffk, and ¢ ;1” & S0 that the color assigned to a point x € M (or N) completely captures

the set of quantifier-free formulae with parameters a? AU a,rck (resp., b, b,r(k )
that are satisfied by x.

Lemma 4.14 Let n € N, and let G(xil,...,x]:",x”) be a quantifier-free
ELrsr-formula. If x € M,, and y € N,, are such that cr‘:“k,(x) = C;;%k/ (), then

MEOlat', ... aF, x] ifand onlyif N | 0[b]",... b y].

Proof  This follows immediately from the definition of the colorings c;:“k, and C;:Vk/'
O

Our construction also ensures that if x € M, 4 (or N,41), then the color assigned
to x by c;ﬁl’k/ (resp., C;\-/mk/) tells us, for all € €, x/, whether there exists a point

y € M, (resp., N,) such that cn‘Mk/(y) = « (resp., c;:vk/(y) = «) and y is in the
relationship €, or ¢, to x in M (resp., N).

Lemma 4.15 Letx € M1 andy € Nyy1, and leta € €, . Ifc;fil’k,(x) =
c;ﬁ_l’k,(y), then
3z e M,,)(c;f’{k,(z) =aAMEz €, x) if and only if
3z € Nn)(c;ﬁ/k,(z) =aANEzE, y),
and
3z € Mn)(c;fk,(z) =aAMEz ¢, x) if and only if
@z e N (@) =anNEz¢ny).
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, and
]

Proof  This follows immediately from the definition of the colorings c;:‘fH X

N
Cn+1,k/'
This allows us to show that an £Lrgt-sentence of form (A) or (B) which is true in N
is also true in M.

Theorem 4.16  Let ¢ = Vx|'- ka" 3yi---3y70 be an Lrsr-formula with 6
quantifier-free. If N = ¢, then M = ¢.

Proof  Suppose that N |= ¢. Leta}',....a;* € M. Usingal',... a;* and the
construction we presented above we can define the color classes €, - and colorings

M N r Tk . M
ol and Crkers for all » € N, and elements b;', . ..,bk € N. The colorings ol
and crjvk/ are 2X _similar and satisfy Lemma 4.14. Letej, ..., e; € N be such that

NE OB, .. b e, ... e,

Forall 1 < i < [, letd; € M be such that c;"i/(di) = cs"\;c,(ei) and, for all
1 < j <i,dj # d;if and only if ¢; # e;. The fact that [ < 2% and the fact
that c;"i/ and C;A;c’ are 2X similar ensure we can find dy,...,d; € My satisfying
these conditions. Now, since the variables y7, ..., yl all have the same type in 9 the
only atomic or negatomic subformulae of 6 are of the form y} = y’ iz Vi €s j 7 if
ri=s+1,x" €, yiifs =ri + Lx/" €, ;j ifrj =r; 4+ 1, orone ofnegatlons
of these. Therefore, by Lemma 4.14,
M = G[a;‘,...,a,rc",dl,...,dl].
Since the a}', ..., a,rck € M were arbitrary, this shows that M = ¢. O

Theorem 4.17  Let ¢ = Vxi'---Vx;*3y7' ---3y,"0 be an Lrsr-sentence with
s1 > .-+ > 857 and 0 quantifier-free. If N |= ¢, then M = ¢.

Proof  Suppose that N = ¢. Letay',....a;* € M. Usinga}',...,a;* and the
construction we presented above, we can define the color classes €, x/ and colorings
c;:“k, and c;ka,, for all n € N, and elements b;‘ e br" € N. The colorings C‘Mk,

and c;{vk, are 2K _similar and satisfy Lemma 4.14. Let e1 e, el € N be such that
N E G[b?,... b]r(k,eil,...,elsl].

We inductively choose dy',....d;' € M. Letd;' € M be such that c;AI‘k,(dIS‘) =
;Al/k,(esl) Suppose that 1 < i < [/, and suppose that we have chosen dsi e M
w1th c; k,(ds’) = ¢! k,(es’) If i # Sit1 + 1, then let d;4' € M be such that
k,(ds’“) = c k,(es’“) Ifs; = s;01 + 1 and N |= et €siv1 €

s,+] i+1 i+1 i+1

then let dl-_’ﬁl € M be such that cs " k,(dls_fgl) S o k,(effll) and M E
dlsj:l S dl.s’ Ifs; = sip1 + 1 and N E lsfll ¢sl+1 ;', then let dlﬁl e M
be such that cs L k’(d,s:gl) s,+1 kf(ezsfll) and M |: df-’ﬁ' sy i

Lemma 4.15, the fact that 1 < 2X, and the fact that c K and c"v Lk are
2K _similar ensure that we can find d, fll e M satlsfymg these COIldlthIlS. Now,
since the variables yi',..., ylsl all have distinct types in 6, the only atomic or

negatomic subformulae of @ are of the form yl”rl €sipy Vit ifsi = sig1 + 1,
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Si rj. . ri Sj. o . ri
Vi € X; ifr; =8 +1,x;" € Vi ifs; =r+1,x

or one of the negations of these. Therefore, by Lemma 4.14,

MEOlak, ... af di", ... d)].
Since the af', ..., a;* € M were arbitrary, this shows that M = ¢. O

r; .
€r; xj’ ifri=r +1,

Since N is an arbitrary model of TSTI and M is an arbitrary sufficiently large finitely
generated model of TST, Theorems 4.16 and 4.17 show that any £rgsr-sentence of
form (A) or (B) has the finitely generated model property. Combining this with
Theorem 3.2 shows that TSTI decides any sentence of form (A) or (B).

Corollary 418  If ¢ = Vx| ---Vx;k Iy} ---Ely;IQ is an Lrsr-sentence with
s1 > -+ > s5; and 0 quantifier-free, then TST decides ¢.

Corollary 4.19  If ¢ = Vxi'---Vx;*3y{---3y70 is an Lrsr-sentence with 0
quantifier-free, then TST decides ¢.

Combining these results with Theorem 2.1 shows that sentences of form (A’) or (B)
are decided by NF.

Corollary 4.20  If ¢ = Vx1---Vxg3Iy1---3y10 is an L-formula with 0 quanti-
fier-free and o : Var(¢) —> N is a stratification of ¢ that assigns the same value to
all of the variables yy, . .., y;, then NF decides ¢.

Corollary 4.21 If ¢ = Vxy---Vxp3yy---3y0 is an L-formula with 6 quanti-
fier-free and o : Var(¢) —> N is a stratification of ¢ that assigns distinct values to
all of the variables y1, ..., y;, then NF decides ¢.

It is interesting to note that the only use of the axiom of infinity in the above argu-
ments is to ensure that the bottom type is externally infinite. Thus, our arguments
show that all models of TST with infinite bottom type agree on all sentences of form
(A) and all sentences of form (B).
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