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Grades of Discrimination: Indiscernibility, Symmetry,
and Relativity

Tim Button

Abstract There are several relations which may fall short of genuine identity,
but which behave like identity in important respects. Such grades of discrimi-
nation have recently been the subject of much philosophical and technical dis-
cussion. This paper aims to complete their technical investigation. Grades of
indiscernibility are defined in terms of satisfaction of certain first-order formu-
las. Grades of symmetry are defined in terms of symmetries on a structure. Both
of these families of grades of discrimination have been studied in some detail.
However, this paper also introduces grades of relativity, defined in terms of rela-
tiveness correspondences. This paper explores the relationships between all the
grades of discrimination, exhaustively answering several natural questions that
have so far received only partial answers. It also establishes which grades can be
captured in terms of satisfaction of object-language formulas and draws connec-
tions with definability theory.

1 Introduction

There are several relations which may fall short of genuine identity, but which behave
like identity in important respects. Such grades of discrimination have recently been
the subject of much philosophical and technical discussion.

Much of this discussion has been fueled by considering the principle of the iden-
tity of indiscernibles: the claim that indiscernible objects are always identical. The
principle is obviously of direct metaphysical interest (see Hawley [13]). But, within
the philosophy of mathematics, the principle has risen to prominence via the ques-
tion of whether Platonistically minded structuralists can countenance structures with
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indiscernible but distinct positions (see Shapiro [26, Section 1]). And, within the phi-
losophy of physics, the central question has been whether quantum mechanics pre-
sented real-world counterexamples to the principle (see Muller [22]). As discussion
has progressed, though, it has become increasingly clear that we must distinguish
between different versions of “the” principle, corresponding to different notions of
indiscernibility. This has spurred several philosophers to investigate the logical prop-
erties of these different notions (see Caulton and Butterfield [8], Ketland [17], Lady-
man, Linnebo, and Pettigrew [18]).

This paper completes that logical investigation. It exhaustively details, not just
the properties of grades of indiscernibility, but the properties of all of the grades of
discrimination. Indeed, this paper answers all of the mathematical questions that are
natural at this level of abstraction.

There are three broad families of grades of discrimination. Grades of indiscerni-
bility are defined in terms of satisfaction of certain first-order formulas, either with or
without access to a primitive symbol that stands for genuine identity. They have been
the focus of much recent philosophical attention. Grades of symmetry are defined in
terms of isomorphisms. More specifically, they are defined in terms of symmetries
(also known as automorphisms) on a structure. These grades have received some
philosophical attention, though in a slightly less cohesive way than the grades of
indiscernibility. Finally, grades of relativity are defined in terms of relativeness cor-
respondences, analogously to the grades of symmetry. The notion of a relativeness
correspondence has been studied by model theorists, but is entirely absent from the
philosophical literature on grades of discrimination. This paper rectifies this situa-
tion, introducing grades of relativity for the first time.

I mentioned earlier that the principle of the identity of indiscernibles has been the
main motivating force for interest in grades of discrimination. But it is now worth
pausing to consider broader reasons for investigating the logical properties of the
grades of discrimination.

The simplest reason to care about grades of discrimination is that they allow us
to calibrate relationships of similarity and difference. More ambitiously, though,
we might hope that some grade of discrimination will provide us with a genuinely
illuminating answer to the question: When are objects identical? To take a simple
example: set theory tells us that sets are identical if and only if they share all their
members. Consequently, some grade of indiscernibility provides a suitable criterion
of identity in set-theoretic contexts. To take a more contentious example: we might
somehow become convinced that nature abhors a (nontrivial) symmetry. If so, then
some grade of symmetry will provide a suitable criterion of identity in empirical
contexts. The general hope, then, is that our grades of discrimination may furnish us
with some nontrivial criterion of identity (in some context or other).

This search for a nontrivial criterion of identity need not be reductive. We might
simply seek an illuminating constraint upon the conditions under which objects can
be distinct. That said, some philosophers have hoped to find a reductive criterion for
identity; that is, they have hoped to replace the identity primitive with some defined
grade of discrimination. This reductive ambition is most prominent among those who
have defended some principle of the identity of indiscernibles; such philosophers
have therefore focused on the various grades of indiscernibility. However, reductive
ambitions might, in principle, be served equally well by considering either grades of
symmetry or grades of relativity. (I revisit this in Section 8.)
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Advancing a criterion of identity is not, however, simply a matter of selecting
some grade of discrimination. As we shall see, each grade of discrimination is
defined with respect to a (model-theoretic) signature. So, consider a signature which
contains just a few monadic predicates which stand for eye color. If we present a
nontrivial criterion of identity, in the form of a grade of discrimination defined with
respect to this signature, then we shall be forced to say, absurdly, that there is at most
one person with brown eyes. Consequently, any philosopher who wants to advance
a nontrivial criterion of identity must not only select some appropriate grade of dis-
crimination, but must also stipulate the particular signature she has in mind. (I shall
revisit this point several times below.)

In this paper, though, I am not aiming to advance any particular criterion of iden-
tity. My aim is only to provide a mathematical toolkit for anyone who is interested in
criteria of identity, whether reductive or nonreductive.

That toolkit is structured around three main results. Theorem 3.1 completely char-
acterizes the entailments between the grades of discrimination. Theorem 4.8 estab-
lishes a Galois connection between isomorphisms and relativeness correspondences,
which enables us better to understand the relationships between grades of symmetry
and grades of relativity. Theorem 6.12 is a Beth–Svenonius theorem for logics with-
out identity. By combining these three results, I answer several subsidiary questions
concerning the grades of discrimination, including which grades are equivalence
relations (see Section 5), which grades can be captured using sets of first-order for-
mulas (see Section 8), how they behave in finitary cases (Section 7), and how they
behave in elementary extensions of structures (see Sections 6 and 9).

I now state some notational conventions. I always use L to denote an arbitrary
signature, that is, a collection of constants, predicates, and function-symbols. The
philosophical discussion of grades of indiscernibility tends to be restricted to rela-
tional signatures, that is, signatures which contain only predicates.1 There are rea-
sonable philosophical motivations for this: if we assume that each constant names
exactly one object, then we seem to presuppose that we understand rather a lot about
the notion of identity before we begin (see, e.g., Black [2], [8, pp. 40–41]); more gen-
erally, the very idea of a function seems to presuppose the notion of identity; hence, if
we want to avoid prejudging certain philosophical questions about identity, it might
be wise to restrict our attention to relational signatures. The model-theoretic discus-
sion of these issues is, though, less often restricted to relational signatures. There is
a sensible technical motivation for this: many of the results hold in the more general
case. Since this paper aims to provide philosophers with technical results, I shall
allow signatures to contain both constants and functions, but I shall comment on the
relational case when it is interestingly different. For technical ease, I treat constants
as 0-place function-symbols.

Where L is a signature, the L C-formulas are the first-order formulas formed
in the usual way using any L -symbols and any symbols from standard first-order
logic with identity. In particular, then, they may contain the symbol D, which always
stands for (genuine) identity. The L �-formulas are those formed without using the
symbol D. L C

n is the set of L C-formulas with free variables among v1; : : : ; vn;
similarly for L �

n .
I use swash fonts for structures and italic fonts for their associated domains. So,

where M is an L -structure, its domain is M . Where e D he1; : : : ; eni and � is a
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function, �.e/ D h�.e1/; : : : ; �.en/i. Where … is a 2-place relation, I write d …e
to abbreviate hd1; e1i; : : : ; hdn; eni 2 ….

2 Twelve Grades of Discrimination

I start by defining six grades of indiscernibility: three grades of L �-indiscernibility
and three grades of L C-indiscernibility.2

Definition 2.1 For any L -structure M with a; b 2 M :
(1) a �m b in M iff M ˆ �.a/ $ �.b/ for all � 2 L �

1 ;
(2) a �p b in M iff M ˆ �.a; b/ $ �.b; a/ for all � 2 L �

2 ;
(3) a � b in M iff M ˆ �.a; e/ $ �.b; e/ for all n < !, all � 2 L �

nC1, and
all e 2 M n.

Similarly:
(4) a Dm b in M iff M ˆ �.a/ $ �.b/ for all � 2 L C

1 ;
(5) a Dp b in M iff M ˆ �.a; b/ $ �.b; a/ for all � 2 L C

2 ;
(6) a D b in M iff a is identical to b.

Here, p indicates pairwise indiscernibility; m indicates monadic indiscernibility; and
no subscript indicates complete indiscernibility.

There are several alternative characterizations of �, two of which will prove useful
(see Casanovas, Dellunde, and Jansana [7, p. 508], Ketland [17, Theorem 3.17]).

Lemma 2.2 For any L -structure M, the following are equivalent:
(1) a � b in M;
(2) M ˆ �.a; e/ $ �.b; e/ for all n < !, all atomic � 2 L �

nC1, and all
e 2 M n;

(3) M ˆ �.a; a/ $ �.a; b/ for all � 2 L �
2 .

Quine was the first philosopher to analyze all six grades of indiscernibility. His
fullest discussion of them ended as follows.

May there even be many intermediate grades? The question is ill defined. By
imposing special conditions on the form or content of the open sentence used in
discriminating two objects, we could define any number of intermediate grades
of discriminability, subject even to no linear order. What I have called moderate
discriminability [i.e. Dp or �p], however, is the only intermediate grade that I
see how to define at our present high level of generality. (Quine [25, p. 116])

Quine was right that Definition 2.1 essentially exhausts all of the grades of discrimi-
nation that are fairly natural and highly general and can be defined in terms of satis-
faction of L �- and L C-formulas.3 Nevertheless, other grades of discrimination are
quite natural; we just need to consider alternative methods of definition. (The sense
in which they are “intermediate” grades will become clear in Section 3, and as Quine
conjectured, we will see that they are not linearly ordered.)

In particular, I shall introduce grades of discrimination that are defined in terms
of isomorphisms. As a reminder, we recall the following.

Definition 2.3 Let M;N be L -structures. An isomorphism from M to N is any
bijection � W M �! N such that

(1) e 2 RM iff �.e/ 2 RN , for all n-place L -predicates R and all e 2 M n;
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(2) �.fM.e// D f N .�.e//, for all n-place L -function-symbols f and all
e 2 M n.

A symmetry on M is an isomorphism from M to M.

Isomorphisms preserve L C-formulas (see, e.g., Marker [20, pp. 13–4]).

Lemma 2.4 Let M;N be L -structures, and let � W M �! N be an isomor-
phism. For all n < !, all � 2 L C

n , and all e 2 M n,

M ˆ �.e/ iff N ˆ �
�
�.e/

�
:

There is therefore a good sense in which objects linked by a symmetry cannot be
discriminated. Consequently, symmetries are a source of grades of discrimination,
and I shall be interested in three distinct grades of symmetry.

Definition 2.5 For any L -structure M with a; b 2 M :
(1) a sm b in M iff there is a symmetry � on M with �.a/ D b;
(2) a sp b in M iff there is a symmetry � on M with �.a/ D b and �.b/ D a;
(3) a s b in M iff there is a symmetry � on M with �.a/ D b, �.b/ D a, and

�.x/ D x for all x … ¹a; bº.

These three grades have already received some philosophical attention;4 one of my
aims is to incorporate them into the discussion in a systematic way.

In defining the notion of an isomorphism, the only object-language symbols which
are mentioned are those of the signature; there is no need to mention D. Nev-
ertheless, the notion of an isomorphism—and hence each grade of symmetry—
straightforwardly depends upon the notion of identity. After all, an isomorphism
is a bijection, which is to say it maps unique objects to unique objects, and vice
versa. This dependence on identity is reflected in Lemma 2.4: symmetries preserve
L C-formulas.

If we want to avoid treating identity as a primitive—for philosophical or technical
reasons—then the notion of an isomorphism is probably too strong. In look-
ing for a weaker notion, a first thought would be to consider functions between
structures that need not be bijections. (In this regard, strict homomorphisms are
sometimes considered.) But this is insufficiently concessive, since the very idea
of a function presupposes the notion of identity, for a function maps each object
(or n-tuple) to a unique object. Instead, then, we should consider structure-
preserving relations that may hold between structures. The appropriate notion
is provided by [7, Definition 2.5]; recall from Section 1 that d …e abbreviates
hd1; e1i; : : : ; hdn; eni 2 ….5

Definition 2.6 Let M;N be L -structures. A relativeness correspondence from
M to N is any relation … � M � N with dom.…/ D M and rng.…/ D N such
that:

(1) d 2 RM iff e 2 RN , for all n-place L -predicates R and all d …e;
(2) fM.d/…f N .e/, for all n-place L -function-symbols f and all d …e.

A relativity on M is a relativeness correspondence from M to M.

Casanovas, Dellunde, and Jansana [7, Proposition 2.6] show that relativeness corre-
spondences preserve L �-formulas.



532 Tim Button

Lemma 2.7 Let M;N be L -structures, and let … be a relativeness correspon-
dence from M to N . For all n < !, all � 2 L �

n , and all d …e,

M ˆ �.d/ iff N ˆ �.e/:

There is therefore a good sense in which objects linked by a relativity cannot be
discriminated. So, by simple analogy with the three grades of symmetry, I shall
consider three grades of relativity.
Definition 2.8 For any L -structure M with a; b 2 M :

(1) a rm b in M iff there is a relativity … on M with a…b;
(2) a rp b in M iff there is a relativity … on M with a…b and b …a;
(3) a r b in M iff there is a relativity … on M with a…b, b …a, and x …x for

all x 6� a and x 6� b.
Unlike the grades of symmetry, the grades of relativity have not yet been considered
by philosophers interested in grades of discrimination. However, there is no princi-
pled reason for this omission. Indeed, a central claim of this paper is that relativeness
correspondences (and hence grades of relativity) are the appropriate L �-surrogate
for isomorphisms (and hence grades of symmetry). This claim should already be
plausible, given that we arrived at the notion of a relativeness correspondence by
relaxing the notion of an isomorphism and given the immediate comparison between
Lemmas 2.4 and 2.7. The claim will receive further support during this paper.

For the reader’s convenience, Table 1 summarizes the twelve grades of discrimi-
nation.

Table 1 Twelve grades of discrimination.

Grade Informal gloss Definition sketch
D genuine identity a D b

Dp pairwise L C-indiscernibility �.a; b/ $ �.b; a/, all � 2 L
C

2

Dm monadic L C-indiscernibility �.a/ $ �.b/, all � 2 L
C

1

� complete L �-indiscernibility �.a; e/ $ �.b; e/, all e and � 2 L �
n

�p pairwise L �-indiscernibility �.a; b/ $ �.b; a/, all � 2 L �
2

�m monadic L �-indiscernibility �.a/ $ �.b/, all � 2 L �
1

s complete symmetry a permutation �.a/ D b, �.b/ D a,
and �.x/ D x, all x … ¹a; bº

sp pairwise symmetry a permutation �.a/ D b, �.b/ D a

sm monadic symmetry a permutation �.a/ D b

r complete relativity a relativity a … b, b … a, and x … x,
all x 6� a, x 6� b

rp pairwise relativity a relativity a … b, b … a

rm monadic relativity a relativity a … b

3 Entailments between the Grades

Having defined twelve grades of discrimination, my first task is to characterize the
relationships between them. More precisely, I shall build upon some existing results
(mentioned in endnotes) to provide a complete account of the entailments and non-
entailments between the various grades of discrimination.

For any two grades of discrimination R and S, say that R entails S if and only
if, for any structure M and any a; b 2 M , if aR b, then a S b in M. Entailment is
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relativized to particular classes of structures—for example, to structures with rela-
tional signatures—in the obvious way. In Section 7, I shall consider the special case
of entailments where we restrict our attention to finite structures. However, the target
result for this section is the general case.

Theorem 3.1 (Entailments between the grades) These Hasse diagrams character-
ize the entailments between our grades of discrimination:

D

s �

sp r

Dp sm rp

Dm �p rm

�m

D

�

s

sp r

Dp sm rp

Dm �p rm

�m

The left diagram considers the case of arbitrary signatures; the right diagram con-
siders entailment when restricted to structures with relational signatures.

To explain the notation: there is a path down the page from R to S if and only if R
entails S. So in the case of arbitrary signatures: D entails �; � does not entail D;
s does not entail �; and � does not entail s. In the case of relational signatures: �

entails s; hence, � entails sp; and so on. I shall start by proving the entailments.6

Lemma 3.2 For structures with arbitrary signatures:
(1) D entails both � and s;
(2) � entails r;
(3) Dp entails �p, and Dm entails �m;
(4) Dp entails Dm, and �p entails �m;
(5) sp entails Dp, and sm entails Dm;
(6) rp entails �p, and rm entails �m;
(7) s entails r, sp entails rp, and sm entails rm;
(8) s entails sp, and sp entails sm;
(9) r entails rp, and rp entails rm.

For structures with relational signatures, but not in general:
(10) � entails s.

Proof (1) The identity map is a symmetry.
(2) The relation given by x …x iff x � x is a relativity.
(3)–(4) These are immediate from the definitions.
(5)–(6) These are immediate from Lemmas 2.4 and 2.7.
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(7) Every symmetry can be regarded as a relativity.
(8)–(9) These are immediate from the definitions.
(10) If a � b, then for any n < !, any atomic formula � 2 L �

n , and any
e 2 .M n ¹a; bº/n, we have M ˆ �.a; e/ $ �.b; e/.

It remains to demonstrate the nonentailments.7

Lemma 3.3 For structures with relational signatures:
(1) � does not entail D;
(2) s does not entail �;
(3) r does not entail Dm;
(4) sm does not entail �p;
(5) sp does not entail r;
(6) Dp does not entail rm.

Moreover, for structures with arbitrary signatures:
(7) � does not entail Dm.

Proof (1) In this unlabeled graph, A, we have 1 � 2 but 1 ¤ 2:

1 2

(2) In this unlabeled graph, B, we have 1 s 2 but 1 6� 2:

1 2

(3) In this unlabeled graph, C, we have 1 r 2 but 1 ¤m 2:

1 2 3

(4) In this unlabeled directed graph, D, we have 1 sm 2 but 1 6�p 2:

1 2

4 3

(5) In D, again, we have 1 sp 3 but 1 6 r 3.
(6) Let E be the disjoint union of a complete countably infinite graph with a com-

plete uncountable graph, that is,

E WD R;

RE
WD

®
hn;mi 2 N2

j n ¤ m
¯

[
®
hp; qi 2 .R n N/2 j p ¤ q

¯
:

By taking a Skolem hull of E containing 1 2 N and any e 2 R n N, we see that
1 Dp e. Now suppose that … is a relativity with 1…e. Since … must preserve the
edges of the graph and every element in either “cluster” has an edge to every element
in the cluster except itself, … must be a bijection between N and R n N. This is a
contradiction, so 1 6 rm e.

(7) Augment A by adding a single constant which picks out 1.

It is simple to check that Lemmas 3.2 and 3.3 yield Theorem 3.1. This theorem
allows us to compare the consequences of imposing various grades of discrimination
as criteria of identity.
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I should comment briefly on the philosophical significance of the constructions
used in Lemma 3.3. The existence of A is guaranteed by absolutely standard model
theory. However, A contains two distinct objects that are “blank”: from the per-
spective of A, these objects have no properties or relations to anything, so that their
distinctness must be brute. This might suggest that the use of absolutely standard
model theory begs the question against anyone who believes in a nontrivial criterion
of identity. Fortunately it does not, but it is worth carefully explaining why.

Let Fran be a philosopher who advocates a nontrivial criterion of identity: in
particular, Fran thinks that x and y are identical if and only if x � y. However,
bearing in mind the discussion of Section 1—particularly of a signature which allows
us only to describe eye color—Fran advances this criterion of identity with respect
to some particular signature, F . Now, if A is presented as an F -structure, then
Fran will certainly deny that A could exist. However, Fran can make sense of A by
regarding it as a G -structure, where G is a signature which is impoverished compared
with F . Construed thus, A begs no question against Fran, because it poses no threat
to her proposed criterion of identity.

To be clear: I am not trying to endorse or defend Fran’s position.8 My point is
simply that everyone, including Fran, can make sense of standard model theory.

4 A Galois Connection

Theorem 3.1 graphically demonstrates that grades of symmetry are to grades of
L C-indiscernibility as grades of relativity are to grades of L �-indiscernibility. In
this section, I develop this point by outlining a Galois connection between isomor-
phisms and relativeness correspondences. (The results of this section can be fruit-
fully compared with those of Bonnay and Engström [4]; we discovered our results
independently.)

Lemma 2.4 has an obvious converse: every bijective map which preserves all
L C-formulas is an isomorphism. However, there is no converse to Lemma 2.7. To
make this more precise, consider the following definition.

Definition 4.1 Let M;N be L -structures. A near-correspondence from M to
N is any relation … � M � N with dom.…/ D M and rng.…/ D N such that, for
all n < !, all � 2 L �

n , and all d …e,

M ˆ �.d/ iff N ˆ �.e/:

Lemma 2.7 states that every relativeness correspondence is a near-correspondence.
But the converse fails. Let F be an ¹f º-structure, defined as follows:

F D ¹1; 2º;

f F .1/ D f F .2/ D 2:

Then … D ¹h1; 2i; h2; 1iº is clearly a near-correspondence from F to F , but not a
relativeness correspondence.

However, there is an elegant connection between near-correspondences (and
hence relativeness correspondences) and isomorphisms on the models we obtain by
quotienting using �. The use of such quotients is standard in model theory without
identity, and the central idea is summed up in the following definition and lemma
(see [7, Definition 2.3–2.4]).9
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Definition 4.2 Let M be any L -structure. Then M is the L -structure obtained
by quotientingM by �. We denote its members with aM D ¹b 2 M j a � b in Mº,
and when no confusion can arise, we dispense with the subscript, talking of a rather
than aM. Now M is defined as follows:

M D ¹a j a 2 M ºI

RM
D ¹e 2 M n

j e 2 RM
º for all n-place L -predicates RI

fM.e/ D fM.e/ for all n-place L -function-symbols f and all e 2 M n:

Lemma 4.3 Let M be an L -structure. For all n < !, all � 2 L �
n , and all

e 2 M n,
M ˆ �.e/ iff M ˆ �.e/:

Casanovas, Dellunde, and Jansana [7, Proposition 2.6] note that there is a relativeness
correspondence from M to N if and only if M Š N . I wish to build on this, and I
begin with some definitions.

Definition 4.4 For any L -structures M;N :
(1) C.M;N / is the set of near-correspondences from M to N ;
(2) I.M;N / is the set of isomorphisms from M to N ;
(3) c.M;N / W I.M;N / �! C.M;N / is given by a�cb iff �.a/ D b;
(4) i.M;N / W C.M;N / �! I.M;N / is given by …i.a/ D b iff there are

a0 � a and b0 � b such that a0…b0.
Say that … 2 C.M;N / is maximal if and only if no strict superset of … is in
C.M;N /.

I prove that these are genuine definitions, that is, that c.M;N / and i.M;N / are
functions. I begin with c.M;N /.

Lemma 4.5 If � 2 I.M;N /, then �c is a relativeness correspondence, and hence
�c 2 C.M;N /.

Proof Fix n < !, and suppose that d �c e; that is, that �.d/ D e. For each
n-place L -predicate R, observe that

d 2 RM iff d 2 RM iff �.d/ 2 RN iff e 2 RN iff e 2 RN :

For each n-place L -function-symbol f , observe that

�
�
fM.d/

�
D �

�
fM.d/

�
D f N �

�.d/
�

D f N .e/ D f N .e/;

so that fM.d/�cf N .e/. Hence, �c is a relativeness correspondence and so a near-
correspondence by Lemma 2.7.

To show that i.M;N / is a function, we need a subsidiary result.

Lemma 4.6 Let … be a near-correspondence from M to N , with a…b and
a0…b0. Then a � a0 in M if and only if b � b0 in N .

Proof Suppose that a � a0 in M. Then using Lemmas 2.7 and 2.2, we have
N ˆ �.b; b/ iff M ˆ �.a; a/ iff M ˆ �.a; a0/ iff N ˆ �.b; b0/:

So b � b0 in N , by Lemma 2.2. The converse is similar.

It follows that i.M;N / is a function.
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Lemma 4.7 If … 2 C.M;N /, then …i 2 I.M;N /.

Proof Lemma 4.6 immediately yields that …i.a/ is a well-defined function and,
indeed, an injection. …i is a surjection, since rng.…/ D N . It remains to show that
…i preserves structure. For the remainder of the proof, fix n < ! and a; b 2 M n

such that …i.a/ D b.
Let R be any n-place L -predicate. For each 1 � i � n we have a0

i � ai and
b0

i � bi such that a0
i …b

0
i ; hence,

a 2 RM iff a0 2 RM iff b0 2 RN iff b 2 RN iff …i.a/ 2 RN :

Let f be any n-place L -function-symbol. For all �.v1; v2/ 2 L �
2 , define �f .v1; x/

as �.v1; f .x//. Let b0 2 N be such that fM.a/…b0. Invoking Lemma 2.2, we have

N ˆ �.b0; b0/ iff M ˆ �
�
fM.a/; fM.a/

�
iff M ˆ �f

�
fM.a/; a

�
iff N ˆ �f .b

0; b/

iff N ˆ �
�
b0; f N .b/

�
:

Hence, b0 � f N .b/ by Lemma 2.7. Now

…i�fM.a/
�

D …i�fM.a/
�

D b0
D f N .b/ D f N .b/ D f N �

…i.a/
�
;

so that functions are preserved.

Lemmas 4.5 and 4.7 together show that Definition 4.4 is a proper definition. Its
significance resides in the following.

Theorem 4.8 (Galois connection on �-quotients) For each … 2 C.M;N / and
each � 2 I.M;N /, …i D � if and only if … � �c.

Proof Left-to-right. Suppose that …i D � . Fix hd; ei 2 …. Then �.d/ D e, so
d �c e.

Right-to-left. Suppose that … � �c. Where …i.d/ D e, there are d 0 � d and
e0 � e such that d 0…e0 and hence d 0 �c e0; so e D e0 D �.d 0/ D �.d/. Hence,
…i.d/ D �.d/, for all d 2 M .

This theorem highlights the depth of the connection between isomorphisms and rel-
ativeness correspondences. Additionally, it strengthens the claim that relativeness
correspondences are the L �-analogue of isomorphisms. Given that there are near-
correspondences that are not relativeness correspondences, one might have worried
that relativeness correspondences compete with the near-correspondences to be the
L �-analogue of isomorphisms. However, the appearance of competition vanishes
once we consider some consequences of the Galois connection.

Lemma 4.9 For any L -structures M;N :
(1) i.M;N / ı c.M;N / is the identity function;
(2) c.M;N / ı i.M;N / is idempotent;
(3) if � 2 I.M;N /, then �c is maximal;
(4) if … 2 C.M;N /, then .…i/c is the unique maximal relativeness correspon-

dence that extends ….
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Proof (1)–(2) These are immediate from the fact that this is a Galois connection
with the partial ordering on I.M;N / being identity.

(3) Let † 2 I.M;N / be such that �c � †, and suppose a†b. By Lemma 4.7,
†i 2 C.M;N /, with †i.a/ D b. For any d such that a �c d , we have a†d , and
hence †i.a/ D d , so that b � d . Hence, �.a/ D d D b, and so a �c b.

(4) Lemma 4.5, our Galois connection, and case (3) show that .…i/c is a maximal
relativeness correspondence extending …. To show uniqueness, let † be any max-
imal relativeness correspondence extending …. Consider any a; b 2 M such that
a.…i/cb. Then there are a0 � a, b0 � b such that a0…b0 and, hence, such that
a0†b0, since … � †. Hence, for any d†e and any � 2 L �

nC1, by Lemma 2.7

M ˆ �.a; d/ iff M ˆ �.a0; d / iff N ˆ �.b0; e/ iff N ˆ �.b; e/:

Consequently, ‚ D † [ ¹ha; biº is a near-correspondence. So .‚i/c is a maximal
relativeness correspondence extending †, but † is itself maximal, so a†b. By
generalizing, .…i/c � †. Since .…i/c is maximal, .…i/c D †.

The preceding result tells us that every near-correspondence expands to a relative-
ness correspondence. Accordingly, there is no genuine competition between near-
correspondences and relativeness correspondences. Indeed, instead of defining the
grades of relativity in terms of relativeness correspondences, we could have defined
them in terms of near-correspondences. Or, even more simply, we could have defined
them in terms of symmetries on quotient models, as shown by the following imme-
diate consequence of the preceding results.

Lemma 4.10 For any L -structure M:
(1) a rm b in M iff a sm b in M;
(2) a rp b in M iff a sp b in M;
(3) a r b in M iff a s b in M.

5 Equivalence Relations

At various points, I have described the grades of discrimination as behaving like
identity. A natural question is whether the grades of discrimination behave like iden-
tity in being equivalence relations. (Note that I implicitly relied upon the fact that �

is an equivalence relation in defining the �-quotient structure.) Ladyman, Linnebo,
and Pettigrew [18, Theorem 10.22] have partially answered this question, in noting
that Dp and �p are not transitive (in general). The following result, which employs
our Galois connection, completes the picture.

Theorem 5.1 We have that Dp, �p, sp, and rp are reflexive and symmetric, but not
transitive (in general); the remaining eight grades of discrimination are equivalence
relations.

Proof Consider the following colored graph, G:
1 2

3

45

6
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Here, 1 sp 2 and 2 sp 3, but 1 6�p 3. By Theorem 3.1, this establishes that Dp, �p,
sp, and rp are not transitive (in general).

The reflexivity and symmetry of all the grades of indiscernibility are immediate
from their definitions, as is the transitivity of D, �, Dm, and �m.

It is routine to check that all three grades of symmetry are symmetric and reflexive
and that s and sm are transitive. Lemma 4.10 entails that the same is true for the
respective grades of relativity.

Since identity is surely transitive, Theorem 5.1 might seem to provide a knockdown
argument against treating any of Dp, �p, sp, and rp as a criterion of identity. How-
ever, this point is a little more subtle than it might initially seem.

Consider the discussion of A at the end of Section 3. A might have seemed to
present a counterexample to treating � as a criterion of identity. But any philosopher
who advocates such a criterion, such as Fran, will maintain that we can make sense of
A by (and only by) treating it as a structure of some artificially restricted signature.
At that point, A no longer presents a counterexample to Fran’s proposed criterion of
identity, which she advances with respect to some richer signature.

With this in mind, consider Rach, a philosopher who advocates rp as a criterion
of identity. G might seem to pose problems for Rach. But if G is presented with
regard to Rach’s preferred signature, then it violates her proposed criterion of identity
even before we consider issues about transitivity: after all, G is to contain objects
which are distinct but (“genuinely”) pairwise symmetric. Accordingly, Rach will
maintain that we can make sense of G by (and only by) treating it as a structure of
some artificially restricted signature. At that point, G no longer demonstrates the
nontransitivity of Rach’s proposed criterion of identity, which she advances with
respect to some richer signature.

The situation, then, is slightly odd. From the perspective of anyone who thinks
that identity is more fine-grained than any of Dp, �p, sp, and rp, these four grades
of discrimination fail to behave like identity in an absolutely crucial sense, in fail-
ing to be transitive. (This is why [18, p. 23] suggests that Dp and �p violate a
plausible “minimal requirement” on any notion of indiscernibility.) But it does not
immediately follow that one cannot propose one of these four grades as a criterion of
identity.

6 Connections to Definability Theory

I now want to explore some natural technical questions which have not featured on
the radar of philosophers interested in grades of discrimination. These questions
concern the relationship between grades of discrimination and elementary exten-
sions, and they relate to definability theory. My answers to these questions, together
with the Galois connection of Section 4, will yield interesting entailments between
the different grades in special cases (to be discussed in Section 7). To be clear on
terminology, consider the following.

Definition 6.1 Let M and N be L -structures. Say that M �C N if and only if
for all n < !, all � 2 L C

n , and all e 2 M n

M ˆ �.e/ iff N ˆ �.e/:

Say that M �� N if and only if the above holds with L �
n in place of L C

n .
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There is a classic result connecting L C-indiscernibility with the existence of a sym-
metry in some elementary extension (see, e.g., [20, Proposition 4.1.5]).

Theorem 6.2 For any L -structure M, the following are equivalent.
(1) M ˆ �.a/ $ �.b/, for all � 2 L C

n .
(2) There are an N �C M and a symmetry � on N such that �.a/ D b.

For present purposes, the immediate import of Theorem 6.2 is that it yields a new
way to characterize Dp and Dm.

Lemma 6.3 For any L -structure M:
(1) a Dm b in M iff there is an N �C M in which a sm b;
(2) a Dp b in M iff there is an N �C M in which a sp b.

This raises a natural question: is there an L �-analogue of Theorem 6.2? There
certainly is, but to show this, I need two definitions. First, I need the ordinary notion
of a diagram.10

Definition 6.4 Let L be any signature and X be any set. Then L .X/ is the
signature formed by augmenting L with each member of X as a (new) constant.
Where M is an L -structure, DiagC.M/ is the set of L C.M/-sentences satisfied by
the L .M/-structure formed by letting each e 2 M name itself.

Next, I need the L �-analogue for a partial elementary map.

Definition 6.5 Let M;N be L -structures. A protocorrespondence from M to
N is any relation … � M �N such that, for all n < !, all � 2 L �

n , and all d …e,

M ˆ �.d/ iff N ˆ �.e/:

So a near-correspondence from M to N is a protocorrespondence with domain M
and range N . The proof of the L �-analogue of Theorem 6.2 now amounts to little
more than a tweak to Marker’s proof of Theorem 6.2.11 I start with two type-realizing
constructions.

Lemma 6.6 Let … be a protocorrespondence from M to N . For any a 2 M ,
there is as an O �C N with some b 2 O such that … [ ¹ha; biº is a protocorre-
spondence from M to O.

Proof Define

� D
®
�.v; e/ 2 L �

1

�
rng.…/

�
j for some n < !, some � 2 L �

nC1, and some d…e;

we have M ˆ �.a; d/
¯
:

Consider any �.v; e/ 2 �; since M ˆ 9v�.v; d/ and … is a protocorrespondence,
N ˆ 9v�.v; e/. Equally, N can be treated as a model of DiagC.N /. So any finite
subset of � [ DiagC.N / is satisfiable. Hence, by compactness, there is a model of
�[DiagC.N /, which we can regard as O �C N . Now simply let† D …[¹ha; biº,
where O ˆ �.b/.

Lemma 6.7 Let… be a protocorrespondence from M to N with M �C N . Then
there is some O �C N and a protocorrespondence † � …�1 from N to O with
dom.†/ D N .
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Proof We construct an elementary chain. Since … is a protocorrespondence and
M �C N , we have that, for all � 2 L �

n and all a…b,

N ˆ �.b/ iff M ˆ �.a/ iff N ˆ �.a/:

Defining O0 D N and †0 D …�1, observe that †0 is a protocorrespondence from
N to O0. This is our initial stage in the chain.

Now let ¹e˛ j ˛ < �º exhaustively enumerate N , let D˛ D dom.†0/ [ ¹eˇ j

ˇ < ˛º for each ˛ < �, and proceed recursively.
Stage ˛ C 1. Given a protocorrespondence †˛ from N to O˛ with dom.†˛/ D

D˛ , use Lemma 6.6 to obtain an O˛C1 �C O˛ and a protocorrespondence
†˛C1 � †˛ from N to O˛C1 with dom.†˛C1/ D D˛C1.

Stage ˛, with ˛ a limit ordinal. Let O˛ D
S

ˇ<˛ Oˇ and †˛ D
S

˛<ˇ †ˇ .
Now let O D

S
˛<� N˛ and † D

S
˛<� †˛ .

Lemma 6.8 Let M be an L -structure with a; b 2 M n such that M ˆ �.a/ $

�.b/ for all � 2 L �
n . Then there is some N �C M and a near-correspondence …

from N to N such that a…b.

Proof Given M; a; b as described, we have a protocorrespondence …0 from M
to M with a… 0b. Setting M D M0 D N0, we can repeatedly apply Lemma 6.7
to construct an elementary chain (solid arrows indicate a protocorrespondence):

M0 M1 M2 : : :

N0 N1 N2 : : :

…0 …1 …2†0 †1

where both †i � …�1
i � †iC1 and Mi �C Ni �C MiC1 for each i < !. Define

N D

[
i<!

Ni D

[
i<!

Mi ;

… D

[
i<!

…i :

It is routine to check that … and N have the required properties.

We can now obtain our L �-analogue of Theorem 6.2.

Theorem 6.9 For any L -structure M, the following are equivalent.
(1) M ˆ �.a/ $ �.b/, for every � 2 L �

n .
(2) There are an N �C M and a relativity … on N such that a…b.
(3) There are an N �� M and a relativity … on N such that a…b.

Proof (1) ) (2) Use Lemma 6.8 to obtain a near-correspondence, and then use
Lemma 4.9 to extend this to a relativity.

(2) ) (3) This is trivial.
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(3) ) (1) Note that … is a relativity and, hence, a near-correspondence by
Lemma 2.7; the result now follows since M �� N .

This theorem lends yet more weight to the claim that relativeness correspondences
are the L �-analogue of symmetries. Moreover, it immediately yields a new way to
characterize �p and �m (cf. Lemma 6.3).

Lemma 6.10 For any L -structure M:

(1) a �m b in M iff there is an N �C M in which a rm b;
(2) a �p b in M iff there is an N �C M in which a rp b.

Moreover, both claims hold with �� in place of �C.

Before continuing with the main aims of this paper, it is worth briefly stopping to
smell the roses. Theorem 6.2 is sometimes used as a stepping stone to the following
foundational result of definability theory (notation clarified in endnote).12

Theorem 6.11 (Beth–Svenonius theorem, L C-case) For any L -structure M
with R … L and U � M n, the following are equivalent.

(1) .M; U / ˆ 8v.�.v/ $ Rv/ for some � 2 L C
n .

(2) For every .N ; V / �C .M; U / and every symmetry � of N : V D �.V /.
(3) For any L -structure N and any sets V0; V1 � N n: if .N ; V0/, .N ; V1/, and

.M; U / all satisfy the same L C-sentences, then V0 D V1.

Pleasingly, we can use Theorem 6.9 as a stepping stone to an L �-analogue of this
result; indeed, the main steps are exactly as in the L C-case.13

Theorem 6.12 (Beth–Svenonius theorem, L C-case) For any L -structure M
with R … L and U � M n, the following are equivalent.

(1) .M; U / ˆ 8v.�.v/ $ Rv/ for some � 2 L �
n .

(2) For every .N ; V / �C .M; U / and every relativity … of N , V D ….V /.
(3) For every .N ; V / �� .M; U / and every relativity … of N , V D ….V /.
(4) For any L -structure N and any sets V0; V1 � N n, if .N ; V0/, .N ; V1/, and

.M; U / all satisfy the same L �-sentences, then V0 D V1.

7 Entailments in the Finitary Case

The results of the previous section immediately yield a special case of Theorem 3.1,
obtained by restricting our attention to finitary structures.14 This special case has
already attracted some attention, since it is philosophically interesting,15 and the fol-
lowing result completes the picture.

Theorem 7.1 (Entailments between the grades, finite structures) These Hasse
diagrams characterize the entailments between our grades of discrimination, when
we restrict our attention to finite structures:
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D

s �

Dp; sp r

Dm; sm �p; rp

�m; rm

D

�

s

Dp; sp r

Dm; sm �p; rp

�m; rm

The left diagram is restricted to finite structures with arbitrary signatures; the right
diagram is restricted to finite structures with relational signatures.

Proof Most of this is supplied by Theorem 3.1. For the remainder observe that if
M is finite, then N �C M if and only if M D N . It follows from Lemma 6.3 that
Dp entails sp and that Dm entails sm; and similarly with Lemma 6.10.

However, a little work will yield an even stronger result: the grades of relativity
and the grades of L �-indiscernibility also entail each other when the structure’s
�-quotient is finite. To show this, we need a few results. The first tells us when � is
definable in a structure.16

Lemma 7.2 Let M be any L -structure. If either L is finite and relational or
M is finite, then there is an L �

2 -formula which defines � in M. However, the
restrictions are necessary.

Proof Case when L is finite and relational. Let �1; : : : ; �n enumerate all the
atomic L -formulas (up to permutation of variables). By Lemma 2.2, the following
L �

2 -formula defines � in M:
n̂

iD1

8v
�
�i .x; v/ $ �i .y; v/

�
:

Case whenM is finite. Let e1; : : : ; em exhaustively enumerateM without repetition.
So for all i ¤ j between 1 and m, we have ei � ej ; hence by Lemma 2.2 there is
some �i;j 2 L �

2 such that M ² �i;j .ei ; ei / $ �i;j .ei ; ej /, and so the following
L �

2 -formula defines � in M:^
i¤j

�
�i;j .x; x/ $ �i;j .x; y/

�
:

The necessity of the restrictions. Let L contain 1-place predicates Pi for all i < !

and a single 2-place predicate R. Define
H WD N;

PH
i WD ¹6i; 6i C 1º; for all 0 < i < !;

RH
WD

®
h2; 1i; h1; 0i

¯
[

®
h2; 6n � 2i; h6n � 2; 6ni; h6n � 2; 6nC 2i j
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0 < n < !
¯

[
®
h3; 6n � 1i; h6n � 1; 6nC 1i; h6n � 1; 6nC 3i j

0 < n < !
¯
:

We can represent H more perspicuously as follows:

2 4 6

8

P1

10 12

14

P2

16 18

20

P3

:::

1 0

7 5 3

9

13 11

15

19 17

21

:::

I claim that H ˆ �.2/ $ �.3/ for all � 2 L �
1 . To prove this, fix � 2 L �

1 , and
let K be the (necessarily finite) set of L -predicates appearing in �. Where H� is
the K -reduct of H, we have 2 sp 3 in H� and, hence, 2 rp 3 in H� by Lemma 4.10.
Lemma 2.7 now yields that H� ˆ �.2/ $ �.3/, and hence, H ˆ �.2/ $ �.3/.
Now apply Lemma 4.3.

However, where  2 L C
1 abbreviates

9x
�
Rvx ^ 8y8z

�
.Rxy ^Rxz/ ! y D z

��
;

we have H ˆ  .2/ ^ : .3/. So no L �
2 -formula can define D in H; hence, no

L �
2 -formula can define � in H by Lemma 4.3.

We already knew that a � b in M if and only if a D b in M. Lemma 7.2 allows
us, under special circumstances, to obtain analogous results for our other grades of
indiscernibility.
Lemma 7.3 Let M be any L -structure. If either L is finite and relational or M
is finite, then

(1) a �p b in M iff a Dp b in M,
(2) a �m b in M iff a Dm b in M.

Proof By Lemma 7.2, given either assumption, some L �
2 -formula defines �

in M. The same formula defines D in M, and the result follows via Lemma 4.3.

Finally, the Galois connection of Section 4 allows us to extend Theorem 7.1, as
desired.
Lemma 7.4 For structures with finite �-quotients:

(1) �p entails rp and vice versa;
(2) �m entails rm and vice versa.

Proof Combine Theorem 7.1 with Lemmas 7.3 and 4.10.

Note that Theorem 7.1 does not hold for grades of L C-discernibility/symmetry. To
see this, let E� be a superstructure of E obtained by making R reflexive. While E�

has only two members and its signature is finite and relational, no symmetry on E�

sends 1 to any element in R n N.
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8 Capturing Grades of Discrimination

All twelve grades of discrimination have fairly straightforward definitions. How-
ever, the grades of indiscernibility are defined in terms of satisfaction of object-
language formulas, whereas the grades of symmetry and relativity are defined meta-
linguistically. It is natural to ask whether this is essential. More precisely, I shall ask
which of the grades are capturable in the following sense.

Definition 8.1 For any L -structure M, say that � � L2 captures R in M if and
only if

for all a; b 2 M;aR b in M iff M ˆ �.a; b/ for every � 2 �:

Say that R is capturableC in M if and only if some � � L C
2 captures R in M (simi-

larly for capturable�). Say that R is universally capturableC if and only if some sin-
gle � � L C

2 captures R in every L -structure (similarly for universally capturable�).

I shall consider capturability for each of the three families of grades of discrimina-
tion, starting with the grades of indiscernibility.

Lemma 8.2

(1) D, Dp, Dm are universally capturableC.
(2) �, �p, �m are universally capturable�.
(3) There is a structure in which none of D, Dp, and Dm is capturable�.

Proof (1) and (2) These are obvious.
(3) Let I be the following graph:

1 2 3

4 5 6

7 8 9

For all � 2 L �
2 , I ˆ �.1; 4/ $ �.1; 7/ even though 1 Dp 4 and 1 ¤m 7.

Lemma 8.3

(1) s is universally capturableC.
(2) For finite structures: sp and sm are universally capturableC.
(3) There is a structure in which sp and sm are not capturableC.
(4) There is a finite structure in which none of s, sp, and sm is capturable�.

Proof (1) For each atomic � 2 L C
nC2, define

x '� y WD 8v
� n̂

iD1

.vi ¤ x ^ vi ¤ y/ !
�
�.x; y; v/ $ �.y; x; v/

��
:

By Lemma 2.4, s is universally capturedC by the set of all such '� .
(2) This comes from Theorem 7.1 and Lemma 8.2.
(3) Let J comprise two disjoint copies of the complete countable graph, with a

disjoint copy of a complete uncountable graph; that is,

J WD R;

RJ
WD

®
hm; ni 2 N2

j m ¤ n and mC n is even
¯

[
®
hp; qi 2 .R n N/2 j p ¤ q

¯
:
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By taking a Skolem hull containing 1, 2, and some e 2 R n N, it is clear that
J ˆ �.1; 2/ $ �.1; e/

for any � 2 L C
2 . However, 1 sp 2 in J , whereas 1 6 sm e in J .

(4) In I from Lemma 8.2, 1 s 2, whereas 7 6 sm 8. However, for all � 2 L �
2 ,

I ˆ �.1; 2/ $ �.7; 8/ and, hence, I ˆ �.1; 2/ $ �.7; 8/.

Lemma 8.4

(1) r is universally capturable�.
(2) For structures with finite �-quotients: rp and rm are universally capturable�.
(3) There is a structure in which neither rp nor rm is capturableC.

Proof (1) Let � be the set of all L �
2 -formulas of the form

8v
� n̂

iD1

�
�i .x; x/ ^ :�i .x; vi / ^  i .y; y/ ^ : i .y; vi /

�
!

�
�.x; y; v/ $ �.y; x; v/

��
for any n < !, any �1; : : : ; �n;  1; : : : ;  n 2 L �

2 , and any � 2 L �
nC2. I claim that

� captures r in any L -structure M.
First, suppose a r b in M. Fix some 
 2 � , and some e 2 M n. Suppose that

M ˆ

n̂

iD1

�
�i .a; a/ ^ :�i .a; ei / ^  i .b; b/ ^ : i .b; ei /

�
:

Then by Lemma 2.2, ei 6� a and ei 6� b for each 1 � i � n. Since a r b, Lemma 2.7
tells us that M ˆ �.a; b; e/ $ �.b; a; e/. Hence, M ˆ 
.a; b/ for any 
 2 � .

Next, suppose M ˆ 
.a; b/ for all 
 2 � . I claim that the following is a near-
correspondence from M to M:

… D
®
ha; bi; hb; ai

¯
[

®
hx; xi j x 6� a and x 6� b

¯
:

To show this, fix n < !, � 2 L �
nC2, and e 2 M n such that ei 6� a and ei 6� b

for each 1 � i � n. Since each ei 6� a and ei 6� b, by Lemma 2.2 there are
formulas �i ;  i 2 L �

2 for each 1 � i � n such that M ˆ �i .a; a/ ^ :�i .a; ei / and
M ˆ  i .b; b/ ^ : i .b; ei /. Conjoining these, we get

M ˆ

n̂

iD1

�
�i .a; a/ ^ :�i .a; ei / ^  i .b; b/ ^ : i .b; ei /

�
:

Since M ˆ 
.a; b/ for all 
 2 � , we obtain that, for all � 2 L �
nC2,

M ˆ �.a; b; e/ $ �.b; a; e/:

By generalizing, … is a near-correspondence. By the Galois connection of Theo-
rem 4.8, .…i/c is a relativity on M, and so a r b.

(2) This follows from Lemmas 7.4 and 8.2.
(3) This is exactly as in Lemma 8.3(3).

Lemmas 8.2–8.4 can be summarized as follows.

Theorem 8.5 (Capturing the grades) Table 2 exhaustively details the capturability
of each grade of discrimination.
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Table 2 Capturability of each grade of discrimination.

Grade CapturableC Capturable�

D X �

Dp X �

Dm X �

� X X

�p X X

�m X X

s X �

sp f �

sm f �

r X X

rp f
¯

f
¯rm f

¯
f
¯

Table 2 should be read with the following key:
X universally capturable;
� there is an L -structure in which the grade is not capturable;
f universally capturable when we restrict attention to finite structures, but there

are counterexamples elsewhere;
f
¯

universally capturable when we restrict attention to structures with finite
�-quotients, but there are counterexamples elsewhere.

This demonstrates, once again, that grades of L C-discernibility are to grades of
symmetry as grades of L �-discernibility are to grades of relativity. More interest-
ingly, though, Theorem 8.5 bears directly upon the philosophical search for reductive
criteria of identity.

As mentioned in Section 1, much of the interest in grades of discrimination comes
from their potential to provide us with a criterion of identity, possibly a reductive one.
However, if a grade of discrimination cannot be captured by some set of formulas in
the object language, this should bar it from use in any reductive criterion of identity.
After all, if the grade must be invoked as a primitive at the level of the object lan-
guage, it is unclear why we should not simply allow ourselves to take identity itself
as a primitive in the object language. The situation will be no better, in this regard,
if the grade can only be capturedC and not captured�. Consequently, no grade of
L C-indiscernibility or symmetry can provide a reductive criterion of identity.

The remaining candidates for reductive criteria of identity are therefore the grades
of L �-indiscernibility and relativity. However, in the special cases when they are
capturable�—which we require if we seek a reductive criterion of identity—two of
the grades of L �-indiscernibility are simply coextensive with two of the grades of
L �-indiscernibility (see Theorem 7.1). Hence, the only plausible distinct candidates
for a reductive criterion of identity are, in order of entailment: �, r, �p, and �m.

This does not show, though, that the remaining grades of discrimination are philo-
sophically uninteresting. After all, we might simply be interested in providing an
illuminating but nonreductive answer to the general question: when are objects iden-
tical? To repeat an example from Section 1: if we have become convinced that nature
abhors a (nontrivial) symmetry, then sm could serve as a nonreductive, nontrivial cri-
terion of identity, even though it is uncapturableC.
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9 Symmetry in All Elementary Extensions

In Section 6, I connected the grades of indiscernibility with the existence of a sym-
metry/relativity in some elementary extensions. To close this paper, I wish to con-
sider what happens when we consider the existence of a symmetry or relativity in all
elementary extensions. In particular, I shall demonstrate a neat connection between
� and symmetries in elementary extensions. To show this, I first require a general
method for constructing such elementary extensions.17

Lemma 9.1 Let M be an L -structure with a 2 M , and let D be a set such that
M \D D ;. Then there is an L -structure N �� M with N D M [D such that
a � d in N for all d 2 D.

Proof Define � W N �! M by �.x/ D x if x 2 M and �.d/ D a if d 2 D. Set

RN
D

®
e 2 N n

j �.e/ 2 RM¯
for all n-place L -predicates R;

f N .e/ D fM�
�.e/

�
for all n-place L -function-symbols f and all e 2 N n:

I claim that, for each L -term � , all d 2 Dm, and all e 2 M n,

�N .d ; e/ D �N .a; e/ D �M.a; e/;

where ai D a for all 1 � i � m. This is proved by induction on complexity. The
case where � is an L -function symbol is given. Now suppose that the claim holds
for �1; : : : ; �k , and consider �.x; y/ D f .�1.x; y/; : : : ; �k.x; y//. Then

�N .d ; e/ D f N �
�N1 .d ; e/; : : : ; �

N
k .d ; e/

�
D f N �

�N1 .a; e/; : : : ; �
N
k .a; e/

�
D �N .a; e/

D f N �
�M1 .a; e/; : : : ; �Mk .a; e/

�
D fM�

�M1 .a; e/; : : : ; �Mk .a; e/
�

D �M.a; e/:

This proves the claim. Hence, for all atomic � 2 L �
mCn, all d 2 Dm, and all

e 2 M n,

N ˆ �.d ; e/ iff N ˆ �.a; e/ iff M ˆ �.a; e/:

So for all d 2 D we have a � d in N by Lemma 2.2. Moreover, N �� M.

Thus armed, I can connect � with symmetry in elementary extensions.

Lemma 9.2 For any L -structure M, if a sm b in every N �� M, then a � b

in M.

Proof Suppose a sm b in every N �� M. Let D be such that M \D D ; and
jDj > jbMj. Construct N as in Lemma 9.1, so that a � d in N for all d 2 D.
Since N �� M, by assumption there is a symmetry � on N such that �.a/ D b.
So, for every � 2 L �

2 and all d 2 D, by Lemma 2.4,

N ˆ �.b; b/ iff N ˆ �.a; a/ iff N ˆ �.a; d/ iff N ˆ �
�
b; �.d/

�
:

Hence, �.d/ 2 bN for every d 2 D, by Lemma 2.2. Since � is a bijection,
jDj D j¹�.d/ j d 2 Dºj � jbN j. If a 6� b in N , then jbN j D jbMj, contra-
dicting our choice of D; so a � b in N . Since M �� N and � is universally
capturable� by Lemma 8.2, a � b in M.
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The left diagram from Theorem 3.1 shows us that there is no converse to Lemma 9.2
in the general case. However, we do obtain a converse in restricted circumstances.

Lemma 9.3 When L is relational, for any L -structure M, a � b in M if and
only if a sm b in every N �� M.

Proof This is immediate from Theorem 3.1 and Lemmas 8.2 and 9.2.

Moreover, we can strengthen Lemma 9.2 in the case of s.

Lemma 9.4 Let M be an L -structure with a 2 M and e … M . Let N �� M be
constructed as in Lemma 9.1, so that N D M [ ¹eº and a � e in N . If a s b in N ,
then a � b in M.

Proof Suppose that a s b in N ; that is, �.a/ D b, �.b/ D a, and �.x/ D x for
all x … ¹a; bº is a symmetry on N . In particular, �.e/ D e. Hence, by invoking
Lemma 2.4, for all � 2 L �

2 , M ˆ �.a; a/ if and only if N ˆ �.a; a/ if and only
if N ˆ �.e; a/ if and only if N ˆ �.e; b/ if and only if N ˆ �.a; b/ if and only if
M ˆ �.a; b/. Hence, a � b in M by Lemma 2.2.

However, this strengthening of Lemma 9.2 is limited to the case of s. To see this, let
K comprise two disjoint copies of the complete countable graph, that is,

K D N;

RK
D

®
hm; ni 2 N2

j m ¤ n and mC n is even
¯
:

While 1 6� 2 in K, we can use Lemma 9.1 to add a single new element, e, such that
1 � e, without disrupting the fact that 1 sp 2. Moreover, nothing like Lemma 9.2
holds for relativities: Lemma 8.4 tells us that a r b in M if and only if a r b in all
N �� M.

The results of Section 6 exhaustively detailed the connections between grades of
discernibility and the existence of a symmetry/relativity in some elementary exten-
sion. The results of this section now exhaustively detail the connections between
grades of discernibility and the existence of a symmetry/relativity in all elementary
extensions. We thus have complete answers to several natural questions concerning
the connection between grades of discrimination and elementary extensions.

10 Concluding Remarks

Several recent technical-cum-philosophical papers have explored some of the grades
of discrimination. This paper has pressed forward that technical investigation in
many ways. To close, I shall emphasize two.

First, I have introduced grades of relativity to the philosophical literature—
along with the notion of a near-correspondence, a relativeness correspondence,
and a partial relativeness correspondence—and shown that these are the natural
L �-analogues of the grades of symmetry.

Second, I have offered complete answers to the natural questions that arise con-
cerning all twelve grades of discrimination. Indeed, the technical investigation of the
grades of discrimination now seems to be complete.
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Notes

1. An exception is Ladyman et al. [18, Section 6].

2. This family of definitions has a long philosophical heritage (e.g., see Hilbert and Bernays
[14, Section 5]; Quine [24, pp. 230–32], [25]; Caulton and Butterfield [8, Sections 2.1,
3.2]; Ketland [16, pp. 306–7], [17, Definitions 2.3, 2.5]; Ladyman et al. [18, Defini-
tion 3.1, Section 6.4]).

3. Though Caulton and Butterfield [8] and Ladyman et al. [18] also explore the case of
quantifier-free formulas.

4. sm is considered by Ketland [16], [17] under the name “structural indiscernibility” and
by Ladyman et al. [18] under the name “symmetry.” sp is considered by Ladyman et al.
[18] under the name “full symmetry.” s is considered by Ketland [16], [17], who writes
“�ab” to indicate that a s b.

5. They credit a special case of this to Blok and Pigozzi [3, p. 343] (see also [28, Sec-
tion 5]).

6. Quine [25] proves case (4) (see also Ketland [16, p. 307], [17, Section 3.2], Ladyman
et al. [18, Theorem 5.2]). Caulton and Butterfield [8, Theorem 1] prove case (5) when
restricted to relational signatures (see also Ketland [17, Lemma 3.22] and Ladyman et al.
[18, Theorems 9.17, 9.20]). Ketland [17, Theorem 3.23] proves case (10).

7. Ketland [17, p. 8] and Ladyman et al. [18, Theorem 5.2] use A to prove case (1) (see
also Button [5, p. 218] and Ketland [16, p. 309]). Ladyman et al. [18, Theorem 9.17]
use B to prove case (2), noting that it is the analogue of Black’s [2] two-sphere world.
Button [5, p. 218], Ketland [16, p. 310], and Ladyman et al. [18, Theorem 7.12] use an
example like C. Ladyman et al. [18, Theorem 5.2] use an example like D. Caulton and
Butterfield [8, pp. 60–62] and Ladyman et al. [18, Theorem 9.20] use examples like E .

8. I was once on Fran’s side (see Button [5, p. 220]), but I have changed my mind (see
Button [6, p. 211, n. 8]).

9. Casanovas et al. trace the definition and lemma back to Monk [21, presumably Exer-
cises 29.33–34]. This has recently been rediscovered by philosophers (e.g., Ketland [16,
p. 307, n. 10], [17, Theorem 3.12]).

10. While this notion of diagram invokes D, Dellunde [9] shows that there is a perfectly
workable notion of diagram which does not employ D.

11. In more detail: my Lemma 6.6 tweaks Marker’s [20, Lemma 4.16]; my Lemma 6.7
tweaks Marker’s [20, Corollary 4.1.7] (cf. also Casanovas et al.’s [7, Lemma 2.7]); and
my Lemma 6.8 tweaks Marker’s [20, Proposition 4.1.5]. The main difference is that I use
protocorrespondences rather than partial elementary maps, and in the final step I require
a detour, via Lemma 4.9, to obtain a relativity.
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12. Beth [1] proved (1) , (3); Svenonius [27] proved (1) , (2). .M; U / is the
L [¹Rº-structure formed from M by allowing R to pick out U . As one would expect,
�.V / D ¹�.e/ j e 2 V º, and equally ….V / D ¹e j there are d 2 V such that d …eº.

13. The only difficult step in either theorem is (2) ) (1). For the L C-case, see for example
Poizat [23, Proposition 9.2]. To prove the L �-case, we simply tweak Poizat’s proof by
invoking Theorem 6.9 rather than Theorem 6.2, and considering n-types in the sense of
L �

n , rather than L C
n . Dellunde [10, p. 5] and Keisler and Miller [15, p. 3] have shown

that L �
n -types behave as one would hope.

14. An alternative route to Theorem 7.1 merits comment. We can use finitary isomorphism
systems to prove the coincidence of grades of L C-indiscernibility with grades of sym-
metry in finite structures, without invoking the results from Section 6. (For an introduc-
tion to finitary isomorphism systems, see Ebbinghaus et al. [11, Chapter XI].) Casanovas
et al. [7, Definitions 4.1–4.2] define the L �-analogue of finitary isomorphism systems.
It turns out that we can use these, analogously, to prove the coincidence of grades of
L �-indiscernibility with grades of relativity in finite structures.

15. Caulton and Butterfield [8, Theorem 2] prove a special case of the mutual entailment
between sp and Dp, and sm and Dm, on the assumption that L is finite and relational.
Ketland’s [17, p. 2] attention is entirely restricted to finite relational signatures. Linnebo
and Muller [19, Theorem 3] note that witness discernibility (a further notion, which
I have not discussed) is equivalent to �p in finite structures, and they outline several
reasons for focusing on finite structures.

16. For the case where L is finite and relational, see Ketland [17, Definition 2.3].

17. Monk [21, Theorem 29.16] described this explicitly; Grzegorczyk [12, p. 41] ear-
lier mentioned it in passing, implying it was mathematical folklore. The method was
rediscovered by philosophers (e.g., Ketland [17, p. 7] and Ladyman et al. [18, Theo-
rem 8.14]). However, all these authors restrict their attention to relational signatures.
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