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Mildness and the Density of Rational Points
on Certain Transcendental Curves

G. O. Jones, D. J. Miller, and M. E. M. Thomas

Abstract We use a result due to Rolin, Speissegger, and Wilkie to show that
definable sets in certain o-minimal structures admit definable parameterizations
by mild maps. We then use this parameterization to prove a result on the density
of rational points on curves defined by restricted Pfaffian functions.

1 Introduction

The main result of this note is a generalization of some results of Pila [9] to a
wider collection of curves. Before stating the result, we need some definitions.
A sequence f1, . . . , fr : U → R of analytic functions on an open set U ⊆ Rn

is said to be a Pfaffian chain of order r and degree α if there are polynomials
Pi, j ∈ R[X1, . . . , Xn+ j ] of degree at most α such that

d f j =

n∑
i=1

Pi, j (x̄, f1(x̄), . . . , f j (x̄))dxi , for j = 1, . . . , r.

Given such a chain, we say that a function f : U → R is Pfaffian of order r and
degree (α, β) with chain f1, . . . , fr , if there is a polynomial P ∈ R[X1, . . . , Xn, Y1,
. . . , Yr ] of degree at most β such that f (x̄) = P(x̄, f1(x̄), . . . , fr (x̄)).

Let U ⊆ Rn be an open set containing [0, 1]
n . To every function f : U → R, we

associate a new function f̂ : Rn
→ R defined by

f̂ (x̄) =

{
f (x̄) if x̄ ∈ [0, 1]

n,

0 otherwise.

Recall that Ran is the expansion of the real ordered field by all functions of the form
f̂ , where f : U → R is analytic, [0, 1]

n
⊆ U and n ≥ 1. We let RresPfaff be the
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reduct of this structure given by the same description, but with the word “analytic”
replaced by “Pfaffian.”

For q ∈ Q, the height of q is H(q) = max{|a|, b}, where q =
a
b , a, b ∈ Z, b ≥ 1,

and gcd(a, b) = 1. The height of q̄ ∈ Qn , again written H(q̄), is defined as the
maximum of the heights of the coordinates of q̄. For a set X ⊆ Rn and H ≥ 1, we
let

X (Q, H) = {q̄ ∈ X ∩ Qn
: H(q̄) ≤ H}.

A transcendental function f : Rn
→ R is one that does not satisfy any nonzero

polynomial equation P(y, x1, . . . , xn) = 0, for P ∈ R[Y, X1, . . . , Xn].

Proposition 1.1 Suppose that f : R → R is a transcendental analytic function
definable in RresPfaff, and let X = graph( f ). Then there exist c > 0 and γ > 0 such
that for H ≥ 3

#X (Q, H) ≤ c(log H)γ.

When f is Pfaffian, and not assumed to be definable in RresPfaff, this result is due
to Pila [9]. The extra generality here, as far as functions definable in RresPfaff are
considered, is to include functions implicitly defined by restricted Pfaffian functions.

The proof of the proposition is a modification of Pila’s proof in [8]. To this end,
we need a parameterization result which, although a simple consequence of a result
due to Rolin, Speissegger, and Wilkie [11], may be of some independent interest.
We need two further definitions, the first of which is due to Pila [10]. We use the
following multi-index notation: for any α = (α1, . . . , αk) ∈ Nk , we define the
modulus |α| := α1 + · · · + αk , the factorial α! := α1! · · · · · αk !, and the differential
operator

Dα
:=

∂ |α|

∂xα1
1 . . . ∂xαk

k
.

Definition 1.2 Let A > 0, C ≥ 0. A C∞ function ϕ : (0, 1)k
→ (0, 1) is said to

be (A, C)-mild if
|Dαϕ(x̄)| ≤ α!(A|α|

C )|α|

for all α ∈ Nk , all x̄ ∈ (0, 1)k (where 00
= 1). We say that a map 8 : (0,1)k

→(0,1)n

is (A, C)-mild if each of its coordinate functions is (A, C)-mild.

Definition 1.3 Fix an o-minimal structure R̃ expanding the real field, and let
X ⊆ Rn be definable. A parameterization of X is a finite set S of definable maps
81, . . . , 8l : (0, 1)dim X

→ Rn such that X =
⋃

Im(8i ). A parameterization is said
to be (A, C)-mild if each of the parameterizing maps is (A, C)-mild. We say that
R̃ admits C-mild parameterization if for every definable set X ⊆ (0, 1)n there is an
(A, C)-mild parameterization of X , for some A.

Example 1.4 For a compact box B ⊆ Rn , suppose that f =( f1, . . . , fm) : B →Rm

extends to an analytic function in a neighborhood of B. Then there exist (for exam-
ple, by [6, 2.2.10]) positive constants A and K such that

|Dα fi (x)| ≤ α!K A|α|

for all x ∈ B, α ∈ Nn , and i ∈ {1, . . . , m}. If B = [0, 1]
n and f ((0, 1)n) ⊆ (0, 1)m ,

then by making A larger we may take K = 1, in which case the graph of
f |(0,1)n has an (A, 0)-mild parameterization consisting of one map, namely,
8 : (0, 1)n

→ (0, 1)n+m defined by 8(x̄) = (x̄, f (x̄)).
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Proposition 1.5 Any reduct of Ran expanding the real ordered field admits 0-mild
parameterization.

We remark on the relationship between the notion of a mild function and that of a
Gevrey function. In [4], van den Dries and Speissegger consider RG, the expansion
of the real ordered field by the class of Gevrey functions G, which is a certain family
of real-valued C∞ functions on the sets [0, R] =

∏n
i=1[0, Ri ], for each n ∈ N

and R1, . . . , Rn > 0, which are analytic on (0, R] =
∏n

i=1(0, Ri ]. For each n-ary
function f : [0, R] → R in G there exist constants A, B > 0 and κ ∈ (0, 1] such
that

|Dα f (x)| ≤ α!AB|α|
|α|

κ|α|

for all x ∈ [0, R] and α ∈ Nn (see [4, 2.6]). It follows that RG is definably equivalent
to an expansion of the real ordered field by a family of functions, each of which is
(B, κ)-mild for some B > 0 and κ ∈ (0, 1]. It is therefore natural to ask whether
RG admits 1-mild parameterization. To the best of our knowledge, this question is
open and does not follow from the methods of this paper. The proof of Proposi-
tion 1.5 considers a set X ⊆ (0, 1)n definable in some fixed reduct of Ran and uses
[11] to construct a parameterization 81, . . . , 8l : (0, 1)dim X

→ (0, 1)n of X such
that the definable maps 81, . . . , 8l all extend to (definable) analytic functions on
a neighborhood of [0, 1]

dim X , from which Proposition 1.5 follows using Example
1.4. In contrast, [4] relies on the model completeness construction in [3], and there-
fore represents a set X ⊂ (0, 1)n definable in RG as a finite union of projections
of manifolds which are zero sets of Gevrey functions but which are not themselves
graphs of Gevrey functions. The question of whether such manifolds have 1-mild
parameterizations appears to be open.

2 C-parameterization

In this section we observe that the results in [11] imply a parameterization result. So,
we work in the setting of [11], and fix, for every compact box B ⊆ Rn and every
n ∈ N, an R-algebra CB of functions f : B → R such that the following hold.

(C1) Each of the projection functions 〈x1, . . . , xn〉 7→ xi , restricted to B, is in CB ,
and for every function f ∈ CB the restriction of f to the interior of B is C∞.

(C2) If B ′
⊆ Rm is a compact box and g1, . . . , gn ∈ CB′ are such that g(B ′) ⊆ B,

where g = 〈g1, . . . , gn〉, then for every f ∈ CB , the composition f ◦ g is in
CB′ .

(C3) For every compact box B ′
⊆ B and function f ∈ CB , the restriction of f to

B ′ is in CB′ . For every f ∈ CB there is a compact box B ′
⊆ Rn , the interior

of which contains B, and a function g ∈ CB′ such that g|B = f .
(C4) For every f ∈ CB and i = 1, . . . , n, the partial derivative ∂ f

∂xi
is in CB .

Note that the partial derivatives in (C4) exist by (C1) and (C3). Since we shall not
need the precise statements of the remaining assumptions, we only state rough ver-
sions of them. The full details can be found in [11].

(C5) For each n ≥ 1 and each box B ∈ Rn containing the origin, the collection of
germs at the origin of functions in CB forms a quasi-analytic class.

(C6) This collection of germs is closed under extraction of implicit functions.
(C7) This collection of germs is closed under monomial division.
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The example which will interest us is as follows. Suppose that R̃ is a polynomially
bounded o-minimal expansion of the real field. For each compact box, let CB be the
collection of definable functions f : B → R which admit a definable C∞ extension
to some open set containing B. By well-known properties of o-minimal structures
([2], [7]) these algebras satisfy the above requirements. In particular, if R̃ is a reduct
of Ran, then each function f in CB is the restriction to B of an analytic function
defined in a neighborhood of B, as in Example 1.4.

We now recall some further definitions from [11]. Given a polyradius r̄ =

〈r1, . . . , rn〉 ∈ (0, ∞)n we let Ir̄ =
∏

(−ri , ri ) and let Īr̄ be the topological closure
of Ir̄ . Write Cn,r̄ for C Īr̄

.

Definition 2.1 A set A ⊆ Rn is called a basic C-set if there are r̄ ∈ (0, ∞)n and
f, g1, . . . , gk ∈ Cn,r̄ such that

A = {x̄ ∈ Ir̄ : f (x̄) = 0, g1(x̄) > 0, . . . , gk(x̄) > 0}.

A finite union of basic C-sets is called a C-set. A set A ⊆ Rn is called C-
semianalytic if for every ā ∈ Rn there is an r̄ ∈ (0, ∞)n such that

(A − ā) ∩ Ir̄

is a C-set. If A is also a manifold, we call A a C-semianalytic manifold.

Given m ≤ n and an injective λ : {1, . . . , m} → {1, . . . , n}, we write πλ : Rn
→ Rm

for the projection x̄ 7→ 〈xλ(1), . . . , xλ(m)〉.

Definition 2.2 Let r̄ ∈ (0, ∞)n . A set M ⊆ Ir̄ is said to be C-trivial if one of the
following holds:

(i) M = {x̄ ∈ Ir̄ : x1�10, . . . , xn�n0}, where �i ∈ {<, =, >} for each i ;
(ii) there exist a permutation λ of {1, . . . , n}, a C-trivial N ⊆ Is̄ , and a

g ∈ Cn−1,s̄ , where s̄ = 〈rλ(1), . . . , rλ(n−1)〉, such that g(Is̄) ⊆ (−rλ(n), rλ(n))
and πλ(M) = graph(g|N ).

Note that C-trivial sets are necessarily manifolds; we shall refer to them as C-trivial
manifolds. A C-semianalytic manifold M ⊆ Rn is called trivial if there exist ā ∈ Rn

and a C-trivial manifold N ⊆ Rn such that M = N + ā.
We need two results from [11].

Fact 2.3 ([11], 4.7) Suppose that A ⊆ Rn is a bounded C-semianalytic set and
that k ≤ n. Then there are trivial C-semianalytic manifolds Ni ⊆ Rni for some
ni ≥ n, i = 1, . . . J , such that

πk(A) = πk(N1) ∪ · · · ∪ πk(NJ )

where πk |Ni is an immersion, for each i . (Here, πk is projection onto the first k
coordinates.)

Let RC be the expansion of the real ordered field by all functions f̂ , for f ∈ Cn,r̄ ,
n ∈ N, r̄ ∈ (0, ∞)n , where f̂ (x̄) = f (x̄) on Īr̄ and f̂ (x̄) = 0 on Rn

\ Īr̄ .

Fact 2.4 ([11], 5.2 and 5.4) The structure RC is o-minimal, model complete, and
polynomially bounded.

We now use these results to prove a parameterization result. We work in the struc-
ture RC .
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Definition 2.5 Let X ⊆ Rn be definable. A C-parameterization of X is a finite
set S of maps 81, . . . , 8l whose coordinate functions are in C[0,1]dim X such that
{8i |(0,1)dim X : i = 1, . . . , l} is a parameterization of X .

Example 2.6 Let r̄ ∈ (0, ∞)n . Let M = {x̄ ∈ Ir̄ : x1�10, . . . , xn�n0}, where
�i ∈ {<, =, >} for each i . Let λ1, . . . , λm be, in order, the indices for which �i is
either < or >. For each i , define the map ϕi : (0, 1)m

→ Rn by

ϕi (x̄) =


−r j x j if i = λ j and �i is <,

r j x j if i = λ j and �i is >,

0 otherwise.

We now see that M has a C-parameterization consisting of one map, namely,
8 : (0, 1)m

→ Rn given by 8(x̄) := (ϕ1(x̄), . . . , ϕn(x̄)).

Now we easily have the following, by induction on n.

Lemma 2.7 Suppose that M ⊆ Rn is a C-trivial manifold. Then there is a C-
parameterization S of M with #S = 1.

Proposition 2.8 Suppose that X ⊆ Rn is a bounded definable set. Then X has a
C-parameterization.

Proof By model completeness, there is an m ≥ 0 and a quantifier-free definable set
A ⊆ Rn+m such that X = π(A). Using the fact that RC is an expansion of the real
field, we may assume that A is bounded and that A is C-semianalytic. By Fact 2.3,

X = π(N1) ∪ · · · ∪ π(Nk)

for some C-trivial manifolds N1, . . . , Nk , where each π |Ni is an immersion. Thus
dim(X) = max{dim(N1), . . . , dim(Nk)}. A C-parameterization of X can be con-
structed by composing the functions in the C-parameterizations of each of the
Ni with the projections π , and then trivially extending any of these functions to
(0, 1)dim X if their domain is (0, 1)dim Ni with dim Ni < dim(X). �

Note that Proposition 1.5 follows immediately from applying Proposition 2.8 to the
given reduct of Ran and then using Example 1.4.

3 Curves

We now prove Proposition 1.1. In fact, we prove a result about the number of
points in a fixed number field k ⊆ R of degree l. We use the absolute multi-
plicative height H on k, which agrees with the height on Q given in the intro-
duction (for the definition of H , see [1]). For X ⊆ Rn and H ≥ 1, we let
X (k, H) = X ∩ {ā ∈ kn

: H(ā) ≤ H}. The following is a special case of
[10, Corollary 3.3].

Fact 3.1 Suppose that X ⊆ (0, 1)2 is definable in Ran with dimension 1 and that S
is an (A, 0)-mild parameterization of X . Then there is an absolute constant c0 such
that X (k, H) is contained in a union of at most

#S · cl
0 · A2(1+o(1))

intersections of X with algebraic curves of degree bl · log Hc. Here the 1 + o(1) is
taken as H → ∞ with absolute implied constant, and b·c denotes integer part.
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Given a function F : Rm
→ R, we let V (F) = {x̄ ∈ Rm

: F(x̄) = 0}.

Lemma 3.2 Suppose that f : (a, b) → (0, 1), with (a, b) ⊆ (0, 1), is a
transcendental analytic function definable in RresPfaff. Suppose further that
graph( f ) = π(V (F)), where F : R2+n

→ R is a Pfaffian function of order r and
degree (α, β), and π is the projection onto the first two coordinates. If P : R2

→ R

is a nonzero polynomial of degree d then

#(graph( f ) ∩ V (P)) ≤ 2r(r+1)/2+1(n + 2)r (α + 2d ′)n+r+2 (1)

where d ′
= max{d, β}.

Proof Let P̃ : R2+n
→ R be given by P̃(x, y, z̄) = P(x, y). Then graph( f )

∩ V (P) = π(V (F) ∩ V (P̃)). The number of points in graph( f ) ∩ V (P) is thus
bounded by the number of connected components of V (F) ∩ V (P̃) (there are only
finitely many points in graph( f )∩ V (P), as we have assumed that f is transcenden-
tal). By Khovanskii’s theorem (as presented in [5, 3.3]) there are at most

2r(r−1)/2+1d ′(α + 2d ′
− 1)n+1((2(n + 2) − 1)(α + d ′) − 2n − 2)r

such components, and clearly this is less than the right-hand side of (1). �

Proposition 3.3 Suppose that f : (a, b) → (0, 1), with (a, b) ⊆ (0, 1), is a
transcendental analytic function definable in RresPfaff and let X = graph( f ). Then
there are c, γ > 0 such that (for H ≥ e)

#X (k, H) ≤ c(log H)γ.

Proof By model completeness of RresPfaff (see [12]), we may suppose that
X = π(V (F)) for some Pfaffian function F : R2+n

→ R and some n ≥ 0.
Suppose that F is of order r and degree (α, β). By Proposition 1.5 we can take an
(A, 0)-mild parameterization S of X , for some A. Combining Proposition 3.1 with
Lemma 3.2 (with d = bl log Hc), we have

#X (k, H) ≤ #S · cl
0 · A2(1+o(1))2r(r+1)/2+1(n + 2)r (α + 2 max{β, d})n+r+2

≤ c(log H)γ

where γ = n + r + 2. �

The collection of points of a number field k of height at most H is preserved under
the inversions x → ±x±1. Therefore, in counting such points on the graph of a
transcendental analytic function f : R → R, we may instead consider the graphs of a
finite collection of transcendental analytic functions, each defined on a subinterval of
(0, 1), together with a finite collection of points in Rn . Proposition 1.1 then follows
by repeated application of Proposition 3.3.
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