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A Remark on Negation in Dependence Logic

Juha Kontinen and Jouko Väänänen

Abstract We show that for any pair ϕ and ψ of contradictory formulas of de-
pendence logic there is a formula θ of the same logic such that ϕ ≡ θ and
ψ ≡ ¬θ . This generalizes a result of Burgess.

1 Introduction

Dependence logic (Väänänen [12]) arises from first-order logic by addition of de-
pendence atoms

=(x1, . . . , xn) (1)

the intuitive meaning of which is that the value of xn is completely determined by the
values of x1, . . . , xn−1. Burgess [2] observed (in the equivalent context of Henkin
sentences [6]) that if two sentences ϕ and ψ of dependence logic have no models
in common, then there is a sentence θ of dependence logic such that ϕ ≡ θ and
ψ ≡ ¬θ . In this paper we generalize this to formulas with free variables.

As Burgess points out, his result indicates that negation is not a semantic opera-
tion; that is, knowing the class of models of ϕ is not enough for knowing the class
of models of ¬ϕ. In this sense conjunction and disjunction are different: once we
know the classes of models of ϕ and ψ we know exactly which models satisfy ϕ∧ψ
or ϕ ∨ ψ . Likewise, existential and universal quantifiers are semantic operations:
once the class of teams satisfying ϕ(x) is given, the classes of models of ∃xϕ(x) and
∀xϕ(x) are completely determined.

Thus, we have to conclude that there is something special about negation. This
should not come as a surprise, given that the expressive power of sentences of depen-
dence logic is exactly existential second-order logic

(
61

1
)
. The negation of depen-

dence logic is not the classical Boolean negation although we have the equivalences,
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¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

¬¬ϕ ≡ ϕ

¬∃xϕ ≡ ∀x¬ϕ

¬∀xϕ ≡ ∃x¬ϕ,

(2)

which hold for sentences and formulas with free variables alike. A clear indication
of the nonclassical nature of the negation in dependence logic is the fact that the
negations of the usual definitions of concepts such as “infinity,” “even cardinality,”
“equicardinality,” “non-well-foundedness,” and “incompleteness (of a linear order)”
are all nondetermined (Väänänen [11]).

In this paper, we show that negation has similar qualities when applied to formulas
with free variables. We show that if two formulas ϕ and ψ of dependence logic have
only the empty team in common, then there is a formula θ of dependence logic such
that ϕ ≡ θ and ψ ≡ ¬θ . It is worth noting that, unlike for classical logics, in
dependence logic it is not possible to extend results from sentences to formulas just
by substituting constants for the free variables of the formula.

The interest in extending the result of Burgess from sentences to formulas stems
from the following: we can think of formulas of dependence logic as descriptions
of properties of teams. Teams are more or less the same thing as databases. Thus,
formulas describe properties of databases. The atomic formula (1) describes the
property of a database that a certain field (xn) is completely determined by a com-
bination of other fields (x1, . . . , xn−1). In computer science this is called a func-
tional dependency (Armstrong [1]). The composite formulas of dependence logic
simply describe more complex dependencies than the mere functional dependencies.
Our result then shows that if two database properties, definable in dependence logic
(i.e., downward monotone NP by Theorems 2.10 and 2.11), are such that only the
empty database has both, then we can capture (either) one of the properties with a
formula of dependence logic in such a way that its negation hits exactly the other
property.

This nonsemantic quality of negation disappears if we define the semantic value
of a formula as the set of pairs of teams (X, Y ) such that X satisfies the formula
and Y its negation. Then the semantic value of the negation can of course be easily
computed by simply reversing the pairs (X, Y ) into (Y, X).

2 Preliminaries

In this section we define Dependence Logic (D) and recall some basic results about
it.

Definition 2.1 ([12]) The syntax of D extends the syntax of FO, defined in terms
of ∨, ∧, ¬, ∃, and ∀, by new atomic (dependence) formulas of the form

=(t1, . . . , tn), (3)

where t1, . . . , tn are terms. If L is a vocabulary, we use D[L] to denote the set of
formulas of D based on L .
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The intuitive meaning of the dependence formula (3) is that the value of the term tn
is determined by the values of the terms t1, . . . , tn−1. As singular cases we have

=(),

which we take to be universally true, and

=(t),

which declares that the value of the term t depends on nothing, that is, is constant.
We let > be the formula =() and ⊥ be ¬ =().

The set Fr(ϕ) of free variables of a formula ϕ ∈ D is defined as for first-order
logic, except that we have the new case,

Fr(=(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn),

where Var(ti ) is the set of variables occurring in term ti . If Fr(ϕ) = ∅, we call ϕ a
sentence.

In order to define the semantics of D , we first need to define the concept of a
team. Let A be a model with domain A. In this article, all models A are assumed
to have a domain with at least two elements. Assignments of A are finite mappings
from variables into A. The value of a term t in an assignment s is denoted by tA

〈s〉.
If s is an assignment, x a variable, and a ∈ A, then s(a/x) denotes the assignment
(with domain dom(s) ∪ {x}) which agrees with s everywhere except that it maps x
to a.

Let A be a set and {x1, . . . , xk} a finite (possibly empty) set of variables. A team
X of A with domain dom(X) = {x1, . . . , xk} is any set of assignments from the
variables {x1, . . . , xk} into the set A. We denote by rel(X) the k-ary relation of A
corresponding to X ,

rel(X) = {(s(x1), . . . , s(xk)) : s ∈ X}.

If X is a team of A, and F : X → A, we use X (F/xn) to denote the team
{s(F(s)/xn) : s ∈ X} and X (A/xn) the team {s(a/xn) : s ∈ X and a ∈ A}.

We are now ready to define the semantics of dependence logic. In Definition 2.2
below, we only consider formulas in negation normal form; that is, negation is al-
lowed to appear only in front of atomic formulas. However, in this article we allow
negation of dependence logic to appear freely in formulas. For a formula ψ = ¬ϕ,
where ϕ is not atomic, A |HX ψ is taken as a shorthand for A |HX ψ

∗, where ψ∗ is
acquired by transforming ψ into negation normal form using the equivalences of (2).

Definition 2.2 ([12]) Let A be a model and X a team of A. The satisfaction relation
A |HX ϕ is defined as follows:

1. A |HX t1 = t2 iff for all s ∈ X we have tA
1 〈s〉 = tA

2 〈s〉.

2. A |HX ¬t1 = t2 iff for all s ∈ X we have tA
1 〈s〉 6= tA

2 〈s〉.

3. A |HX=(t1, . . . , tn) iff for all s, s′
∈ X such that

tA
1 〈s〉 = tA

1 〈s′
〉, . . . , tA

n−1〈s〉 = tA
n−1〈s

′
〉, we have tA

n 〈s〉 = tA
n 〈s′

〉.

4. A |HX ¬ =(t1, . . . , tn) iff X = ∅.

5. A |HX R(t1, . . . , tn) iff for all s ∈ X we have (tA
1 〈s〉, . . . , tA

n 〈s〉) ∈ RA.

6. A |HX ¬R(t1, . . . , tn) iff for all s ∈ X we have (tA
1 〈s〉, . . . , tA

n 〈s〉) 6∈ RA.

7. A |HX ψ ∧ ϕ iff A |HX ψ and A |HX ϕ.
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8. A |HX ψ ∨ ϕ iff X = Y ∪ Z such that A |HY ψ and A |HZ ϕ.

9. A |HX ∃xnψ iff A |HX (F/xn) ψ for some F : X → A.

10. A |HX ∀xnψ iff A |HX (A/xn) ψ .

Above, we assume that the domain of X contains the variables free in ϕ. Finally, a
sentence ϕ is true in a model A (A |H ϕ) if A |H{∅} ϕ.

From Definition 2.2 it follows that many familiar propositional equivalences of con-
nectives do not hold in dependence logic. For example, the idempotence of disjunc-
tion fails, which can be used to show that the distributivity laws of disjunction and
conjunction do not hold in dependence logic either. We refer to Section 3.3 of [12]
for a detailed exposition on propositional equivalences of connectives in dependence
logic.

Another important distinction between first-order logic and dependence logic is
that A 6|HX ϕ does not always imply that A |HX ¬ϕ.

Example 2.3 Let A be a model with A = {0, 1, 2}. Consider the following team X
of A:

x0 x1 x2
s0 1 2 2
s1 2 1 2
s2 0 1 2

(4)

By Definition 2.2, part 1, we have that A 6|HX x0 = x2, since s0(x0) 6= s0(x2),
and A 6|HX ¬x0 = x2, since s1(x0) = s1(x2). On the other hand, it holds that
A |HX ∃x0(x0 = x2): let F : X → A be the mapping F(s0) = 2, F(s1) = 2,
F(s2) = 2. Then Y = X (F/x0) is the team

x0 x1 x2
s0 2 2 2
s1 2 1 2
s2 2 1 2

(5)

By Definition 2.2, part 1, we have that A |HY x0 = x2, hence; by Defini-
tion 2.2, part 9, A |HX ∃x0(x0 = x2).

Example 2.4 Let A be a model. Consider the following sentence ϕ,

ϕ := ∀x =(x).

Now ϕ is true in A if A |H{∅} ϕ, and A |H{∅} ϕ if and only if A |HY =(x), where

Y = {∅}(A/x) = {s(a/x) : s ∈ {∅} and a ∈ A}.

Therefore, for every a ∈ A, Y contains an assignment s with domain {x} such that
s(x) = a. Since |A| ≥ 2, A 6|HY =(x), whence A 6|H{∅} ϕ. On the other hand, note
that A |H{∅} ¬ϕ if A |H{∅} ∃x(¬ =(x)) if and only if A |H{∅}(F/x) ¬ =(x), for some
F : {∅} → A. Since for all F , the team {∅}(F/x) is nonempty, Definition 2.2, part 4,
implies that, for all F : {∅} → A, A 6|H{∅}(F/x) ¬ =(x), and hence A 6|H{∅} ¬ϕ.

A sentence ϕ is called determined in a model A if either A |H ϕ or A |H ¬ϕ.
Otherwise, ϕ is called nondetermined in A. Next, we define the notions of logical
consequence and equivalence for formulas of dependence logic.
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Definition 2.5 Let ϕ and ψ be formulas of dependence logic. The formula ψ is a
logical consequence of ϕ,

ϕ ⇒ ψ,

if for all models A and teams X , with Fr(ϕ) ∪ Fr(ψ) ⊆ dom(X), and A |HX ϕ we
have A |HX ψ . The formulas ϕ and ψ are logically equivalent,

ϕ ≡ ψ,

if ϕ ⇒ ψ and ψ ⇒ ϕ.

It is worth noting that ϕ ≡ ψ does not in general entail that ¬ϕ ≡ ¬ψ .
For the purposes of this paper, formulas ϕ and ψ are said to be contradictory if,

for all A and X , A |HX ϕ and A |HX ψ implies X = ∅. We have to allow ϕ and ψ
to agree on X = ∅ because, over any model A, the empty team satisfies all formulas
of dependence logic.

Proposition 2.6 For all models A and formulas ϕ of dependence logic, it holds that
A |H∅ ϕ.

Proof See Lemma 3.9 in [12]. �

Let X be a team with domain {x1, . . . , xk} and V ⊆ {x1, . . . , xk}. Denote by X � V
the team {s � V : s ∈ X} with domain V . The following lemma shows that the truth
of a formula depends only on the interpretations of the variables occurring free in the
formula.

Lemma 2.7 Suppose V ⊇ Fr(ϕ). Then A |HX ϕ if and only if A |HX�V ϕ.

Proof See Lemma 3.27 in [12]. �

The following fact (Fact 11.1 in Hodges [7]; see Proposition 3.10 in [12]) is also a
very basic property of all formulas of dependence logic.

Proposition 2.8 (Downward closure) Let ϕ be a formula of dependence logic, A a
model, and Y ⊆ X teams. Then A |HX ϕ implies A |HY ϕ.

On the other hand, the expressive power of sentences of D coincides with that of
existential second-order sentences

(
61

1
)
.

Theorem 2.9 For every sentence ϕ of D there is a sentence 8 of 61
1 such that

for all models A:A |H{∅} ϕ ⇐⇒ A |H 8 . (6)

Conversely, for every sentence 8 of 61
1 there is a sentence ϕ of D such that (6)

holds.

Proof Using the method of Walkoe [13] and Enderton [5] (See Theorems 6.2 and
6.15 in [12]). �

However, Theorem 2.9 does not—a priori—tell us anything about formulas with free
variables. An upper bound for the complexity of formulas of D is provided by the
following result showing that formulas of dependence logic can be compositionally
translated into sentences of 61

1 [12].
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Theorem 2.10 Let L be a vocabulary and ϕ a D[L]-formula with free variables
v1, . . . , vr . Then there is an L ∪ {R}-sentence ψ of 61

1, in which R appears only
negatively, such that for all models A and teams X with domain {v1, . . . , vr },

A |HX ϕ ⇐⇒ (A, rel(X)) |H ψ.

In Kontinen and Väänänen [9] it was shown that also the converse holds.

Theorem 2.11 Let L be a vocabulary, R r-ary, and R /∈ L. Then for every L ∪{R}-
sentence ψ of 61

1, in which R appears only negatively, there is an L-formula ϕ of
dependence logic with free variables v1, . . . , vr such that, for all A and X with
domain {v1, . . . , vr },

A |HX ϕ ⇐⇒ (A, rel(X)) |H ψ ∨ ∀x¬R(x). (7)

Proof See Theorem 4.10 in [9]. Note that the disjunct ∀x¬R(x) is needed on the
right because, by Proposition 2.7, the empty team X = ∅ satisfies all formulas of
dependence logic but ψ need not always be true in the case rel(X) = ∅ (Kontinen
and Väänänen [10]). �

Theorem 2.11 shows that formulas of dependence logic correspond in a precise way
to the negative fragment of 61

1 and are therefore very expressive. On the other hand,
if we restrict attention to formulas that do not contain dependence atomic formulas
as subformulas, we lose much of the expressive power.

Definition 2.12 A formula ϕ of D is called a first-order formula if it does not
contain dependence atomic formulas as subformulas.

Theorem 2.13 Let ϕ be a first-order formula of dependence logic. Then for all A
and X,

1. A |H{s} ϕ ⇔ A |Hs ϕ,
2. A |HX ϕ ⇔ for all s ∈ X: A |Hs ϕ.

In this article our goal is to generalize the following result of Burgess [2] to cover
also open formulas.

Theorem 2.14 Suppose that ϕ and ψ are contradictory sentences of dependence
logic. Then there is a sentence θ ∈ D such that ϕ ≡ θ and ψ ≡ ¬θ .

The proof of Theorem 2.14 is based on the following direct consequence of Theo-
rem 2.9 and the Craig Interpolation Theorem (Craig [4]).

Theorem 2.15 Let ϕ and ψ be contradictory sentences of dependence logic. Let
the vocabulary of ϕ be L and the vocabulary of ψ be L ′. Then there is a first-order
sentence θ in the vocabulary L ∩ L ′ such that ϕ ⇒ θ and ψ ⇒ ¬θ .

Proof See Theorem 6.7 in [12]. �

3 The Main Result

The negation of dependence logic is not the classical negation and hence knowing the
models of ϕ does not completely determine the models of ¬ϕ. Recall that, by Theo-
rem 2.11, the formulas of dependence logic correspond to the downward monotone
classes of 61

1. However, Theorem 2.11 does not, in its formulation, say anything
about negations of open formulas. In fact, for every ϕ, constructed in the proof of
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Theorem 2.11, it is immediate that ¬ϕ is logically equivalent to a first-order formula
of D .

The following result shows that the analogue of Theorem 2.14 does indeed extend
to all formulas of dependence logic.

Theorem 3.1 Let L be a vocabulary and let ϕ and ψ be contradictory L-formulas
of dependence logic with free variables v1, . . . , vk . Then there is an L-formula θ of
dependence logic with the same free variables such that ϕ ≡ θ and ψ ≡ ¬θ .

Proof Let us first assume that there is an L-formula η with free variables v1, . . . , vk
such that

ϕ ⇒ η, (8)

and
ψ ⇒ ¬η. (9)

Define ϕ̂ := ϕ ∨ ∀x =(x) and ψ̂ := ψ ∨ ∀x =(x). In Example 2.4, it was shown
that for every A (recall that |A| is at least 2) and X 6= ∅, A 6|HX ∀x =(x) and also
A 6|HX ¬∀x =(x). This implies that, in every model A, A 6|HX ¬ϕ̂ and A 6|HX ¬ψ̂
for all nonempty teams X . We now claim that the formula θ below is as wanted:

θ := ϕ̂ ∧ (¬ψ̂ ∨ η).

Note that ¬θ ≡ ¬ϕ̂ ∨ (ψ̂ ∧ ¬η). We first show that ϕ ≡ θ . Let A be a model and
X 6= ∅. Note that it suffices to consider teams X 6= ∅ since, by Proposition 2.6,
all formulas of dependence logic are satisfied by the empty team. Let us assume
A |HX ϕ. Then, by (8), A |HX η, and hence A |HX θ . Assume then that A |HX θ .
Then A |HX ϕ̂. Now since A 6|HY ∀x =(x) for all Y 6= ∅, we must have A |HX ϕ.

Let us then show that ¬θ ≡ ψ . Assume A |HX ψ and X 6= ∅. Then A |HX ψ̂ .
Now, by (9), it holds that A |HX ψ̂ ∧ ¬η; hence we have A |HX ¬θ . For the
converse, assume that A |HX ¬θ . Recall that ¬θ ≡ ¬ϕ̂ ∨ (ψ̂ ∧ ¬η). Now
¬ϕ̂ ≡ ¬ϕ ∧ ¬∀x = (x) and since A 6|HY ¬∀x = (x) for all Y 6= ∅, we have
A 6|HY ¬ϕ̂ for all Y 6= ∅. The only possibility is then that A |HX ψ̂ ∧ ¬η implying
A |HX ψ̂ . Since A 6|HY ¬∀x =(x) for all Y 6= ∅, we have A |HX ψ as wanted.

It now suffices to show that for each pair ϕ and ψ of contradictory formulas, we
can construct a formula η satisfying (8) and (9).

Without loss of generality, we may assume that both ϕ and ψ are satisfied in some
model A by some X 6= ∅. Note that if, for example, ϕ ≡ ⊥, we can choose η = ϕ
trivially. By Theorem 2.15 there is a sentence ϕ′ (analogously ψ ′) of 61

1[L ∪ R],
where R k-ary, such that for all models A and teams X with domain {v1, . . . , vk} it
holds that

A |HX ϕ ⇔ (A, rel(X)) |H ϕ′. (10)

A |HX ψ ⇔ (A, rel(X)) |H ψ ′. (11)

By Proposition 2.6, the sentences ϕ′ and ψ ′ are not contradictory: if X = ∅, then
(A, rel(X)) |H ϕ′ and (A, rel(X)) |H ψ ′. However, we can easily exclude these
models by considering the sentences ϕ∗

= ϕ′
∧ χ and ψ∗

= ψ ′
∧ χ , instead where

χ ≡ ∃x R(x). By our assumption, both ϕ∗ and ψ∗ are still satisfiable.
Now, applying the Craig Interpolation Theorem [4], we get a first-order sentence

η such that ϕ∗
⇒ η and ψ∗

⇒ ¬η (cf. Theorem 2.15). Let now η∗(v) be the
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first-order formula η(P(t) \ v = t), that is, the formula in which all occurrences of
subformulas of the form P(t1, . . . , tk) are replaced by formulas∧

1≤i≤k

vi = ti .

Using induction on the construction of η∗ it holds that for all A and a ∈ Ak

(A, {a}) |H η ⇔ A |Hs η
∗, (12)

where s(vi ) = ai , for 1 ≤ i ≤ k. We can now interpret η∗ as a first-order formula
of dependence logic. We claim that, for all models A and teams X , the formula η∗

satisfies the clauses (8) and (9). Let us first show clause (8). Let A be a model and
X 6= ∅. Suppose that A |HX ϕ. By downward closure, we get that, for all s ∈ X ,
A |H{s} ϕ. Therefore, by (10), for all s ∈ X , (A, {(s(v1), . . . , s(vk))}) |H ϕ∗. It
follows that, for all s ∈ X , (A, {(s(v1), . . . , s(vk))}) |H η, and, by (12), that, for all
s ∈ X , A |Hs η

∗. Now Theorem 2.13, part 2, implies that A |HX η
∗ as wanted.

Let us then show that the clause (9) holds. Let A be a model and X 6= ∅. Sup-
pose that A |HX ψ . By downward closure, we get that, for all s ∈ X , A |H{s} ψ .
Therefore, by (11), for all s ∈ X , (A, {(s(v1), . . . , s(vk))}) |H ψ∗ and thus, for all
s ∈ X , (A, {(s(v1), . . . , s(vk))}) |H ¬η. Again, by (12), we get that, for all s ∈ X ,
A |Hs ¬η∗. Now Theorem 2.13, part 2, implies that A |HX ¬η∗ as wanted. �

As discussed in Section 1, Theorem 3.1 shows that the negation of dependence logic
is not a semantic operation; that is, knowing the models of ϕ tells us practically
nothing about ¬ϕ. It is straightforward to show that the connectives → and ↔,
defined in terms of ¬, ∧, and ∨ in the usual way, are also nonsemantical operations.

Corollary 3.2 Let ξ1 and ξ2 be formulas of dependence logic. There are formulas
ϕi and ψi , for 1 ≤ i ≤ 2, such that ϕ1 ≡ ψ1 and ϕ2 ≡ ψ2, but

(ϕ1 → ϕ2) ≡ ξ1

(ψ1 → ψ2) ≡ ξ2

(ϕ1 ↔ ϕ2) ≡ ξ1

(ψ1 ↔ ψ2) ≡ ξ2

Proof Let ϕ2 = ψ2 = ⊥. By Theorem 3.1, we can find formulas ϕ1 and ψ1 such
that

ϕ1 ≡ ψ1 ≡ ⊥,

¬ϕ1 ≡ ξ1, and ¬ψ1 ≡ ξ2. Now it holds that

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ⊥ ≡ ¬ϕ1 ≡ ξ1.

Analogously, we get that ψ1 → ψ2 ≡ ξ2. Finally, note that

ϕ1 ↔ ϕ2 ≡ (¬ϕ1 ∨ ⊥) ∧ (¬ϕ2 ∨ ⊥)

≡ ξ1 ∧ (> ∨ ⊥) ≡ ξ1.

Analogously, we get that ψ1 ↔ ψ2 ≡ ξ2. �

Corollary 3.2 shows that if we are given an implication (respectively, an equivalence)
of which we do not know either the antecedent or the consequent, but only the classes
of models that satisfy the antecedent and the consequent, then we cannot say anything
about the class of models satisfying the implication.
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4 The Case of IF Logic

In this section we formulate Theorem 3.1 for Independence Friendly Logic (IF logic).
We first briefly recall the syntax and semantics of IF logic.

The syntax of IF logic (we use the formulation of Cameron and Hodges [3]) ex-
tends the syntax of FO by slashed quantifiers (∃x/W ) and (∀x/W ), where W is a
finite set of variables. The intuitive meaning, for example, of a formula (∃x/{y})ϕ
is that “there exists x , independently of y, such that ϕ.” Compositional semantics,
similar to Definition 2.2, was defined for IF logic in [7]. We refer to the Appen-
dix of [3] for the truth definition of IF logic and only discuss its similarities and
differences to Definition 2.2. The set Fr(ϕ) of free variables of an IF-formula ϕ
is defined otherwise as for first-order logic, except that we have the new cases:
Fr((∃x/W )ψ)) = W ∪ (Fr(ψ) \ {x}) and Fr((∀x/W )ψ)) = W ∪ (Fr(ψ) \ {x}).

In IF logic, atomic formulas and connectives ∧, ∨, and ¬ are treated just like in
Definition 2.2. With respect to teams with a fixed domain

{x1, . . . , xn},

the meaning of a formula of the form (∃x/W )ϕ, where W ⊆ {x1, . . . , xn}, is that
“there is an x , depending only on variables in the set {x1, . . . , xn} \ W , such that ϕ.”
This can be expressed in dependence logic as

∃x(=(x j1 , . . . , x jr , x) ∧ ϕ), (13)

where {x j1 , . . . , x jr } = {x1, . . . , xn} \ W . Note that if we consider teams over
variables {x1, . . . , xn+m}, the variables xn+1, . . . , xn+m need to be added to for-
mula (13). This simple observation actually marks a difference between IF logic
and D , since, unlike with D , the truth of an IF-formula may depend on the interpre-
tations of variables that do not occur in the formula. For example, the truth of the
formula ϕ

ϕ = ∃x/{y}(x = y) (14)
in a team X with domain {x, y, z} depends on the values of z in X , although z does
not occur in ϕ. This observation shows that it is not possible to translate the for-
mula ϕ into a logically equivalent formula of dependence logic. In fact, Galliani
(personal communication) has shown that it is not possible to define a compositional
meaning-preserving translation of formulas either from IF logic into D , or from D
into IF logic.

We shall next show that a version of Theorem 3.1 can be proved for IF-logic. As
a corollary, we get a (noncompositional) translation of formulas between IF logic
and dependence logic with respect to teams whose domains contain exactly the free
variables of a formula.

Theorem 4.1 Let L be a vocabulary and let ϕ and ψ be contradictory L-formulas
of IF logic with free variables v1, . . . , vk . Then there is an L-formula θ of IF logic
with the same free variables such that for all models A and teams X with domain
{v1, . . . , vk}: A |HX ϕ ⇔ A |HX θ and A |HX ψ ⇔ A |HX ¬θ .

Proof All the properties of dependence logic used in the proof of Theorem 3.1 also
hold for IF logic. In particular, the analogue of Theorem 2.10 for IF-formulas can
be found in Hodges [8]. The formula ∀x =(x) can be replaced, for example, by the
formula

∀x∃y/{x}(x = y),
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which (and its negation) is nondetermined in all structures of cardinality greater
than 1. �

Unlike with dependence logic (Proposition 2.7), it is not clear that Theorem 4.1
holds without the restriction to teams with domain {v1, . . . , vk}. It is an open
question whether the version of Theorem 4.1 holds where “for all X with domain
{v1, . . . , vk}” is replaced by “for all X with {v1, . . . , vk} ⊆ dom(X).”

Theorem 4.1 can be used to show the following translation of formulas between
IF logic and dependence logic.

Corollary 4.2 Let L be a vocabulary. For every L-formula ϕ ∈ D (ϕ ∈ IF)
with free variables v1, . . . , vk , there is an L-formula ϕ∗ of IF logic (respectively,
ϕ∗

∈ D) with the same free variables such that for all models A and X with domain
{v1, . . . , vk}:

A |HX ϕ ⇔ A |HX ϕ
∗,

A |HX ¬ϕ ⇔ A |HX ¬ϕ∗.

Proof We first show how to translate ϕ ∈ D[L] into an IF[L]-formula ϕ∗. By
Theorem 2.10, there are sentences ψ+ and ψ− of 61

1[L ∪ {R}], in which R ap-
pears only negatively, that are equivalent (in the sense of Theorem 2.10) to ϕ and
¬ϕ, respectively. By Theorem 5.2 in [9] (i.e., the analogue of Theorem 2.11 for
IF logic), there are IF[L]-formulas 9+ and 9− equivalent to ψ+ and ψ−, with
v1, . . . , vk free. By Theorem 4.1 there is an IF[L]-formula ϕ∗ such that for all
models A and teams X with domain {v1, . . . , vk}: A |HX ϕ∗

⇔ A |HX 9+ and
A |HX ¬ϕ∗

⇔ A |HX 9−. By the construction, ϕ∗ is a correct translation for
ϕ. For the converse, we proceed analogously; that is, we first apply the translation
of IF[L]-formulas into 61

1[L ∪ {R}]-sentences (see [8]), and then Theorems 2.11
and 3.1. �
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