Notre Dame Journal of Formal Logic
Volume 51, Number 3, 2010

Point-Free Foundation of Geometry
and Multivalued Logic
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Annamaria Miranda

Abstract  Whitehead, in two basic books, considers two different approaches
to point-free geometry: the inclusion-based approach, whose primitive notions
are regions and inclusion relation between regions, and the connection-based
approach, where the connection relation is considered instead of the inclusion.
We show that the latter cannot be reduced to the first one, although this can be
done in the framework of multivalued logics.

1 Introduction

In recent times the interest about the research in the field of point-free geometry has
been growing in different areas. As an example, we quote computability theory, lat-
tice theory, computer science (for a comprehensive survey, see [9]). The basic ideas
of point-free geometry were first formulated by Whitehead in An Inquiry Concerning
the Principles of Natural Knowledge [12] and in The Concept of Nature [13], where
he proposed as primitives the events and the extension relation between events. In-
stead, in order to define the points, the lines, and all the “abstract” geometrical en-
tities, Whitehead proposed the notion of “abstractive class” representing the ability
to imagine smaller and smaller regions. Now, as a matter of fact, these books are
related to mereology (i.e., an investigation about the part-whole relation) rather than
to point-free geometry. So, it is not surprising that later, in Process and Reality [14],
Whitehead proposed a different approach, inspired by De Laguna [2], in which the
topological notion of “contact between two regions” was assumed as a primitive and
the inclusion was defined.

In this paper, we will give a mathematical reformulation of Whitehead’s analysis
(which is philosophical in nature) and this enables us to emphasize that there are
technical reasons leading to the passage from the inclusion-based approach to the
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connection-based one. In fact, one proves that while it is possible to define the
inclusion from the connection relation the converse fails. Moreover, the definition
of point in an inclusion space is questionable. In spite of that, we show that the
inclusion-based approach works well provided that we refer to multivalued logic and
we consider a graded rather than a “crisp” inclusion relation. Indeed, in the resulting
fuzzy structures we call graded inclusion spaces of regions, it is possible to define the
contact relation. Moreover, we can give an adequate notion of point and this enables
us to associate any graded inclusion space with a metric space. This suggests the
possibility of finding a system of axioms in multivalued logic characterizing those
inclusion spaces whose associated metric defines the Euclidean metric space (recall
that there are very elegant approaches to Euclidean geometry metric in nature [1]).
Some of the ideas in this paper were sketched in Miranda and Gerla [5]. A different
metric approach to point-free geometry was proposed in [8].

2 Inclusion Spaces

In [12] Whitehead starts from a class of events and from a relation K among events
called extension. We adopt a different terminology which is related in a more strict
way with the mathematical terminology and with the recent research in point-free
geometry. So we use the word region instead of event and we call inclusion relation
the converse of the extension relation. Also, we prefer to refer to the order relation
< rather than to the strict order. This enables us to reformulate the list of proper-
ties proposed by Whitehead in [12] by the following first-order theory with identity
whose language L< contains only the binary relation symbol <.

Definition 2.1  Consider the following list of axioms:

11 Vx(x <x) (reflexivity)

2 VxVyVz(x <zAz<y)=>x<Yy) (transitivity)

I3 VxVy(x <yAy<x=x=Y) (anti-symmetry)

I4 VzIx(x <2z) (there is no minimal region)
I5 VxVy(x <y=3z(x <z <Y)) (density)

I6 VxVy(Vx'(x’ <x = x' <y)= x <y) (below approximation)

I7 VYxVydz(x <zAy <2) (upward-directed)

I8 Vz3x(z < x) (there is no maximal region).

We call inclusion space a model (S, <) of I1-17, and Whitehead inclusion space, in
brief W-inclusion space, amodel (S, <) of I1-I8. Also, we call regions the elements
of S and inclusion relation the relation <.

Axiom /6 is labeled “below approximation” since it is equivalent to the equality

x =Sup{x’ € S:x" <x}. (1)

In fact, x is an upper bound of the class {x" € S : x’ < x} and, given any upper
bound y of such a class, by /6 we have x < y and this proves (1). Conversely, it is
evident that (1) entails /6.

Then an inclusion space is defined by a nonempty set S and an order relation < in
S with no minimal element, which is dense and upward-directed and in which every
element can be approximate from below. If there is no maximal element for <, then
we obtain a W-inclusion space. A trivial example of W-inclusion space is given by
the set of real numbers with respect to the usual order. Another example, geometrical
in nature, is given by the class of all the closed balls of the Euclidean plane ordered
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by the inclusion relation. A reasonable candidate to represent the idea of region is
the notion of closed regular subsets.

Definition 2.2  Given a topological space, denote by ¢/ and int the closure and the
interior operators, respectively, and put, for every set of points x,

creg(x) = cl(int(x)).
Then we call closed regular, in brief regular, any fixed point of creg.

Definition 2.3 We denote by R the real numbers set, by R” the n-dimensional
Euclidean space, and by RC(R") the class of all the closed regular subsets of R”.

There are several reasons suggesting the choice of the regular sets to represent the
notion of region. As an example, in accordance with our intuition, all the subsets of
R" homeomorphic to a closed ball (with positive radius) are regular sets. Also, the
points and the lines and all the geometrical entities whose dimension is less than n
are not regular and this reflects Whitehead’s aim to define these geometrical notions
by abstraction processes. A useful algebraic property is that the class RC(R") defines
a complete atomic-free Boolean algebra. More precisely, we will consider suitable
subclasses of RC(R™). Indeed, we will consider

1. the class R of all the nonempty bounded and internally-connected elements
of RC(R"),

2. the class R of all the nonempty bounded elements of RC(R"),

3. the class R3 of all nonempty internally-connected elements of RC(R"),

4. the class R4 of all nonempty elements in RC(R"),

where we say that a set x is internally-connected if int(x) is connected.
In the following lemma we list some elementary topological facts.

Lemma 2.4 Let x and y be subsets of a locally connected topological space S.
Then, while in general cl(x N y) # cl(x) N cl(y), in the case x and y are open
subsets such that x Uy = S,

cl(x Ny) = cl(x) Ncl(y). 2)
Equivalently, if x is closed, y is open, and x C y, then
cl(y — x) = cl(y) — int(x). 3)

Finally, if x and y are also regular and cl(y) C int(x), then x — y is a regular set.

Proof To prove cl(xNy) 2 cl(x)Ncl(y) let P be an element in cl(x) Ncl(y). Then,
for every open connected neighborhood u of P we have that u N (x Ny) # <. Indeed
otherwise, since uNx # Fand uNy # & and (uNx)U(uNy) = u, the pair uNx and
u N y should be an open partition of u. This proves that cl(x N'y) 2 cl(x) N cl(y).
Since it is evident that cl(x N y) C cl(x) N cl(y), (2) holds true. To prove (3),
we apply the just proved equality to the open sets y and —x. Finally, assume that
cl(y) C int(x), then

cl(int(x — y)) = cl(int(x) — cl(y)) = cl(int(x)) — int(cl(y)) = x — y,

and this proves that x — y is regular. U
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Lemma 2.5 Let ¢ be a nonempty, closed, regular subset of R" and let b be an open
ball such that cl(b) C int(c). Then ¢ — b is a nonempty, closed, regular subset of
R"™. Moreover, if c is internally-connected, then ¢ — b is internally-connected too.
Finally, if c € Rj, thenc —b e R;,i =1,2,3,4.

Proof By Lemma 2.4, ¢ — b is a regular closed set. Set, for every x, fr(x) =
cl(x) — int(x) = cl(x) N cl(—x). Now, since cl(b) < int(c), the distance p between
fr(c) and b is different from 0. Indeed otherwise, since b is bounded, there is a point
P € fr(b) C cl(b) such that P € fr(c) and therefore P ¢ int(c). Let r be the radius
of b and let b’ be the open ball concentric with b and whose radius is r + p/2. Then
the closure of &’ is contained in ¢ and &’ 2 cl(b). We claim that int(c —b) is the union
of the two overlapping connected sets int(c) — b" and cl(b’) — cl(b) and, therefore,
that it is connected. In fact, it is evident that

int(c — b) = int(c) — cl(b) = (int(c) — b') U (cl(p) — cl(b))

and that, since (int(c)—b")N(cl(b’)—cl(b)) contains all the points in the frontier of »’,
(int(c) = b)Y N (cl(b") —cl(b)) # @. It is also evident that cl(b") — cl(b) is connected.
So we have only to prove that int(c)—5 is connected. Indeed otherwise, there are two
nonempty disjoint open subsets, u and v, in int(c¢) — &’ such that int(c) — b’ = uUo.
Then fr(5’) is contained in u Uv and G = uNfr(b’) and H = v Nfr(b’) are open sets
in fr(b"). Now, since fr(") is connected, then G = @ or H = &. Let us suppose that
G = @. Then u C int(c) —cl(p) and, since int(c) —cl(") is open in int(c), u is open
in int(c). Therefore, u and b’ are two nonempty disjoint open sets in int(c), so u U b’
is disconnected; this is a contradiction (see, for example, Exercise 6.1(c) in [4]).
Thus int(c) — b’ is connected. The remaining part of the proposition is evident. [

The following theorem extends a theorem given in [5].

Theorem 2.6  The structures (R, C) and (R2, C) are W-inclusion spaces and
(R3, ©) and (R4, ) are inclusion spaces.

Proof Trivially, all the considered structures satisfy I/, 12, I3, and I4. To prove
15, let x and y be nonempty regular sets such that x C y. Then, since int(y) is not
contained in x, a point P € int(y) exists such that P ¢ x. Let y’ be a closed ball with
center P such that y’ C int(y) and y’ Nx = & . Now, by Lemma 2.5, z = y —int(y’)
is a nonempty closed regular internally-connected subset such that x C z C y, and
this shows that all the considered structures satisfy 15. To prove 16, let us take two
regions x, y in R;, (i = 1,...,4) and let us assume that all the subregions of x are
contained in y and that x is not contained in y. Then int(x) is not contained in y too.
Let P be a point such that P € int(x) and P ¢ y. Then a real positive number r
exists such that the closure of the ball in R” with center P and radius r, which is an
element of R;, for every i = 1, ..., 4, is contained in int(x) and disjoint from y, a
contradiction.

To verify 17, we observe that, given two regions x and y in the structures (R, C)
and (R3, €) we can consider a closed ball z containing both x and y. Instead, in the
structures (R3, €) and (R4, C) we can set z equal to the whole space. Finally, it is
evident that /8 is satisfied by (R, €) and (R3, €) and it is not satisfied by (R3, <)
and (R4, ©). O

In accordance with such a theorem, we give the following definition.
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Definition 2.7 Given k = 1,...,4, we call a canonical k-inclusion space in R"
the structure (R, C) defined in Theorem 2.6.

3 Contact Spaces

The inclusion relation is set-theoretical in nature and therefore rather unsatisfactory
from a geometrical point of view (moreover, as we will see in Section 4, in the
inclusion-based approach there are several technical difficulties). For this reason
some years after the publication of [12] and [13], Whitehead, in [14], proposed a
different idea based on the primitive notion of connection relation. This idea, topo-
logical in nature, was suggested by De Laguna in [2]. As in the inclusion-based
approach, Whitehead was not interested in formulating the properties of this relation
as a system of axioms and in reducing them at a logical minimum. So a very long
list of “assumptions” was proposed. In this paper we refer to the following system
which is equivalent to the first twelve assumptions (see [7]). We consider a language
L with a binary relation symbol C.

Definition 3.1  Denote by x < y the formula Vz(zCx = zCy) and by x < y the
formula (x < y) A (x # y). Then we call contact theory the first-order theory in L¢
whose axioms are

Cl VxVy(xCy = yCx) (symmetry)
C2 VzaxIy((x < 2) A (y £ 2) A (=xCy))
C3 VxVy3dz(zCx A zCy)

C4 Vx(xCx)
C5 VaVy(x <yAy <x)=x=y)
C6 VxIy(x <y) (there is no maximal region).

We call contact space every model (S, C) of CI-C5 and Whitehead contact space,
in brief W-contact space, every model of CI-C6.

The intended interpretation is that the contact is either a surface contact or an overlap.
As usual, we denote again by C the interpretation of the relation symbol C. It is easy
to prove that in any contact space the relation < is an order relation. As in the case of
inclusion structures, we can define four n-dimensional canonical contact structures.
Indeed, it is possible to prove the following theorem, extending a result of Gerla and
Tortora for the class R (see [0]).

Theorem 3.2  Let Ry, Ro, R3, and R4 be the classes defined in Section 2 and
define the relation C by setting

xCy & xNy #a.

Then (R1,C), (R2, C) are W-contact spaces and (R3, C), (R4, C) are contact
spaces whose associated order relation coincides with the usual inclusion relation.

Proof First, we will prove that in all the considered structures the order relation <
associated with C coincides with the usual inclusion relation. Indeed, if x C y, then
it is evident that for every region z such that z N x # &, then z Ny # &. This proves
that x < y. Conversely, assume that x < y and suppose that x is not contained in
y. Then, since int(x) is not contained in y, there exists a point P € int(x) such that
P ¢ y. Let b be a closed ball with center P such that b C int(x) and bNy = &. So,
b is a region such that bCx holds but bC'y is not true. This contradicts the hypothesis
x <y. Thusx C y.
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It is evident that in all the considered structures C1, C2, C3, and C4 are satisfied.
To prove C5 it suffices to observe that < is interpreted by the set theoretical inclusion.
Finally, it is evident that C8 is satisfied by (R, C) and (R, C) and it is not satisfied
by (R3, C) and (R4, C). O

As in the case of the inclusion spaces, such a theorem enables us to give the following
definition.

Definition 3.3 Given k = 1,2, 3, 4, we call canonical contact k-space in R" the
structure (R, C) defined in Theorem 3.2.

4 About the Definability of the Contact Relation

Let I be an interpretation whose domain is D, a a first-order formula whose free vari-
ables are among x1,...,x, anddy,...,d, € D. Then we write I =« [dy, ..., d;,]
to denote that the elements dj, . . ., d, satisfy a. We call the extension of o in I the
relation R, € D" defined by

Ry ={(d1,...,dn): I =aldi,...,d}

and in such a case we say that R, is definable by o.. As an example, in the inclusion
spaces and in the contact spaces the overlapping relation O is defined by the formula
dz(z < x Az < y). Also, Theorem 3.2 shows that in a canonical contact k-space
the inclusion relation is definable by the formula Vz(zCx = zCy). Conversely, the
question arises whether we can define the contact relation in a canonical inclusion
k-space. A negative answer to this question should give theoretical support to White-
head’s passage from the inclusion-based approach to the contact-based one. We face
this question by the following well-known property of the automorphisms.

Proposition 4.1  Let I be an interpretation of a first-order language and f : S — S
be an automorphism in I. Then

IEoald,....dy ]l & 1 E=alf(d),..., f(d)] “)
for any formula o. whose free variables are among x1, . . ., x, and for any dy, . .., d,
in D.
The following theorem is an immediate extension of a theorem in [5].

Theorem 4.2 [t is not possible to define the contact relation in a canonical inclu-
sion k-space (R, C) fork = 2,3, 4.

Proof The language L < we are interested in has only a binary relation < and there-
fore an automorphism in an interpretation (S, <) is a one-to-one map f : S — §
such that
di =dy & f(d1) = f(d2).

In such a case, in accordance with Proposition 4.1, if a binary relation C in (S, <) is
definable, then

diCdy & f(d)Cf(dr). )
Consider the case k = 4 and, by referring to the two dimensional case, set

r={(x,y) € R*x = 0};
p= ={(x,y) e R?x <0}
p” ={(x,y) € R*|x > 0}.
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Also, define the map g : R> — R? by setting

g((x,y) =@, y+1) if (x,y) erUp”
gl(x,y) =(x,y) otherwise.

This is a one-one map, which is continuous in R* — r and we can visualize as a cut
of the Euclidean plane along the y-axis r and a vertical translation of the half-plane
rUp”. If x € Ry, then g(x) is not an element in Ry, in general. Nevertheless, we
have that int(g(x)) # @ and therefore that creg(g(x)) is a regular bounded nonempty
subset of R?. In fact, since int(x) # @, either int(x) N p> # Gorint(x) N p= # &
and therefore either g (int(x)Np~) or g(int(x)Np~) is a nonempty open set contained
in g(x). We claim that the map f : R4 — R4 defined by setting

f(x) = creg(g(x))
is an automorphism. In fact, it is evident that x C y entails f(x) < f(y). To
prove the converse implication assume that f(x) € f(y) and, by absurdity, that x
is not contained in y. Then int(x) is not contained in y and a closed ball b exists
such that » C int(x) and b Ny = @&. Also, it is not restrictive to assume that b
is either completely contained in p~ or completely contained in p< and therefore
that f(b) = g(b). Now, since g is injective and since » Ny = &, we have that
g(b) N g(y) = @ and therefore int(g(b)) N g(y) = .
On the other hand,

int(g(b)) € g(b) = f(b) € f(x) € f(y) SrUg(y).
Therefore, int(g(b)) < r, an absurdity. This proves that f is an automor-
phism. Consider the closed balls b1 = {(x,y) € R*|(x — 1)> + y> = 1} and
by = {(x,y) € R?|(x + 1)®> + y> = 1}. Then by and b, are in contact in (0, 0)
but their images f(b;) and f(by) are not in contact. Since f transforms a bounded
region into a bounded region, the same proof runs well in the case k = 2.

To examine the case k = 3, consider the circle inversion, that is, the map
g : R? —{(0,0)} = R% — {(0, 0)} defined by setting

g, y) = 0/ + %),/ + %)
and denote by f the function defined by setting, for every nonempty set x,

f(x) = cl(g(int(x) — {(0, 0)})).

We claim that if x is a nonempty internally-connected closed, regular subset, then
f (%) is a nonempty internally-connected regular set, too. Indeed, since the closure
of any open set is a closed regular set, then f(x) is a closed regular set. Moreover,
observe that if z is any open and connected set, then cl(z) is internally-connected.
In fact, assume that there are two nonempty disjoint open sets a and b such that
a U b = int(cl(z)). Then, since z C int(cl(z)), z N a and z N b are disjoint open
sets such that (z N'a) U (z Nb) = z. Since z is connected, we have that either
zNa = @orzNb = &. As an example, assume that z Na = &. Then a is a
nonempty open set disjoint with z and contained in cl(z). This is an absurdum. Now,
on account of the continuity of g, the set g(int(x) — {(0, 0)}) is connected and open.
Thus f(x) = cl(g(int(x) — {(0, 0)})) is internally-connected.

We claim that the map f : R3 — R3 is an automorphism, with respect to the
inclusion. In fact, trivially, if x C y, then f(x) € f(y). Conversely, let us suppose
that x is not contained in y. Then int(x) is not contained in y. Therefore, the closure
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of an open ball, b, is contained in int(x) and disjoint from y U {(0, 0)}. It follows that
f(b) is contained in f(x) but it is not contained in f(y).

On the other hand, the contact relation is not preserved by f. In fact, two closed
balls tangent in (0, 0) are in contact but their images under the map f are not in
contact. (]

Remark 4.3 In accordance with the example in the first part of the proof, we have
that also the properties ‘to be connected’ and ‘to be internally-connected’ are not
definable in the spaces (R3, ) and (R4, O).

It is still an open question whether or not we can define the contact relation in the
space (R1, ) of internally-connected regions. However, we are able to claim that if
we refer to the connected regions the answer is positive.

Theorem 4.4  Denote

1. by R the class of nonempty, closed regular and bounded connected subsets
of R",

2. by JR/3 the class of nonempty, closed regular and connected subsets of R”.
Then (R, C) is a W-inclusion space and (R, C) is an inclusion space. Define the
relation C in R and R as in the cases R1, R, R3, Ra. Then (R}, C) is a W-
contact space and (R, C) is a contact space. Also, in both the structures (R, <)
and (R}, C) the contact relation C is definable. Indeed, we have that xCy if and
only if the least upper bound x V' y exists; that is, C is defined by the formula

B(x <zAy<DAVm(x <mAy<m-—z<m)).

Proof The first part of the proposition is immediate. Let x, y be two elements in
JR/I If x Ny # &, then x U y is connected and, trivially, x Uy = x Vv y. Conversely,
assume that m = x V y exists. We claim that m = x U y. In fact, if P ¢ x U y, then
an open ball b centered in P exists such that b N (x U y) = &. Let b’ be a closed
ball containing x and y. Then b’ — b is an element in R containing x and y. As
a consequence, b’ — b 2 m and therefore P ¢ m. Thus, since by hypothesis m is
connected, x N'y # 0 and therefore xCy. In the case of the structure (R%, C) the
proof is similar. (|

Observe that such a result is in accordance with the fact that the automorphism on
(R3, ©), defined in Theorem 4.2, is not an automorphism in (Rf , ©) since it doesn’t
preserve the connection of a subset. Notice also that analogous results were proved
in a series of basic papers of Pratt and Schoop (see, for example, [11]). In these
papers Pratt refers to a different notion of canonical space.

5 Abstractive Classes and Geometrical Elements in the Inclusion Spaces

While in the point-based approaches to geometry a region is defined as a set of points,
it is not surprising that in point-free geometry a point is defined by referring to a set of
regions. Indeed, Whitehead in [12] defines the points by the following basic notion.

Definition 5.1  Given an inclusion space (S, <), we call an abstractive class any
class A of regions such that

(1) A is totally ordered, that is, for every x, y € A eitherx < y or y < x;
(i1) there is no region which is contained in all the regions in A.
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We denote by AC the set of abstractive classes.

Whitehead’s idea is that an abstractive class A represents an “abstract object” which
is obtained as a “limit” of the elements in A. On the other hand, it is possible that
two different abstractive classes represent the same object. To face such a question,
we define a preorder relation and the corresponding equivalence relation.

Definition 5.2  The covering relation <. is defined by setting, for any A and A;
in AC,

Al <. Ay & Vx € Aydy € A1y <x.
The covering relation <. is a preorder in AC, that is, it is reflexive and transitive.

As is well known, we can obtain an order relation by a suitable quotient of such a
preorder.

Proposition 5.3  Define the relation = by setting
Al=Ar) & Al <. Arand Ay <. Aq.

Then = is an equivalence in AC and the related quotient AC/ = is ordered by the
relation <. defined by setting

[A1] =c [A2] & A1 <c A2
for every pair [A1], [A2] of elements in AC/ =.

Now we are able to give the definition of point remembering Euclid’s definition “A
point is that which has no part.”

Definition 5.4  We call a geometrical element any element of the quotient AC/ =,
that is, any complete class of equivalence modulo =. We call point any geometrical
element which is minimal in the ordered set AC/ = and we denote by Point(S, <)
the set of points of (S, <).

In order to test the idea for which a geometrical element [A] represents the “limit,”
that is, the “intersection” of an abstractive class A representing [A], we consider the
following proposition.

Proposition 5.5  Consider the canonical structure (R;, ©),i = 1,2, 3,4 and the

related set AC; of abstractive classes. Also, consider the map h : AC; — P(R"),
associating every abstractive class A with the related intersection.

h(A) =N{X|X € A}
Then
A <. B = h(A) C h(B).
As a consequence, we can associate every geometrical element [ A] with a subset
k([A]) = h(A)
of R" by obtaining an order-preserving correspondence.
Proof Assume that B covers A. Then for every region X in B there is Y in A such

that X O Y, and therefore, since Y 2 N{Y|Y € A} = h(A), X D h(A). Thus,
h(B) = N{X|X € B} 2 h(A). O
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In Whitehead, there is no hypothesis on the cardinality of the abstractive classes.
Obviously, on account of condition (ii) of Definition 5.1, an abstractive class is nec-
essarily infinite. Now, if we will express the effectiveness of the abstraction process,
then it should be natural to assume the enumerability of the abstractive classes. Due
to the fact that R” is second countable and regular, the following proposition shows
that such a choice is rather reasonable if we will refer to the canonical models. We
say that an abstractive class is sequential if it is the set of elements of an injective,
order-reversing sequence of regions.

Proposition 5.6  In a canonical model all the geometrical elements can be repre-
sented by a sequential abstractive class.

Proof Consider an abstractive class A. Then, since —h(A) is an open set, there is
a sequence B,, of balls in R” such that U,,encl(B,,) = —h(A). Given a ball B, it
is not possible that cl(B,,) N X # @ for every X € A since in such a case the class
{cl(Bm) N X|X € A} of compact sets satisfies the finite intersection property and
therefore

Nxea(Cl(By) N X) = cl(Bn) N (NxeaX) = cl(By) Nh(A) # 2.

Then, for every ball B,,, there is X,, in A such that cl(B,,) N X,, = &. Then, since
cl(By) € — X, we have that Uy, encl(By) € Upen — X5 and therefore that

h(A) = — UneN Cl(Bm) 2 NpueNXm 2 NxeaX = h(A)~

So, NpenXn = h(A). If we set C,y = Ny<im X, We obtain an order-reversing se-
quence of elements in A such that N,enC = Npen Xy = h(A). The sequence Cy,
is not injective, in general. Denote by (A, ),en an injective subsequence of (Cp,)meN
such that NyenA;y = NpenCr . We claim that A is equivalent to (A,),en. In fact,
trivially, (A,)nen dominates A. Conversely, assume that (A,),en is not dominated
by A. Then there is X € A such that no element A, is contained in X. Since A
is totally ordered with respect to the inclusion, this means for every A,, A, 2 X
and therefore 1(A) = N,enA, 2 X. This contradicts the fact that in A there is no
minimal element. O

Obviously, in the cases (R3, C) and (R4, ©) it is possible that #(A) is the empty
set.

Remark 5.7 The map k is not injective, in general. In fact, let P be a point
in the Euclidean plane R? and consider the sequence B(P) = (B,(P))nen of
balls centered in P and with radius 1/n. Then k([B(P)]) = {P}. Assume, for
example, that P = (0,0) and consider the sequences B~ (P) = (B, (P))neN
and BY(P) = (B, (P))nen of balls with radius 1/n and center in (—1/n, 0) and
(1/n, 0), respectively. Then
k(LB(P)]) = k([B~(P)]) = k(LB (P)]) = {P).

On the other hand, [B(P)], [B~(P)], and [B*(P)] are three different geometrical
elements. More precisely, [B™ (P)] <. [B(P)], [BT(P)] <. [B(P)], and [B~ (P)]
is not comparable with [B*(P)]. This emphasizes also that the geometrical element
[(B(P)] is not minimal and therefore that [(B(P)] is not a point with respect to
Whitehead’s definition. Obviously, even if it is intriguing to imagine a universe in

which a Euclidean point P = (0, 0) is split in three different “geometrical elements”
P_ = [B~(P)], P = [B(P)], Py = [B*(P)], this is surely far from Whitehead’s
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aim and from the intuition. More generally, in spite of the fact that the main aim of
Whitehead is to arrive at a good definition of point, the following theorem shows that
Whitehead’s project, as exposed in [12] and [13], fails since no point exists in the
canonical models (we consider as the natural models).

Theorem 5.8  In any canonical inclusion space every geometrical element contains
two noncomparable geometric elements. As a consequence no point exists.

Proof Consider a geometrical element [A] and, in accordance with Proposi-
tion 5.6, assume that A is any sequential abstractive class (A;),en. Given m € N,
since A;; # A4 it is not possible that int(A,;) € A,,4+ since in such a case
Ay = cl(int(Ap)) € cl(Ap+1) = Apmtr- Thenint(A,,) — Aj,41 i a nonempty open
set and we can consider two disjoint closed balls D,, and B,, contained in it. Set
D,, = creg(int(Ap) — Up>mDy);
B, = creg(int(A;,) — Upzm By).
Then, since int(B,,) is contained in int(Ay,) — Uy>m Dy, the interior of int(A,,) —
(Up>mDp) is nonempty and therefore D,, # &. Obviously, (D,,)men is order-
reversing and, since A,, 2 D, , there is no region contained in all the set D,,. This
proves (D,,)men is an abstractive class. In a similar way, we prove that (B,,)meN
is an abstractive class. It is also evident that (A,,)nen covers both (D,,)men and

(B,,)meN, that (D, )men is not dominated by (B,,)men, and (B,,)men is not domi-
nated by (D, )men. O

As we will see, these difficulties do not occur in the case of the contact spaces and
this is a further reason in favor of such an approach.

6 Abstractive Classes and Geometrical Elements in the Contact Spaces

The notion of point in a contact space requires the one of nontangential inclusion.
Observe that we prefer the expression “to have a tangential contact” instead of White-
head’s expression “externally connected.”

Definition 6.1  Given a contact space (S, C), we say that two regions have a tan-
gential contact when

(i) they are in contact,
(ii) they do not overlap.

We say that x is nontangentially included in y and we write x < y provided that
() x isincluded in y,
(jj) there is no region having a tangential contact with both x and y.

The following is a simple characterization of the nontangential inclusion.

Proposition 6.2  The nontangential inclusion is the relation defined by the formula

Vz(zCx = z0y). (6)

Proof We have to prove that the following claims are equivalent:
(a) x < y and if z has a tangential contact with x, then z has not a tangential
contact with y,
(b) if zCx, then z overlaps y.
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In fact, assume (a) and that zCx. Then, since x < y, in the case z overlaps x it is
trivial that z overlaps y. Otherwise, z has a tangential contact with x and therefore,
by (a), z overlaps y. This proves (b).

Assume (b), then trivially x < y. Let z be a region with a tangential contact with
x. Then, by (b), z overlaps y and therefore z has not a tangential contact with x. [

It is possible to prove that in a canonical space
x <y < x Cint(y).

Definition 6.3  An abstractive class in a contact space is a set A of regions such
that

() A is totally ordered by the nontangential inclusion,
(jj) there is no region which is contained in all the regions in A.

Observe that the sequences B~ (P) and BT (P) defined in Remark 5.7 are not ab-
stractive classes since they are not ordered with respect to the nontangential inclu-
sion. The geometrical elements and the points are defined as in Definition 5.4.

Proposition 6.4  Define the maps h and k as in Proposition 5.5. Then, in the struc-
tures (R, C) and (R3, C),

A <. B & h(A) C h(B).

Consequently,
A=, B < h(A) =h(B),

and, therefore, k is an injective map.

Proof Assume that h(A) C h(B), let X be a region in B, and X' € B such that
X' < X. Thenint(X) 2 X’ 2 h(A) and, therefore,

—int(X) N (NyeaY) = Nyea(—int(X) NY) = 2.

Since (—int(X) N Y)ye4 is an order-reversing family of compact sets, this entails
that Yy € A exists such that —int(X) N Yy = &. So X D int(X) 2 Yy. This proves
that A <. B. O

We denote by Point(S, C) the set of points of (S, C). Differently from the case of
the inclusion spaces, we are able to prove that in the canonical spaces (R, C) and
(R2, C), Whitehead’s definition of point works well.

Theorem 6.5  Consider the canonical spaces (R, C) and (R, C) in a Euclidean
space R". Then the points in (R, C) and (R3, C) defined by the abstractive classes
“coincide” with the usual points in R"(i.e., with the elements of R"). More precisely,
the map associating every point P in R" with the geometrical element [(B,,(P))neN]
is a one-to-one map from R" and the set of points in (R;, C),i =1, 2.

Proof Consider the canonical space defined by R and consider the map f : R* —
Point(R1, C) defined by setting, for every P € R", f(P) = [(By(P))nen]. To
prove that f(P) is a point, let B be an abstractive class such that B <. (B, (P))neN-
Then h(B) € h((B,(P))nen) = {P} and therefore, since h(B) # @, h(B) =
h((B,(P))neN). According to Proposition 6.4, this entails that B =, (B, (P)),eN-
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It is evident that the map f is injective. To prove that f is surjective, let
[A] € Point(R1, C) and let P be a point in £(A). Then in accordance with Proposi-
tion 6.4, (B, (P))neN is dominated by A. So f(P) = [(B,(P))uen] = [A]. In the
case of the canonical space associated with Ry, we proceed in the same way. O

Observe that we cannot extend these propositions to the canonical spaces (R3, C)
and (R4, C). This is because in these cases it is possible that the intersection of all
the regions in an abstractive class is empty. For example, consider the abstractive
classes A = (A;)nen and B = (By,),enN defined by

Ap ={(x,y)lx =n,—1/n <y < 1/n},
B, ={(x,y)lx < —n,—1/n <y =1/n}. (7

Then both #(A) = h(B) = @ even if A is not equivalent to B. On the other hand,
our intuition says that the corresponding geometrical elements are two points which
are “at infinity,” in a sense. We can try to find more information on the points in
these spaces by considering some compactification of the space R”. As an example,
consider the open ball OB in the plane R? defined by the inequality x> 4+ y? < 1 and
the homeomorphism e : R> — OB defined by the equations

X y
——— Y= .
VX2 +y2+1 T2+ y2 41

If we denote by CB the closure of OB, then CB is a compactification of R>. Observe
that, given a closed regular subset in R?, its image under the embedding e is a closed
regular subset in OB but it is not, in general, a closed regular subset in CB. Denote
by g the map defined by setting g(X) = cl(e(X)) where X € R4 and consider an ab-
stractive class (X,)nen. Then, since g is an order-preserving operator, (g(X,))neN
is an order-reversing sequence of compact subsets of CB, and therefore we can con-
sider the nonempty compact set Ng(X,). Also, if (¥,),en is an abstractive class
covering (X;,)nen, then (g(¥,))nen is a sequence of subsets covering (g(X;))nen
and therefore Neng(Yn) 2 Npeng(Xy). Then two equivalent abstractive classes
are associated with the same compact subset of CB. This means that it is possible to
associate every geometrical element [(X},),en] in the canonical space (R4, C) with
a nonempty compact subset

s([(Xn)neN]) = Npeng(Xn)

of CB. For example, if X, = {(x,y)|(x — x)> + (y — y)> < 1/n}, then
s(L(Xnnen]) = {e(x, )} If Xy = {(x, y)| = 1/n < y < 1/n}, then s([(Xn)nen])
is the diameter {(x, y)| — 1 < x < 1,y = 0} of CB. If we consider the abstractive
classes A and B defined in (7), then s([A]) = {(1,0)} and s([B]) = {(—1,0)}.
Unfortunately, the map s is not injective. In fact, for example, if we consider the
classes

£=

Co={x,lx=n0=<y=<1/n}, Dy ={x,y)|x=n,-1/n<y=0}, (8)
then these classes are not equivalent while

s([(CaInen]) = s([(Dp)nen]) = {(1, 0)}.

An open question is to find a geometrical interpretation of Whitehead’s points in the
structures (R3, C) and (R4, C).
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7 Multivalued Logic for an Inclusion-Based Approach

As we have seen, there are some troubles in the inclusion-based approach to point-
free geometry (see also [5]). Indeed, in natural models the topological notion of
contact cannot be defined and there are difficulties in defining the notion of point. In
the following we consider the inclusion-based approach moving to the framework of
multivalued logic in order to go over these limits. We refer to first-order multivalued
logics based on Archimedean triangular norms (see, for example, [10]). A continu-
ous triangular norm, in brief a t-norm, is a continuous commutative and associative
operation ® in [0, 1] which is isotone in both arguments and such that x ® 1 = x
for every x in [0, 1]. Every continuous #-norm is associated with the implication
operation defined by setting x — y = Sup{z € [0, 1]|x ® z < y}. We say that a
continuous norm ® is Archimedean if, for any x # 1, lim,_ oox" = 0 where, as
usual, x" is defined by the equations x° = 1 and x"*! = x ® x”. These operations
admit a very interesting characterization. We consider the extended interval [0, 00]
and we set x + 00 = 00 + x = oo and x < oo for every x € [0, co].

Definition 7.1 A map f : [0, 1] — [0, 0] is an additive generator provided
that f is a continuous strictly decreasing function such that f(1) = 0. The pseu-
doinverse f[_” : [0,00] — [0,1] of f is defined by setting, for y € [0, oo],
UG = f7(y)if y € £([0, 1]) and fI=1(y) = 0 otherwise.

The function £~ is continuous and order-reversing; moreover, for every x € S,
0 =1
7 (00) = 0;
A @) = x:
FUIE) =x A 0.

Theorem 7.2  An operation ® : [0, 1] x [0,1] — [0, 1] is a continuous Archi-
medean t-norm if and only if there exists an additive generator f : [0, 1] — [0, co]
such that

x@y=fING@ + FO), )
for every x,y in [0, 1].

In the case of the -norm defined by (9), it is

x =y =TG- F@) v 0). (10)
Given a continuous t-norm ®, we will consider a multivalued logic with logical
connectives A, —, —, two logical constants 0 and 1 and with a modal operator Ct.
The intended meaning of a formula as Ct(a) is ‘a is completely true’. In such a
logic, the set of truth values is [0, 1], and

1. 0 and 1 are interpreted by 0 and 1, respectively,

the conjunction A is interpreted by ®,

the implication — 1is interpreted by the associated implication —,

the negation — is interpreted by the function 1 — x,

Ct is interpreted by the map ct : [0, 1] — [0, 1] such that ct(x) = 1 if x = 1

and ct(x) = 0 otherwise,

6. the universal and existential quantifiers are interpreted by the infimum and
supremum operators, respectively.

AREaIR N
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Given a first-order language, an interpretation / is defined by a domain D and by
associating every constant with an element in D, every n-ary operation name with
an n-ary operation in D, and every n-ary relation name with an n-ary fuzzy relation,
that is, amap r : D" — [0, 1]. As in the classical case, given an interpretation /, a
formula o whose free variables are among xi, ..., x, and d1, ..., d, in D, we can
define the valuation Val(a, di,...,d,;) € [0,1] of @ indy, ..., d, in a truth func-
tional way. We say that dy, ..., d, satisfy a if Val(a, dy, ...,d,) = 1. Given a the-
ory T, we say that I is a fuzzy model of T if Val(a, dy, ...,d,) = 1 foreverya € T
anddjy, ..., d, in D. We call crisp a fuzzy relation assuming only the values 0 and 1
and we identify a classical relation R € D" with the crisp relation cg : D" — [0, 1]
defined by setting cg(dy, ...,d,) = 1if (dy,...,d,) € R and cg(dy,...,d,) =0
otherwise. In other words, we can identify R with its characteristic function cg.

Definition 7.3 Let a be a formula whose free variables are among xi, ..., x,.
Then the extension of o in [ is the fuzzy relation r,, : D" — [0, 1] defined by setting
ro(dy,...,dy) = Val(a,dy, ...,d,) forevery dy,...,d, in D. In such a case we

say that r,, is defined by a.. We call crisp extension of a the extension rcy(,) of Cr(a)
and in such a case we say that rcy(q) is the crisp relation defined by a.

Then the crisp relation defined by a is the (characteristic function of the) relation
{(d1,...,dy) € D"|a is satisfied by dy, . . ., dy}.

In particular, we will consider a first-order language for the inclusion space theory.
Such a language contains the predicate symbol Incl instead of < and the prefix form
is used to define the atomic formulas. Indeed, we will write x < y to denote the
formula Ct(Incl(x, y)). An interpretation of such a language is defined by a pair
(S, incl) where S is a nonempty set and incl : S x S — [0, 1] a fuzzy binary relation.
Then, the interpretation of < (we call the crisp inclusion associated with incl) is the
(characteristic function of the) relation defined by setting

x <y <% incl(x,y) = 1. (11)
Let E(x, y) denote the formula Incl(x, y) A Incl(y, x); then the interpretation of

E(x,y) (we call the graded identity associated with incl) is the fuzzy relation
eq: S x § — [0, 1] defined by setting

eq(x, y) = incl(x, y) ® incl(y, x). (12)

In particular, we will consider the models of the following three formulas corre-
sponding to the first three axioms in Definition 2.1.

Definition 7.4  We call ®-graded preordered set a fuzzy model (S, incl) of the
following theory:

Al Vx(Incl(x, x)),

A2 VxVyVz((Incl(x, z) A Incl(z, y)) — Incl(x, y)).

Then a fuzzy relation incl is a ®-graded preorder if and only if
al incl(x,x) =1, (reflexivity)
a2 incl(x, y) ®incl(y, z) <incl(x, z), (transitivity)
forevery x, y,z € S.

In order to simulate Whitehead’s definition of point, we will define the notion of
pointlikeness, a property inspired to Euclid’s definition of point as minimal element,
that is, an element x such that, for every x’, x’ < x entails x’ = x.



398 Coppola, Gerla, and Miranda

Definition 7.5 We call the pointlikeness property the property expressed by the
formula which we denote by Pl1(x),

Vx'(x" < x — E(x,x)).

The interpretation of Pl is the fuzzy subset of points pl defined by

pl(x) = Inf{incl(x, x)|x" < x}. (13)
Equivalently, we can obtain pl(x) by the formula
pl(x) = Inf{incl(x’, x")|x" < x,x” < x}. (14)

The formula Pl(x) enables us to express the next two axioms. The former claims
that if two regions x and y are points (approximately), then the graded inclusion is
symmetric (approximately).

A3 Pl(x) API(y) — (Incl(x, y) — Incl(y, x)).

Such an axiom is satisfied if and only if, for every x and y,

a3 pl(x) ® pl(y) < (incl(x, y) — incl(y, x)).

The latter claims that every region x contains a point:

A4 VYxIx'((x' < x) API(X).

Such an axiom is satisfied if and only if for every x,

a4  Sup,_.plx) =1;

that is, if al;d only if for every x,

Ve > 0 there is x’ < x such that pl(x’) > 1 — . (15)

Definition 7.6  We call ®-graded inclusion space of regions, in brief, graded in-
clusion space, every model of AI-A4.

8 Graded Inclusion Spaces and Hemimetrics

To obtain suitable examples of graded inclusion spaces it is useful to introduce the
notion of hemimetric space.

Definition 8.1 A hemimetric space is a structure (S, d) such that S is a nonempty
setandd : § x § — [0, oo] is a mapping such that, forall x, y,z € S,

dl d(x,x)=0;

42 d(x,y) <d(x,2)+d(z,y).

Then, a metric space is a hemimetric space which is symmetric, that is, such
that d(x,y) = d(y, x), for every x,y € S, and such that d(x,y) = 0 only if
x = y. An example, we call the difference hemimetric, is obtained by assuming
that S is a nonempty set, f : § — [0, 00) is a map such that Inf(S) = 0, and
d(x,y) = (f(x) — f() v 0. The hemimetric spaces are related with the preorders
in the following way.

Proposition 8.2  Let (S, d) be a hemimetric space. Then the relation < defined by
setting

x<y&dix,y)=0
forany x,y € S is a preorder such that d is order-preserving with respect to the first
variable and order-reversing with respect to the second variable. Conversely, let <
be any preorder in a set S and define the mapping d : S x S — [0, oo] by setting
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d(x,y)=0ifx <yandd(x,y) = 1 otherwise. Then (S, d) is a hemimetric space
whose associated preorder is <.

For example, the preorder defined by a difference hemimetric is such that

x<y<& f(x) < fO).
This means that < is linear and, if there is m € § such that f(m) = 0, then m is a
minimum in (S, <).

Definition 8.3 Given a hemimetric d and x € S, we call the diameter of x the
number
d(x) = Sup{d(x1, x2)[x1 < x,x2 < x}. (16)

Equivalently, since d is order-preserving with respect to the first variable,
d(x) = Sup{d(x, y)ly < x}. A7)

This means that all the atoms have diameter zero. Also, if a minimum 0 € § exists,
then

o(x) =d(x,0). (18)
Indeed, for every y < x, d(x,y) < d(x,0)+d(0,y) = d(x,0).

In the case (S, d) is a metric space, then the associated preorder is the identity
relation and therefore all the regions are atoms and all the diameters are equal to
zero. In the case of the difference hemimetric we have that d(x) = f(x). When the
hemimetric space is defined by a preorder with no minimum, we have that 6(x) = 0
if x is an atom and J(x) = 1 otherwise. The following proposition shows that the
notion of hemimetric is “dual” of the one of graded preorder.

Proposition 8.4  Let f : [0, 1] — [0, +00] be an additive generator of a t-norm Q.
Then for every hemimetric d : S x § — [0, o0] the fuzzy relation incl defined by
setting

incl(x, y) = 11 (x, y)) (19)
is a ®-graded preorder. Moreover,
pl(x) = fIH @) (20)

Conversely, letincl : S x S — [0, 1] be a ®-graded preorder and let d be defined
by setting

d(x,y) = f(incl(x, y)). (21)
Then d is a hemimetric and

d(x) = f(pl(x)). (22)

Proof Trivially, incl satisfies al. To prove a2 it is enough to take x, y, z such that
d(x,y)and d(y, z) € f([0, 1]). In such a case,

incl(x, y) ® incl(y, z) = £~ (d(x, ) ® f~1(d(,2))
= UGG AC ) + A, 2)
= A (x, y) +d(y,2)) < A, 7)) = incl(x, 2).

Equation (20) is immediate since £~ is continuous and order-reversing.
Conversely, define d by (21). Then it is immediate that d(x, x) = 0. Moreover,
since
incl(x, y) ® incl(y, z) <incl(x, 2),
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we have that
f(@ncl(x, y) ® incl(y, z)) > f(incl(x, 2)),
and therefore, in accordance with the definition of ®,
SIS Ginel(x, y)) + £ (incl(y, )] = f (incl(x, 2)).
Now, if f(incl(x, y)) + f(incl(y, 2))) € f([0, 1]) = [0, £(0)], we obtain that

f(incl(x, y)) + f(incl(y, z)) > f(incl(x, 2)).

Otherwise, f(incl(x, y)) + f(incl(y, z)) > f(0) > f(incl(x, z)). In both the cases
this proves the triangular inequality.
Finally, (22) is immediate since f is continuous and order-reversing. t

The following definition individuates the hemimetrics corresponding to the ®-graded
inclusion spaces (see also [3]).

Definition 8.5 A hemimetric space of regions is a hemimetric space (S, d) such
that for every x and y,

d3 |d(x,y) —d(y,x)| <d(x) +4(y),

dd Ve > 03x' <x,6(x)) <e.

A difference hemimetric d(x, y) = (f(x) — f(»)) V 0 is an example of hemimetric
space of regions. Indeed d4 is trivial and

ld(x,y) =d(y, )| = |f(x) = fODI = [f O+ [f D] = dx) + ().
Let (S, <) be a preordered set with no minimum and in which every element contains
an atom. Then the associated hemimetric is a hemimetric space of regions. Indeed

d4 are immediate. To prove d3 observe that in the case |d(x, y) — d(y, x)| # O the
elements x and y are comparable and x # y. Assuming, for example, that x < y,

ld(x,y) —d(y, )| =d(y,x) =1=05(y) < d(x) +(y).

Theorem 8.6 Let f : [0, 1] — [0, +00] be an additive generator of a t-norm Q.
Then, for every hemimetric space of regions (S, d), the fuzzy relation incl defined by
setting

incl(x, y) = f171d(x, y)) (23)
defines a ®-graded inclusion space of regions. Conversely, let (S, incl) be a ®-
graded inclusion space of regions and letd : S x S — [0, +00] be defined by setting

d(x,y) = f(incl(x, y)). (24)
Then (S, d) is a hemimetric space of regions.

Proof Let incl be defined by (23). Then it is immediate that (S, incl) satisfies A4.
To prove A3, at first we observe that, for a, b, ¢ positive real numbers,

lanc—bAc|<|la—bl|Ac;la+b)Ac<anc+bArec.

Also, it is not restrictive to assume that incl(x, y) > incl(y, x) and therefore that
d(x,y) =d(y,x). Then

(incl(x, y) — incl(y, x)) = 71 (f(incl(y, x)) — f(incl(x, y)))
= N NA G, 0) = £, v))))
= Uy, x) A £0) —d(x, y) A £O)).
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Moreover, because of the definition of ®,
pl(x) @ pl(y) = 110G © I H60))
= NGO + FFNG0))))
= UG A £0) +6(y) A £(O0)).
On the other hand, by hypothesis,
d(y,x) —d(x,y) <do(x)+d(y)

and, therefore,

d(y,x) A f0) —d(x,y) A f(0) = (d(y, x) —d(x,y)) A f(0)
= (0(x) +6(3) A f(0) = d(x) A f(0) +(y) A f(0).

Since fI=!is order-reversing,

(incl(x, y) — incl(y, x)) = 17U (y, x) A £(0) = d(x, y) A £(0))
> FIEUG(x) A F0) +6(y) A £(0)) = pl(x) ® pl(y).

To prove A4, by (15) we have to prove that Ve > O there is x’ < x such that
FIEU@G((x)) = 1 — e, that is, such that 6(x) < f(1 — €). This is an immediate
consequence of d4.

Conversely, let d be defined by (24). Then d4 is immediate. To prove d3 observe
that by a3

N EL) + FEIG)) < FH(f Ginel(y, x)) — f(incl(x, y))) v 0).

Therefore,

Fplx)) + f(Pl(y)) = (f(@ncl(y, x)) — f(incl(x, y))).
This entails d3. O

9 Defining the Points in a Graded Inclusion Space of Regions

We obtain the notion of point in a graded inclusion space by extending the pointlike-
ness property to the abstraction processes.

Definition 9.1  Given a graded inclusion space, we call abstraction process any
sequence (pn)neN Of regions which is order-reversing with respect to the order as-
sociated with the graded inclusion. We extend the pointlikeness property to the ab-
straction processes by setting

pl((pn)neN) = SUPnPI(Pn) (25)

and we say that (p,).eN represents a point if pl({p,)nen) = 1. We denote by Pr the
class of abstraction processes representing a point.

Observe that A4 enables us to prove that every region “contains” an abstraction pro-
cess representing a point and therefore that Pr # &. The following theorem shows
that the class of abstraction processes representing points is a pseudometric space.
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Theorem 9.2  Let (S, incl) be a ®-graded inclusion space and d' the associated
hemimetric. Then the map d : Pr x Pr — [0, oo] obtained by setting

d({Pn)neNs (Gn)neN) = nlin;o d/(pn: qn)s (26)
defines a pseudometric space (Pr, d).

Proof To prove the convergence of the sequence {d’'(pn, qn))nen, let n and k be
natural numbers and assume that n > k. Then, since d’(gk, gx) < J(qx) and

d'(pu, pr) =0,
d' (pn, qn) < d'(pn, px) +d' (P, qr) + d'(qk, gn) < 6(qr) + d'(pk, qi),
and, therefore,

d'(pn> qn) — d'(pr, qr) < 9(qw).
Likewise, since d’(pk, pn) < 6(px) and d’'(gn, qx) = 0,

d'(pi, qx) < d'(p, pn) + d' (pn> gn) +d'(qn> qk) < d'(pus qn) + 9(pr),
and, therefore,
d'(p, qx) —d'(pn, qn) < 9(pi).
This entails
d"(Pn» qn) — d'(pr, qr)| < max{d(qx), d(pr)}.
Obviously, in the case n < k,

ld"(pns qn) — d'(pk, qi)| < max{d(gn), (pn)}.

Thus,
ld' (P, gn) — d'(pr, qi)| < max{6(qn), 6(pn), (qr), 5(pi)}.
The convergence of the diameters entails that (d’(pn, gn))nen is a Cauchy sequence.
It is evident that d({pn)neN, (Pn)nen) = 0 and that d satisfies the triangular in-

equality. To prove the symmetry, observe that, by d3, |d(pn, gn) — d(qn, pn)| <
d(pn) + d(gn) and that lim,, , oo 6(py) + d(gn) = 0. U

Such a proposition enables us to associate any ®-graded inclusion space with a met-
ric space. Indeed, recall that the guotient of a pseudometric space (X, d) is the metric
space (X, d) defined by assuming that

1. X is the quotient of X modulo the relation = defined by setting x = x’ if and
only if d(x, x") =0,
2. d([x], [yD) = d(x, y) for every [x], [y] € X".

Definition 9.3  We call metric space associated with a graded inclusion space
(S, incl) the quotient (Pr, &) of the pseudometric space (Pr, d). We call point any
element in Pr.

Then, the metric space (Pr, d) associated with a graded inclusion space (S, incl) is
obtained

1. by starting from the class Pr of abstraction processes;
2. by setting Pr equal to the quotient of Pr modulo the equivalence relation =
defined by

(Pn)neN = (qn)neN & nlggo incl(py, gn) = 1;
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3. by defining d : Pr x Pr — [0, oo] by the equation,
d(P, Q) = lim_f(incl(p, qn)) @7)

where P = [(pn)nen] and Q = [{gn)nen] are elements in Pr.

10 In a Canonical Graded Inclusion Space the Connection is Definable

The more famous hemimetric is the excess measure usually considered in literature
to define the Hausdorff distance.

Definition 10.1  Given a metric space (M, d) the excess measure is the map
e: P(M) x P(M) — [0, oo] defined, for every pair x and y of subsets of M, by
setting

e(x,y) = Suppc Infoe,d(P, Q). (28)
In [3] the following proposition is proved.

Proposition 10.2  The excess measure defines in each class R1, Ra, R3, R4 a
hemimetric space of regions. Consequently, if f : [0, 1] — [0, +oc] is an addi-
tive generator of ®, the function

incl(x, y) = f17(e(x, y))
is a @-graded inclusion space. The induced order is the usual set theoretical inclu-
sion and the pointlikeness property is defined by

pl(x) = ()

where |x| is the usual diameter in a metric space.

As an example, by setting f(x) = Log(x), we have that ® is the usual product and
the equation

incl(x, y) = 107¢%Y)
defines a ®-graded inclusion space in each class R, R2, R3, Ra.

Definition 10.3 Given i € {1, 2, 3, 4}, the ®-graded inclusion space (R;, incl) is
called canonical i-space.

We will show that, differently from Whitehead’s inclusion spaces, in a ®-graded
inclusion space we can define the contact relation by a formula expressing, in a
sense, the overlapping relation. First, we have to prove the following two lemmas.

Lemma 10.4  Consider the ®-graded inclusion spaces (R, incl) associated with
the excess and define C by setting xCy if and only if x Ny # @. Then for every pair
of bounded regions x,y € R;, the following are equivalent:
() xCy,
(Gj) for every 0 < € < 1, a region z in R; exists such that incl(z, x) > € and
incl(z, y) > €.

Proof (j) = (jj) Let P be apointinx Ny and e suchthat0 < ¢ < 1. Then, since
x is regular, the open ball b centered in P and with diameter f(¢) has a nonempty
intersection with int(x). Consequently, the set z = cl(int(x) N b) is a nonempty
regular, closed, bounded subset of R” and we have e(z, y) < e(cl(b),y) < f(e).
So, incl(z, x) = 1 and incl(z, y) = fI=(e(z, y)) = fI=U(f(€)) = €. Notice that
if x is internally connected then z is internally connected.
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(Gj) = () Since both the regions x and y are bounded, to prove that x Ny # & it
is sufficient to prove that for every natural number k there are two points P € x and
Q € y such that d(P, Q) < 1/k. Now, set € = fI=1(1/2k) and let z be a region
such that

incl(z, x) = fI7(e(z, x)) = e = fI71(1/2k), and
incl(z, y) = I e(z, y) = e = 1711 /2k).

Now, if Z is a point in z, then

ez, x0) = ez, ) = f171(1/2k), and
ez, y) = e ) = 710260,
and, therefore,
e(Z,x) < 1/2k and e(Z, y) < 1/2k.
Let P e x and Q € y suchthate(Z,x) =d(Z, P)and e(Z, y) = d(Z, Q). Then
d(P,Q) <d(P,Z)+d(Z,Q)=e(Z,x)+e(Z,y) <1/k.
O

Lemma 10.5 Denote by Bounded(x) the formula —~Ct(—Pl(x)). Then in any ®-
graded inclusion spaces (R;, incl), Bounded(x) is satisfied by a region r at degree
1 if and only if |r| < f(0).

Proof Observe that the formula —Ct(—Pl(x)) is interpreted by the fuzzy set
I—ct(1—pl(x)) and that 1 —ct(1—pl(r)) = 1 & ct(1—pl(r)) =0 1—pl(r) # 1
< plr) #0 < |r| < f(0). O

We denote by bounded the fuzzy subset interpreting the formula Bounded(x).

Theorem 10.6  Denote by O(x, y) the formula 3z(Incl(z, x)) A Incl(z, y)) and by
C(x, y) the formula,

3x'3y’'Ct((Bounded(x') A Bounded(y") A (x" < x) A (Y < y) A O(X', y)).

Then in all the graded inclusion spaces (R;, incl) the contact relation is definable by
C(x,y). In (R, incl) and (R, incl) the contact relation is definable by the formula

Ct(O(x, y)).

Proof Assume that the two regions r and r’ satisfy C(x,y). Then there are
r < randr’ < r’ such that bounded(r) = 1, bounded(r’) = 1 and Sup{incl(z, r)
® incl(z, r')} = 1. In accordance with Lemma 10.4, this is equivalent to say that r
is connected with " and therefore that r is connected with r'.

Conversely, assume that rCr’. Then a point P exists in r N r’. Let b be an open
ball centered in P and with diameter less than f(0). Then, since x and y are closed
and regular, b Nint(r) # @ and b N int(r") # @. This entails that » = cl(b N int(r))
and r’ = cl(b N int(r")) are nonempty elements in R; whose diameter is less than
f(0). Since P € r Nr/, by Lemma 10.4, Sup{incl(z, r) ® incl(z, ")} = 1. Then
the formula C(x, y) is satisfied by r and r’. The remaining part of the theorem is
evident. (]
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