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Axiomatizing the Logic of Comparative Probability

John P. Burgess

Abstract Often where an axiomatization of an intensional logic using only
finitely many axioms schemes and rules of the simplest kind is unknown, one
has a choice between an axiomatization involving an infinite family of axiom
schemes and one involving nonstandard “Gabbay-style” rules. The present note
adds another example of this phenomenon, pertaining to the logic comparative
probability (“p is no more likely than q”). Peter Gärdenfors has produced an ax-
iomatization involving an infinite family of schemes, and here an alternative us-
ing a “Gabbay-style” rule is offered. Both axiomatizations depend on the Kraft-
Pratt-Seidenberg theorem from measurement theory.

1 Choice Conjecture

In axiomatizing nonclassical extensions of classical sentential logic one tries to make
do, if one can, with adding to classical sentential logic a finite number of axiom
schemes of the simplest kind and a finite number of inference rules of the simplest
kind. The simplest kind of axiom scheme in effect states of a particular formula P
that for any substitution of formulas for atoms the result of its application to P is to
count as an axiom. The simplest kind of one-premise inference rule in effect states of
a particular pair of formulas P and Q that for any substitution of formulas for atoms,
if the result of its application to P is a theorem, then the result of its application to
Q is to count as a theorem; similarly for many-premise rules. Such are the schemes
and rules of all the best-known modal and tense logics, for instance.

Sometimes it is difficult to find such simple schemes and rules (though it is usually
even more difficult to prove that none exist). In that case one may resort to less simple
schemes or less simple rules. There is no generally recognized rigorous definition of
“next simplest kind” of scheme. (One fact that makes a rigorous definition difficult
is that, if the logic in question is axiomatizable at all, which is to say, if the set of
formulas wanted as theorems is recursively enumerable, then by Craig’s trick one
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can always get a primitive recursive set of schemes of the simplest kind, even if one
cannot get a finite set. Intuitively, some primitive recursive sets are much simpler
than others, but it is difficult to reduce this intuition to a rigorous definition.)

Neither is there any generally recognized definition of “next simplest kind” of
rule, and hence there is no fully rigorous enunciation of the choice conjecture, the
conjecture that schemes of the next simplest kind can always be avoided in favor of
rules of the next simplest kind and vice versa. Nonetheless, there are cases where
intuitively one does recognize that the schemes or rules in a given axiomatization are
only slightly more complex than the simplest kind, including cases where one does
have a choice between adopting slightly-more-complex-than-simplest schemes and
adopting slightly-more-complex-than-simplest rules.

In tense logic early examples of slightly more complex rules are found in [2] and
[3]: there is one example of the embarrassed use of such rules in the former, and
many examples of the enthusiastic use of such rules in the latter and its sequels.
Accordingly the rules in question have come to be called “Gabbay-style” rules. A
typical such rule reads “from A(p) → B to infer B, provided the atom p does not
occur in B,” and intuitively adopting such a rule serves many of the same purposes
as would be served by introducing sentential quantification and adopting as an axiom
∃p A(p). Alternatives to the use of such rules in [2], involving instead slightly more
complex schemes, were subsequently found to be possible; see [6].

The aim of the present note (a kind of very belated sequel to [1]) is to encourage
work toward a rigorous statement and proof or disproof of the choice conjecture by
making available a case study, another example (known to the author since the middle
1970s, but not previously published) where one has a choice between slightly more
complex than simplest schemes and “Gabbay-style” rules. The nonclassical operator
whose logic is to be considered here is that of comparative probability, “p is more
probable than q,” as in [4]. There an axiomatization involving a scheme of slightly-
less-than-simplest kind is proved complete using the results of [5], an early classic
of measurement theory. Here an alternative involving a “Gabbay-style” rule, also
adapting to the context of nonclassical sentential logics ideas from that classic paper,
will be offered.

2 Formal System

The formal language will have the symbols of classical sentential logic, including
the constant false ⊥, and one more two-place connective ≤. The operator ≤ is un-
derstood to bind more tightly than truth functional operators, so that, for instance,
¬A ≤ B means ¬(A ≤ B) rather than (¬A) ≤ B. Formulas not involving the new
connective, which is to say, truth-functional compounds of atoms p, q, r, . . . , will
be called classical formulas; formulas of type A ≤ B with A and B classical will be
called comparisons, and truth-functional compounds of comparisons will be called
probabilistic formulas. To keep things simple, these last will be the only formulas
admitted as axioms and theorems.

As axioms we add to classical logic (that is to say, to the set of all probabilis-
tic formulas that are substitution instances of classical tautologies) all probabilistic
formulas of any of the following forms:

(A1) A ≤ B where A → B is a tautology;
(A2) A ≤ B ∧ B ≤ C → A ≤ C ;
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(A3) A ≤ B ∨ B ≤ A;
(A4) A ≤ B → (A ∨ C) ≤ (B ∨ C)

where ¬(A ∧ C) and ¬(B ∧ C) are tautologies;
(A5) (A ∨ C) ≤ (B ∨ C) → A ≤ B

where ¬(A ∧ C) and ¬(B ∧ C) are tautologies;
(A6) ¬((¬⊥) ≤ ⊥).
Here (A1) is not a scheme of the simplest kind as “simplest kind” was defined above,
but it could be replaced by finitely many such schemes in known ways. The replace-
ments would be

(¬(A → B)) ≤ ⊥ → A ≤ B

(¬(A → B)) ≤ ⊥ → ((¬A) ≤ ⊥ → (¬B) ≤ ⊥)

and finitely many others, each of the form (¬C) ≤ ⊥ where as the finitely many
C involved can be taken the axioms of any of the usual axiomatizations of classical
sentential logic. Again (A5) and (A6) are not literally of the simplest kind, but given
(A1) or axioms yielding it, (A5) and (A6) can be replaced by the following:

(B ∧ C) ≤ ⊥ ∧ A ≤ B → (A ∨ C) ≤ (B ∨ C)

(A ∧ C) ≤ ⊥ ∧ (A ∨ C) ≤ (B ∨ C) → A ≤ B.

As rules add to modus ponens (which, given that we are taking all classical tautolo-
gies as axioms, will permit inference from any premises to any conclusion that is a
classical tautological consequence thereof) the following rule of polarizability:
(R1) From (p ∧ A) ≤ (¬p ∧ A) ∧ (¬p ∧ A) ≤ (p ∧ A) → B

to infer B, provided p does not occur in A or B.

This is not literally a “Gabbay-style” rule in the sense defined above, because of
the mention of the absence of p from A as well as from B, but in our context it is
equivalent to the following:

From (p ∧ A) ≤ (¬p ∧ A) ∧ (¬p ∧ A) ≤ (p ∧ A) → (A ≤ A → B)
to infer A ≤ A → B, provide p does not occur in A ≤ A → B.

As usual a proof is a sequence of probabilistic formulas each of which is either an
axiom or follows from earlier items in the sequence by application of one of the
rules, a theorem is any formula appearing in a proof, and a probabilistic formula
(respectively, set of such formulas) is consistent if its negation (respectively, the
negation of the conjunction of its elements) is not a theorem.

If classical formulas A and B are tautologically equivalent, then so are any pair
of C(A) and C(B) of classical formulas that are alike except for the former having
occurrences of A where the latter has occurrences of B. If D(A) and D(B) is another
such pair, then C(A) ≤ D(A) and C(B) ≤ D(B) are provably equivalent using
axioms (A1) and (A2). It follows that if P(A) and P(B) are probabilistic formulas
that are alike except for the former having occurrences of A where the latter has
occurrences of B, then they are provably equivalent also, a result to be called the
replacement lemma.

3 Probabilistic Models

A model for our logic is a triple (U, π, V ) consisting of a Boolean algebra U , a
probability measure π on it, and an assignment V of elements of the algebra to atoms.
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The valuation extends in the usual way to an assignment, by abuse of language also
denoted V , of elements of the algebra to truth-functional compounds of atoms. A
formula A ≤ B is true in the model if and only if π(V (A)) ≤ π(V (B)), and the
assignment of truth values extends in the usual way to truth-functional compounds
of such formulas.

A formula is valid if and only if it is true in all models and a formula (respectively,
set of formulas) is satisfiable if and only if it is true (respectively, all its elements are
true) in some model. The proof of the soundness theorem, stating that all theorems
are valid, is tedious but routine, and left to the reader. What remains to be proved
is the completeness theorem, stating that all valid formulas are theorems, or equiva-
lently, that any consistent formula (equivalently, any consistent finite set of formulas)
is satisfiable.

A (classical or probabilistic) formula involving only the alphabetically first n
atoms p1, . . . , pn will be called an n-formula. For purposes of proving completeness
we will need to distinguish several special classes of n-formulas and sets thereof, as
follows:

Class α(n): Conjunctions of form (¬)p1 ∧ · · · ∧ (¬)pn . Call the elements of α(n)
in alphabetically order X1, . . . , X N , where N = 2n .

Class β(n): Disjunctions of elements of α(n), with the disjuncts in alphabetically
order and no disjunct repeated. The elements of β(n) are to be understood as includ-
ing the “empty disjunction” ⊥. Every classical n-formula is tautologically equivalent
to an element of β(n), its disjunctive normal form.

Class γ (n): Comparisons A ≤ B of elements A and B of β(n). By the replace-
ment lemma, every comparison that is an n-formula is provably equivalent to an
element of γ (n).

Class δ(n): Negations ¬(A ≤ B) of elements of γ (n).

Class ε(n): Conjunctions of elements of γ (n) and δ(n).

Class ζ(n): Disjunctions of elements of ε(n). Every probabilistic n-formula is
equivalent to an element of ζ(n). Moreover, such a disjunction will be consistent
(respectively, satisfiable) if and only if one of its disjuncts is consistent (respectively,
satisfiable). Hence to prove completeness it suffices to show (for every n) that every
consistent element of ε(n) is satisfiable.

Class ξ(n): Consistent sets of elements of γ (n) and δ(n). Since a finite set is
satisfiable if and only if the conjunction of its elements is, to prove completeness it
suffices to show than every element of ξ(n) is satisfiable.

Class η(n): Maximal elements of ξ(n). Elements of η(n) will contain all formulas
of classes γ (n) and δ(n) that are theorems of our logic. These will include the formu-
las ⊥ ≤ X i for all i , these being theorems by (A1), as well as ¬X1 ∨ · · · ∨ X N ≤ ⊥,
which is a theorem by (A6) and the replacement lemma. Since any element of ξ(n)
can be extended to an element of η(n) by the usual argument (Lindenbaum’s lemma),
to prove completeness it suffices to show that any element of η(n) is satisfiable.

4 Inequality Systems

Any element of any of the above-named classes has an algebraic translation, ob-
tained by replacing each X i by an indeterminate xi and ⊥ by 0 and ∨ by +. The
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algebraic translation H∗ of an element H of η(n) will be a system of inequalities
(and negated inequalities) containing 0 ≤ xi for all i , as well as ¬x1 +· · ·+ xN ≤ 0.
The reader can verify that if such an H is satisfiable, then H∗ has a solution
x1 = a1, . . . , xN = aN in real numbers. (Given a model (U, π, V ) in which every
element of H is true, taking xi = π(V (X i )) gives a solution of H∗.)

The converse also holds. Given such a solution the ai are each nonnegative and
their sum a is positive. We can then obtain a model in which every element of H
is true by considering: (i) the Boolean algebra U whose elements are equivalence
classes [A] of classical n-formulas under tautological equivalence, with the comple-
mentation and meet and join operations corresponding to negation and conjunction
and disjunction; (ii) the probability measure π that for any element A of β(n) as-
signs as probability π([A]) to [A] the sum of the ai for which X i is a disjunct of A,
divided by the sum a of all the ai ; and (iii) the valuation V assigning each atom pi its
equivalence class [pi ] if i ≤ N (and the zero element of the Boolean algebra, which
is to say, the equivalence class [⊥], if i > N ).

These facts and Tarski’s theorem on the decidability of elementary algebra to-
gether imply the decidability of the class of satisfiable probabilistic formulas (a result
already, by a different proof, implicit in [5] and explicit in [6]).

Since no disjunct is repeated in any element X i ∨ X j ∨ . . . of β(n), no indeter-
minate is repeated in its algebraic translation xi + x j + . . . , and this suggests an
alternative set-theoretic translation {xi , x j , . . . }, which can be extended from ele-
ments β(n) to elements of the other classes. In particular, any element H of η(n)
will have a set-theoretic translation H† describing an ordering of the power set of
I = {x1, . . . , xN }.

This order satisfies the De Finetti conditions, which is to say that for all subsets
of I we have the following:

(D1) Transitivity If u ≤ v and v ≤ w, then u ≤ w;
(D2) Comparability Either u ≤ v or v ≤ u;
(D3) Additivity If w is disjoint from u and from v,

then u ≤ v if and only if u ∪ w ≤ v ∪ w;
(D4) Nontriviality Not I ≤ ∅.

Our axioms were chosen to insure this result: (D1) follows from axiom (A2), (D2)
from axiom (A3) and the maximality of H , and (D3) from axioms (A4) and (A5),
and (D4) from axiom (A6).

Any assignment of nonnegative real numbers ai , not all zero, as to the xi as
“weights” induces an order satisfying the De Finetti conditions, namely, the one
in which sets are ordered by the sums of the weights of their elements. Another way
of putting the criterion for satisfiability of H stated above is just this, that the order
determined by H† must agree with some order induced by an assignment of weights.

Unfortunately, the main counterexample in [5] shows that not every order satis-
fying the De Finetti conditions satisfies the additional condition of agreeing with the
order induced by some assignment of weights. For this additional condition to be
met, the following is proved in the paper cited to be necessary and sufficient:

(KPS) For any M and any u1, . . . , uM and v1, . . . , vM , if each xi belongs to
exactly as many of the u j as of the v j and if u j ≤ v j for j = 2, . . . , K ,
then v1 ≤ u1.
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The approach in [4] proceeds by directly translating the KPS condition into a prim-
itive recursive set of axioms schemes. To finish the proof of completeness for the
alternative axiomatization of the present paper, we must show using the polarizabil-
ity rule that the KPS condition is met by any order given by the translation H† of
any maximal consistent set H . Let us call such an order a translated order, for short.

5 Applying Polarizability

The De Finetti conditions do guarantee that the KPS condition holds in the special
case where each xi belongs to at most one of the u j . What will be shown here is that
in the case of a translated order, the KPS condition holds also when each xi belongs
to at most two of the u j ; the method of proof then easily generalizes to cover the
cases of at most four, at most eight, and so on, as needed to establish completeness.

The proof will, in fact, be given only in a sketch, since it is really no more than
an adaptation to the present context of an argument at the end of [5]. Rather than
consider any possible violation of the KPS conditions, let us consider just the coun-
terexample from that paper. In that example there is an order meeting the De Finetti
conditions but violating the KPS condition because we have

{x3} ≤ {x1, x2}

{x2, x4} ≤ {x1, x3}

{x1, x5} ≤ {x2, x3}

¬({x4, x5} ≤ {x1, x2, x3}).

What will be shown is that such a situation cannot arise in a translated order.
The key observation is the following. Let us abbreviate the formula

(Y ∧ Z) ≤ (¬Y ∧ Z) ∧ (¬Y ∧ Z) ≤ (Y ∧ Z)

as Y |Z , read “Y polarizes Z .” Then if we add to a finite consistent set any formula
p|A where p does not occur in A or in the set, then the result remains consistent.
(Just apply the polarizability rule to p|A → B, where B is the negation of the
conjunction of the elements of the set.)

Hence if H is in η(n) and the qi are new atoms, we may successively add
q1|X1, . . . , qN |X N and preserve consistency. Then letting Y be the disjunction of all
qi ∧ X i , for each i the formulas Y ∧ X i and qi ∧ X i will be tautologically equivalent,
and likewise ¬Y ∧ X i and ¬qi ∧ X i , and the replacement lemma will give us Y |X i
for each i . If a contradiction could be deduced from the conjunction of the formulas
in H and the formulas pN+1|X i , then by substituting Y for pN+1 in the deduction,
a contradiction could be derived from the conjunction of the formulas in H and the
formulas Y |X i , which is impossible. Therefore, the result of adding the formulas
pN+1|X i to H remains consistent and can be extended to a maximal consistent set
H∗ in η(n + 1).

Each element of α(n + 1) will be of one of the two forms

X ′

i = X i ∧ pN+1 or

X ′′

i = X i ∧ ¬pN+1,
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and in translating H∗ each indeterminate xi from H will correspond to a pair of
indeterminates x ′

i and x ′′

i . The order displayed above would become the following:

{x ′

3, x ′′

3 } ≤ {x ′

1, x ′′

1 , x ′

2, x ′′

2 }

{x ′

2, x ′′

2 , x ′

4, x ′′

4 } ≤ {x ′

1, x ′′

1 , x ′

3, x ′′

3 }

{x ′

1, x ′′

1 , x ′

5, x ′′

5 } ≤ {x ′

2, x ′′

2 , x ′

3, x ′′

3 }

¬({x ′

4, x ′′

4 , x ′

5, x ′′

5 } ≤ {x ′

1, x ′′

1 , x ′

2, x ′′

2 , x ′

3, x ′′

3 })

while we will also have {x ′

i } ≤ {x ′′

i } and {x ′′

i } ≤ {x ′

i } for all i . But the De Finnetti
conditions then imply

{x ′

3, x ′′

3 } ≤ {x ′

1, x ′′

1 , x ′

2, x ′′

2 } if and only if {x∗∗∗

3 } ≤ {x∗

1 , x∗∗

2 } (1)

where each of * and ** and *** may be either of ′ or ′′, as well as the analogues for
the other three inequalities. To see this it suffices to consider the case where all three
of * and ** and *** are ′, which is to say, the case

{x ′

3, x ′′

3 } ≤ {x ′

1, x ′′

1 , x ′

2, x ′′

2 } if and only if {x ′

3} ≤ {x ′

1, x ′

2}. (2)

To give the argument for the implication from right to left, leaving the other direction
to the reader, we have {x ′′

3 } ≤ {x ′

3}, and the right-hand side of (2) is {x ′

3} ≤ {x ′

1, x ′

2}.
Since we have {x ′

} ≤ {x ′′

1 }, additivity gives {x ′

1, x ′

2} ≤ {x ′′

1 , x ′

2}, and similarly we get
{x ′′

1 , x ′

2} ≤ {x ′′

1 , x ′′

2 }. So by transitivity we get {x ′′

3 } ≤ {x ′′

1 , x ′′

2 }. Again by additivity
we get {x ′

3, x ′′

3 } ≤ {x ′

1, x ′

2, x ′′

3 } as well as {x ′

1, x ′

2, x ′′

3 } ≤ {x ′

1, x ′′

1 , x ′

2, x ′′

2 }. Transitivity
then gives the left-hand side of (2).

Application of (1) and its analogues would then give

{x ′

3} ≤ {x ′

1, x ′

2}

{x ′

2, x ′

4} ≤ {x ′′

1 , x ′

3}

{x ′

1, x ′

5} ≤ {x ′′

2 , x ′′

3 }

¬({x ′′

4 , x ′′

5 } ≤ {x ′′

1 , x ′′

2 , x ′′

3 }).

But this would be a failure of the KPS conditions in a case where no indeterminate
appears more than once among the pertinent ui , which as has been said is impossible
by the De Finetti conditions.

This concludes the sketch of the proof. In comparing the case of a choice between
more complex kinds of axiom schemes and a “Gabbay-style” rule presented by [6]
versus [2] with the case of the similar choice between [3] and the foregoing, no
obvious general pattern suggests itself. We thus have no very strong evidence for the
choice conjecture, supposing that conjecture even admits of rigorous formulation.
But as was stated at the outset, the aim here has been merely to encourage further
work.
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