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A Reverse Analysis of the Sylvester-Gallai Theorem

Victor Pambuccian

Abstract Reverse analyses of three proofs of the Sylvester-Gallai theorem lead
to three different and incompatible axiom systems. In particular, we show that
proofs respecting the purity of the method, using only notions considered to be
part of the statement of the theorem to be proved, are not always the simplest, as
they may require axioms which proofs using extraneous predicates do not rely
upon.

1 Introduction

Sylvester [30] posed in 1893 a question, which resurfaced forty years later as a
conjecture by Erdős, to be first proved by Gallai. A comprehensive survey of the
proofs for what is now known as the Sylvester-Gallai (SG) theorem can be found
in [2]. The theorem can be stated as follows.

If the points of a finite set S are not all on one line, then there is a line through
exactly two of the points.

An enterprise going back to at least Pappus of Alexandria (see [25] for its history),
which will be referred to as reverse analysis, asks for the axioms needed to prove a
given theorem. It has been formulated for modern axiomatics by Hilbert [10]:

Unter der axiomatischen Erforschung einer mathematischen
Wahrheit verstehe ich eine Untersuchung, welche nicht dahin zielt, im
Zusammenhange mit jener Wahrheit neue oder allgemeinere Sätze zu ent-
decken, sondern die vielmehr die Stellung jenes Satzes innerhalb des Systems
der bekannten Wahrheiten und ihren logischen Zusammenhang in der Weise
klarzulegen sucht, daß sich sicher angeben läßt, welche Voraussetzungen zur
Begründung jener Wahrheit notwendig und hinreichend sind.

The same concern for the means by which one proves a theorem leads Hilbert [11]
to a different problem, namely, that of proving a given statement only with means
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called for by the statement of the problem, which will be referred to as a concern for
the purity of the method, in his own words:

In der modernen Mathematik (wird) solche Kritik sehr häufig geübt, woher
das Bestreben ist, die Reinheit der Methode zu wahren, d. h. beim Beweise
eines Satzes womöglich nur solche Hülfsmittel zu benutzen, die durch den
Inhalt des Satzes nahe gelegt sind.

This can be made precise by asking that the proof should proceed inside an axiom
system in the same language in which the theorem is stated.

In the case of the SG theorem, the concern for the purity of the method (on which
more can found in [1], [8], [9]) was voiced early by Coxeter [5], who repeats it
in [7, 12.3]. He deems a proof (a variant of Steinberg’s [29] proof) which uses only
order axioms to be preferable to one due to Kelly (and published in [5]), which
uses metric notions such as perpendicularity and comparison of lengths of segments.
Coxeter’s [7, p. 181] reaction to this use of “the concept of distance” is, “it is like
using a sledge hammer to crack an almond.” Arana [1] disagrees with this state-
ment. Coxeter thinks that to understand the concept of a line one must understand
the concept of betweenness. However, argues Arana, one may think, in the manner
of differential geometry (or, for that matter, in the manner of any geometry in the
spirit of Busemann or Alexandrov) that to understand the concept of a line one needs
to understand not betweenness, but the notion of distance, as a line may be defined
as the shortest path between two points.

Meanwhile, there is a fundamentally different proof of the SG theorem, by
Chen [3], which uses assumptions different from both those needed for Kelly’s
proof and from those needed for the Steinberg-Coxeter proof, a proof validating the
distance-geometric understanding of the concept of line.

The aim of this paper is to specify the axiom systems needed for each of the
three proofs of the SG theorem, to justify the choice of axioms as natural statements
in their own right, independent of the SG theorem, and to show that these axiom
systems are incomparable, that is, that each axiom system admits a model which is
not a model of any of the two other axiom systems. This shows once more (another
similar outcome can be found in the reverse analysis performed in [21]) that the two
concerns, for minimal and for pure axiom systems, lead to different, incompatible
results.

To make a statement of first-order logic out of the SG theorem, we have to specify
(an upper bound to) the number of points the set S may contain. The language can be
chosen to be one-sorted, with variables to be interpreted as points, with one ternary
predicate L , with L(abc) to be read ‘the points a, b, and c are collinear (but not
necessarily different)’. If a 6= b, a point x with L(abx) is also said to lie on line
ab, and we can speak of the point of intersection x of lines ab and cd, whenever
a 6= b, c 6= d , and x is the unique point for which L(abx) ∧ L(cdx). Any axiom
system should imply the following basic facts about L , essential for the notion of
collinearity (we omit universal quantifiers for all universal sentences):

L 1 L(aba),

L 2 L(abc) → L(acb) ∧ L(bca),

L 3 a 6= b ∧ L(abc) ∧ L(abd) → L(acd).

The SG theorem for an n-point set S, to be denoted by SG(n), is the statement (it is
obvious, given the symmetry in the variables a1, . . . , an of the antecedent, that the
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succedent can be sharpened to
∧

1≤i< j<k≤n L(pi p j pk)): ∧
1≤i< j≤n

pi 6= p j ∧
( ∨

h 6∈{i, j}

L(pi p j ph)
) → L(p1 p2 p3). (1)

The statement (1) is in fact the contrapositive of SG for an n-point set S, stating that,
if, for any two different points pi and p j of S, there is a ph in S, different from pi
and p j and collinear with them, then the points p1, p2, p3 (and thus all the pi ) must
be collinear.

Notice that SG(n) can be derived from L1–L3 for all n ≤ 6, so the interesting
cases are those with n ≥ 7. That the case n = 6 can be derived from L1–L3 can
be seen as follows: If there are three noncollinear points p1, p2, and p3 in S, then
there must be an additional point qi j on each line pi p j with 1 ≤ i < j ≤ 3, and
q12, q13, q23 must be distinct points, else, by L2 and L3, the points p1, p2, and p3
would have to be collinear. Thus {p1, p2, p3, q12, q13, q23} is a set with 6 elements,
and thus must coincide with S. There is a line formed by two of its points, p1 and
q23, which contains no other point in S.

2 The Steinberg-Coxeter Proof

For the Steinberg-Coxeter proof of (1), we will understand L as being defined by the
definition

L(abc) :⇔ Z(abc) ∨ Z(bca) ∨ Z(cab) ∨ a = b ∨ b = c ∨ c = a, (2)

where Z stands for the notion of strict betweenness, with Z(abc) to be read as ‘b
lies between a and c (and is different from both a and c)’. We will also use the
abbreviation λ, with λ(abc) :⇔ Z(abc) ∨ Z(bca) ∨ Z(cab), standing for ‘a, b, c
are three distinct collinear points’. We need the following axioms:

Z 1 Z(abc) → a 6= c,

Z 2 Z(abc) → Z(cba),

Z 3 Z(abc) → ¬Z(acb),

Z 4 Z(abc) ∧ Z(acd) → Z(abd),

Z 5 Z(abc) ∧ Z(adc) ∧ b 6= d → (Z(abd) ∨ Z(adb)),

Z 6 Z(abc) ∧ Z(abd) ∧ c 6= d → (Z(bcd) ∨ Z(bdc)),

Z 7 Z(abc) ∧ Z(dab) → λ(dac),

Z 8 (∀a1 . . . an−1) [a1 6= a2 ∧
∧n−1

k=3 L(a1a2ak)→(∃b) λ(a1a2b)∧
∧n−1

i=1 b 6= ai ],

Z 9 (∀abcde) [¬L(abc) ∧ Z(abd) ∧ Z(aec) → (∃ f ) Z(b f c) ∧ Z(d f e)],

Z 10 (∀abcde) [¬L(abc) ∧ Z(abd) ∧ Z(bec) → (∃ f ) Z(a f c) ∧ λ(de f )].

Z1, stating that the open interval between a point and itself is empty, is a weaker
form of Postulate D of [12]; Z2 and Z3 are Postulate A and C of [12]; Z4 is a variant
of Postulate 3 of [12]; Z5 is Postulate 4 of [12], Z6 a variant of Postulate 7 of [12],
Z7 a weak form of Postulate 1 (which asks, under the same hypothesis, that not just
λ(dac), but that Z(dac) should hold1) of [12]. Z8 states that, if a1, . . . , an−1 are
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points on a line, with a! 6= a2, then there is a point b on the line determined by a1
and a2 that is different from all the ai .

Z10 and Z9 are forms of the Pasch axiom, the former a weak variant of the outer
form, the latter the inner form of the Pasch axiom. With Z(de f ) instead of λ(de f )
in the succedent, Z10 was introduced as axiom XIII, and Z9 as axiom XIV by Peano
[24]. In its current form, Z10 was introduced by Veblen [32], who also proved that Z9
follows from Z10, Z2–Z7, and an axiom stating that (∀ab) [a 6= b → (∃c) Z(abc)].
Given that we do not assume this axiom, and Z8 is too weak a substitute, we have
to assume both Z9 and Z10 for the proof to go through. Z10 states that secant
de (as line) must intersect the side ac of 4abc, and Z9 that the segment de must
intersect the side bc of 4abc. Note that one can prove inside our axiom system
that the conclusion λ(de f ) in Z10 can be strengthened to Z(de f ), as shown in [32,
Theorem 7, p. 355].

Theorem 2.1 Z1–Z10 ` SG(n), with L defined by (2).

Proof We repeat the proof from [7, 12.3] inside our axiom system, to emphasize
where and why we need all the axioms. Note that, by Z1–Z3, Z(abc) → a 6= b ∧ b
6= c ∧ c 6= a, a fact we will use throughout without further reference. We will also
leave unmentioned the many uses of Z2. Let p1, . . . , pn be such that ¬L(p1 p2 p3)
and such that the antecedent of (1) holds. The lines p1 pi , with 2 ≤ i ≤ n may
intersect the line p2 p3 in at most n − 1 points ri . According to Z8, there is a point
q with L(p2 p3q), with q 6= ri for all 2 ≤ i ≤ n. The lines p j pk with j 6= k meet
the line p1q in at most l = (n − 1)(n − 2)/2 + 1 points q j (including p1 and q). We
claim that there exists a point a on the line p1q such that

¬Z(p1qi a) holds for all qi . (3)

To see this, we first ask whether ¬Z(p1qi q) holds for all qi . If yes, then we let a = q
and are done. If it does not hold, then let i1 be the first index i for which Z(p1qi q)
holds. We now ask whether ¬Z(p1qi qi1) holds for all qi with i > i1. If yes, we let
a = i1 and are done, since we must also have ¬Z(p1qi qi1) for i < i1, given that
we know that ¬Z(p1qi q) for i < i1, and that, if we had Z(p1qi qi1), we’d also have
Z(p1qi q) (by Z4), which would contradict our definition of i1). If it does not hold,
then we let i2 be the least i > i1 for which Z(p1qi qi1) holds. This process must stop
after a finite number (at most l many) of steps, and in the end we have an ik such that
¬Z(p1qi qik ) holds for all i , and we let a = ik and are done. This point a must lie,
by the fact that it is a qi and the definition of the qi , on a line p j pk with j 6= k. That
line must contain a ph with h 6∈ { j, k}. We know, by our earlier analysis, that there
exists x ∈ {p j , pk, ph} such that ¬Z(ayx) for all y ∈ {p j , pk, ph} \ {x}. Without
loss of generality, we may assume x = p j . Given that a, p j , pk, ph are all different,
we must have Z(ap j pk) ∨ Z(pkap j ) and Z(ap j ph) ∨ Z(phap j ).

Suppose Z(ap j pk) ∧ Z(ap j ph). We know, by Z6 and Z7, that we must have one
of (i) Z(apk ph) or (ii) Z(aph pk) or (iii) Z(phapk). However, (iii) cannot hold, for, if
it did, then, since Z(pk p j a) and Z(pkaph), we would have Z(pk p j ph) (by Z4), and,
since Z(pk p j a) and Z(pk p j ph), we must have Z(p j aph) or Z(p j pha) (by Z6),
both of which contradict Z(ap j ph) (by Z3). Suppose (i) holds. On line p1 pk there
must be a pm with m 6∈ {1, k}. If Z(p1 pm pk), then by Z10, secant ph pm must
intersect the side ap1 of 4ap1 pk in some qs , contradicting (3). If Z(pm p1 pk) (or
Z(p1 pk pm)), then, by Z9 (or Z10), segment (or secant) pm p j must intersect the
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side ap1 of 4ap1 pk in some qs , contradicting (3). If (ii) holds, we follow the same
reasoning as for (i) with k and h interchanged.

Suppose Z(ap j pk) ∧ Z(phap j ). We must have Z(phapk), as we cannot have
Z(aph pk) (given that, together with Z(ap j pk), ¬Z(aph p j ), Z5 would imply
Z(ap j ph), which, given Z(phap j ), would contradict Z3) or Z(apk ph) (given that,
with Z(ap j pk) we would get, by Z4, Z(ap j ph), which in turn, with Z(phap j )
would contradict Z3). On line p1 pk there must be a third pm . If Z(p1 pm pk),
then Z9 provides a point qs of intersection of the secant ph pm with the side ap1
of 4ap1 pk , contradicting (3). If Z(p1 pk pm) (or Z(pk p1 pm)), then Z10 (or Z9)
provides a point qs of intersection of the secant pm p j with the side ap1 of 4ap1 pk ,
contradicting (3).

If Z(ap j ph) ∧ Z(pkap j ), then we proceed as above, with h and k interchanged
throughout. If Z(pkap j )∧ Z(phap j ), then, by Z6, Z(aph pk)∨ Z(apk ph). Suppose
Z(aph pk) (the case Z(apk ph) is dealt with by interchanging h and k throughout).
On line p1 pk there must be a third point pm . If Z(p1 pm pk), then the secant p j pm
intersects, by Z9, side p1a of 4ap1 pk , in a point qs , contradicting (3). If Z(p1 pk pm)
(or Z(pm p1 pk)) then the secant pm ph intersects, by Z10 (or by Z9), side p1a of
4ap1 pk , in a point qs , contradicting (3). �

Given that, as shown in [23], Z10 does not follow from Z1–Z9, it would be of con-
siderable interest to know whether SG can be proved inside {Z1–Z9}.

In the two-dimensional case, there is a weaker axiom system, for ordered reg-
ular incidence planes from which SG can be derived. It cannot be expressed in
terms of points and Z , as it is based on the notion of sides of a line in a plane,
put forward by Sperner in [28], from which Z can be defined, but which cannot,
in general, be defined in terms of Z . It can be expressed in a two-sorted language,
with variables for points (to be represented by lowercase Latin characters) and for
lines (to be represented by lowercase Gothic characters), with two relation sym-
bols, I , with I (ag) to be read as ‘point a is incident with line g’, and D, with
D(agb) to be read as ‘the points a and b lie on different sides of line g’. With
δ(abgh) :⇔ [(D(agb) ∧ D(ahb)) ∨ (¬D(agb) ∧ ¬D(ahb))] and εδ standing for δ
if ε = 1 and for ¬δ if ε = 0, the axioms are the following (see [13]):

J 1 (∀ab)(∃=1g) a 6= b → I (ag) ∧ I (bg),

J 2 (∀g)(∃a1a2a3a4)
∧

1≤i< j≤4 ai 6= a j ∧
∧4

i=1 I (ai g),

J 3 (∃abc)(∀g) ¬(I (ag) ∧ I (bg) ∧ I (cg)),

J 4 D(agb) → ¬I (ag),

J 5 D(agb) → D(bga),

J 6 ¬I (cg) ∧ D(agb) → (D(agc) ∨ D(bgc)),

J 7 ¬(D(agb) ∧ D(bgc) ∧ D(cga)),

J 8
[ ∧

1≤i< j≤4 ai 6= a j ∧ hi 6= h j ∧
∧4

i=1 I (ai hi ) ∧ hi 6= g∧(( ∧4
i=1 I (ai g)

)
∨

( ∧4
i=1 I (ohi )

))]
→

[ ∨
εi ∈{0,1}

ε1+ε2+ε3=2

ε1δ(a3a4h1h2)∧
ε2δ(a2a4h1h3)∧

ε3δ(a2a3h1h4)
]
.

J6 is a weak variant of Pasch’s axiom, stating that if a line g does not pass through
any of the points a, b, and c, and a and b are on different sides of g, then so are at
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least one of the pairs {a, c} and {b, c}. J7 is a variant of Pasch’s theorem, stating that
a line cannot separate all three pairs {a, b}, {b, c}, and {c, a}. One of its special cases,
when a = b = c, implies that a and b can be on different sides of g only if a 6= b.
That these versions are called “weak" stems from the fact that, if a line g separates
the points a and b, it no longer means that there is a point on g which is between
a and b. Indeed, the line g and the line determined by a and b may have no point
in common (a simple example is provided by the submodel of the ordered affine
plane over Q whose points have coordinates whose denominators are powers of 2,
with the plane separation relation inherited from the ordered affine plane over Q).
The meaning of J8 is best understood in terms of the notion of separation // (with
ab//cd to be read as ‘the point-pair (a, b) separates the point-pair (c.d)’), defined
by

a1a2//a3a4 :⇔ (∃ghk)

4∧
i=1

I (ai g) ∧

∧
1≤i< j≤4

ai 6= a j ∧ I (a1h ∧ I (a2k)

∧h 6= g ∧ k 6= g ∧ ¬δ(a3a4hk). (4)

One part of it (corresponding to the
∧4

i=1 I (ai g) disjunct) states that, if a1, a2, a3, a4
are four different collinear points, then exactly one of the separation reations
a1a2//a3a4, a1a3//a2a4, a1a4//a2a3 holds. Its other part (corresponding to the∧4

i=1 I (ohi ) disjunct) is the dual statement (in the sense of projective geometry).
Joussen [13] showed that any model M of J1–J8 can be embedded in a projective

ordered plane P, whose separation relation //P is an extension of the separation
relation //M, defined in M terms of IM and DM by (4).

If a noncollinear SG-configuration (i.e., the negation of SG, which we think of in
this context as expressed in terms of points, lines, and I ) were to hold in M, then
it would have to hold in the ordered projective plane P as well, which cannot be,
as Steinberg’s proof can be modified to hold in the context of projective ordered
planes, as shown in [6, 3.33, p. 30–31] (or, one can remove from the projective
plane a line which does not contain any of the points of the SG-configuration, to
get an ordered affine plane containing an SG-configuration, which is impossible, as
ordered affine planes are models of {Z1–Z10}). Thus, given that, in case there are no
three noncollinear points, SG holds trivially, and so J3 is not needed in the proof of
SG, we have established the following.

Theorem 2.2 {J1–J2, J4–J8} ` SG(n), where SG(n) is expressed in terms of points,
lines, and I .

By defining Z in terms of I and D by

Z(abc) :⇔ (∃gh) h 6= g ∧ I (ag) ∧ I (bg) ∧ I (cg) ∧ I (bh) ∧ D(ahc), (5)

one can compare the set of Z -consequences of the axiom system {J1–J2, J4–Z8} to
{Z1–Z10}. It turns out that the Z defined by (5) satisfies Z1–Z7 but does not need to
satisfy Z8–Z10, so that {J1–J2, J4–J8} cannot be said to be stronger than {Z1–Z10}.

On the other hand, the relation D is not definable in terms of Z on the basis of
{Z1–Z10} as there are no “sides” of lines in an arbitrary model of the latter, as its
“dimension” may be greater than two, so we cannot even ask whether the axioms
J4–J8 hold in {Z1–Z10}.
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3 Kelly’s Proof

For the axiom system for Kelly’s proof we think of axioms that ought to hold not only
in any model of absolute geometry (of any dimension), but also in the substructure
of a non-Archimedean model of absolute geometry, which consists of the union of
the infinitely small neighborhoods of two points at finite, but not infinitely small
distance (a universe in which there are only two galaxies, which are so far apart, that,
from the vantage point of one galaxy one sees the other galaxy as a galactic nebula
of infinitely small diameter.) We will refer to the latter substructure as the “Two
Nebulae.”

The language in which the axiom system will be expressed contains, beyond L
and Z , the quaternary relation J , with J (abcd) to be read as ab is shorter than cd.
In this setting, L is not an abbreviation (as in (2)); it is one of the primitive notions of
our language.2 To simplify the statement of the axioms, we introduce the following
abbreviations: for a, b, c with ¬L(abc), we define

au ⊥ bc :⇔ (∀v) [L(bcu) ∧ (L(bcv) → ¬J (avau))], (6)

which may be read as ‘u is a foot of a perpendicular from a to the line bc’, given that
its definiens states that u is a point on the line determined by bc, with the property
that the distance from a to any point v on line bc is not less than that from a to u.

We also define

a ∼ b :⇔ a 6= b ∧ [(∀c) (¬L(abc) → (∃u) au ⊥ bc)], (7)

which may be read as ‘a is related to b’ (note that ∼ is not necessarily a symmetric
relation, that is, we may have a ∼ b without b ∼ a). In models of absolute geometry,
all points are related to all other points. In the Two Nebulae, only points inside the
same nebula are related.

As axioms we have, beside L1–L3, the following statements (addition in the in-
dices in K2 is modulo 3):

K 1
∧

1≤i< j≤7 ai 6= a j →
( ∨

1≤i, j≤7,i 6= j ai ∼ a j
)
,

K 2 a ∼ b ∧
∧3

i=1 a 6= xi ∧ xi 6= xi+1 ∧ L(axi xi+1) →
( ∨

i 6= j Z(axi x j )
)
,

K 3 a ∼ b ∧ b ∼ c ∧ c 6= a → a ∼ c,

K 4 Z(abc) → b ∼ a ∨ b ∼ c,

K 5 a ∼ b ∧ ¬L(abc) ∧ au ⊥ bc → u ∼ a,

K 6 J (abcd) → ¬J (cdab),

K 7 J (abcd) ∧ J (cde f ) → J (abe f ),

K 8 b ∼ a ∧ ¬L(abc) ∧ bc ⊥ ca → J (bcab),

K 9 o ∼ a ∧ ¬L(aob) ∧ Z(obc) ∧ ao ⊥ ob ∧ bd ⊥ ac → J (bdao).

In all models of absolute geometry, all points are related, so the justification for
axioms in which the conclusion refers to the relatedness of two points (such as K1,
K3, K4, K5) will come from the Two Nebulae.

K1 states that among seven different points there must be two related ones. It
ensures that, under the assumption that there are seven different points, there are
related points at all. It is a somewhat weaker statement than the more natural one,
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that among any three different points there are two related points, which is true in
the Two Nebulae, as two of the three points must belong to the same nebula.

K2 states that, if x1, x2, and x3 are three points on a line through a (a point which
is related to some other point), then two must lie on the same half-line determined by
a (an obvious fact by the pigeonhole principle, if one thinks that a actually divides
the line through it into two half-lines).

K3 states a transitivity property of relatedness, which can be understood in the
context of the Two Nebulae to state that if a and b belong to the same nebula, and so
do b and c, then both a and c belong to the same nebula.

K4 states that if b lies between a and c, then b must be related to one of a or c.
In the Two Nebulae, if a and c belong to the same nebula, then any point between
them must belong to that nebula as well (given that nebulae are convex); if a and c
belong to different nebulae, then b must lie either in the nebula containing a or in
that containing c.

In the Two Nebulae, K5 states that, if a is a point outside of line bc, with a and
b in the same nebula, then the foot u of the perpendicular from a to bc lies in the
same nebula in which a lies (this is easy to see if one notices that the distance from
a to u cannot be greater than that from a to b, and since the distance from a to b is
infinitely small, so must be the distance from a to u).

K6 and K7 state that J , the less than relation, is not symmetric (i.e., that if ab is
less than cd, then cd is not less than ab) and that it is transitive.

K8 states that in a right triangle abc, with bc ⊥ ca, the side bc is less than
the hypotenuse ab. K8 and K9—which states that, in the figure below, bd is less
than ao—may seem unusual as axioms, but one should bear in mind that these two
axioms have surfaced independently of Kelly’s proof of SG. K8 has been shown
in [26] to be weaker than the Pasch axiom in Euclidean Pasch-free geometry. The
question regarding the missing link between K8 and the Pasch axiom led in [19]
to K9, which, together with K8, turned out to be equivalent to the Pasch axiom in
Pasch-free Euclidean geometry.

o cb

d

aq

q
q

q q�
�

�
�

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ

p
p

Figure 1 Axiom K9 states that bd is shorter than ao.

Theorem 3.1 K1–K9 ` SG(n).

Proof To prove that (1) holds, let p1, . . . , pn , with n ≥ 7, be such that the an-
tecedent of (1) holds, as well as ¬L(p1 p2 p3). By K1, there are pi and p j with
pi ∼ p j . Given ¬L(p1 p2 p3), one of the lines p j pk with k = 1, 2, 3 (at least two
of the three must actually be lines) does not contain pi . We denote by k0 that index
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k, and we conclude, by pi ∼ p j and (7), that there exists a u with L(p j pk0u) and
pi u ⊥ p j pk0 . Let P := {psusrq : psusrq ⊥ pr pq , s ∈ {1, . . . , n}, ¬L(ps pr pq),
ps ∼ pr } (P is, formally speaking, a set of point-pairs, which we denote by xy in-
stead of (x, y)). P is a finite nonempty set (as it contains pi ui jk0 ). Given that P is
finite, there are p and u with

pu ∈ P and ¬J (p′u′ pu) for all p′u′
∈ P. (8)

That such an element must exist in P can be seen by choosing an arbitrary element
p1u1 in P and asking whether it satisfies the condition (8). If yes, we are done. If
not, then there is an element p2u2 of P with J (p2u2 p1u1). If p2u2 satisfies (8), then
we are done. If not, then there exists an element p3u3 of P with J (p3u3 p2u2). We
proceed in this manner. The process can last only for finitely many steps, given that
P is finite, and that, by K6 and K7, we have ¬J (pi ui p j u j ) for all i < j , and thus,
we could not proceed after having reached p f u f , where f = |P|.

For the p and the u that satisfy (8), there must exist 1 ≤ k, l, m ≤ n such that
p = pk and u = uklm , as well as pk ∼ pl , ¬L(pk pl pm), pkuklm ⊥ pl pm . Accord-
ing to the antecedent of (1), there must be some ph with λ(pl pm ph). Point uklm ,
which, by K5, satisfies uklm ∼ pk , is either equal to one of {pl , pm, ph} or it is
different from all of them. If uklm is equal to one of them, that is, uklm = pi with
i ∈ {l, m, h}, then pi ∼ pk and there is, by (7), a v with piv ⊥ pk p j , where j is one
of the two indices in {l, m, h}\{i}, and such that J (pivpk pi ) (by K8). Since piv ∈ P ,
this contradicts (8). If uklm is different from the elements of {pl , pm, ph}, then, by
K2, we have Z(uklm pi p j ), where i, j ∈ {l, m, h}. By K4, we have pi ∼ uklm
(and, by K3, pi ∼ pk) or pi ∼ p j . In both cases, by (7), there exists a v such that
piv ⊥ pk p j and J (pivpkuklm) (by K9), which contradicts (8). �

4 Moszyńska Geometries

Chvátal [4] asked whether SG holds in finite metric spaces, in which the betweenness
relation is defined in terms of the metric in the manner of Menger [17]. In all metric
spaces, Z(abc) may be defined to hold precisely if a, b, and c are all distinct and the
sum of the distances from a to b and from b to c coincides with the distance from a to
c. The betweenness relation thus obtained satisfies Z1–Z4, but does not, in general,
satisfy Z5, Z6, or Z7. If one were to define the notion of collinearity in the manner
of (2), then the line determined by two points would, in general, contain few points.
To enrich the number of points on the line determined by two points a and b, Chvátal
suggests the following stepwise procedure of constructing the line lab determined by
a and b. First, a, b, as well as all points x with Z(xab) or Z(axb) or Z(abx) are the
elements of the first stage in our construction of lab, to be denoted by l1

ab. Suppose
we have finished n stages in the construction of lab, and the resulting set of points is
ln
ab. At the (n + 1)st stage, all points x with Z(xuv) or Z(uxv) or Z(uvx), where

u and v are any two points in ln
ab, are added to ln

ab to form ln+1
ab . We define lab to be

the union of all ln
ab for n ≥ 1. In the case of finite metric spaces, this union is a finite

one.
Chvátal’s conjecture was settled by Chen [3]. His proof is carried out inside finite

metric spaces, and these are structures that carry a lot of information, which the first-
order theory of their associated betweenness relation (a theory studied in [16] and
[27]) does not capture. For example, the proof requires one to choose among a set of
triples (a, b, c) the one for which %(a, b)+%(b, c)+%(c, a) is minimal (here % stands
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for the metric), something the first-order betweenness theory cannot do, as it does
not know the values of the distances between points. Since geometry is a narrative
about points only, the real numbers involved, the operation of addition of lengths, as
well as the ability to compare two lengths, have to be expressed in elementary terms.

The most austere solution to the problem of expressing such metric-dependent
statements inside a first-order theory that expresses betweenness as well has been
proposed by Moszyńska [18]. Chen’s proof can be rephrased with minor changes
in the setting of the equidistance and betweenness spaces considered by Moszyńska,
enlarged with one axiom, which allows for the comparison of the lengths of any two
segments.

These spaces have many more properties than metric spaces, so in a sense, our
proof restricts Chen’s theorem to this much more narrow class of spaces for the sake
of an elementary axiomatization of the theory inside which we claim a new version
of SG to hold.

We first repeat the axiom system from [18], to which we add an axiom, M12,
which ensures that any two segments are comparable. The language in which
the axiom system is expressed contains two predicates, a quaternary one, ≡, with
ab ≡ cd to be read as ‘ab is congruent to cd’, and the strict betweenness predicate
Z (Moszyńska used the nonstrict betweenness predicate B; the differences are in-
significant). The axioms are Z1–Z4 and the following (Sk stands for the set of all
permutations of the set {1, . . . , k}, the numbers k and l appearing in the axioms take
on all positive integer values that are ≤ n(n − 1)/2):

M 1 ab ≡ cd ∧ e f ≡ cd → ab ≡ e f ,

M 2 aa ≡ bb ∧ ab ≡ ba,

M 3 ab ≡ cc → a = b,

M 4 Z(abd) ∧ Z(bcd) → Z(abc),

M 5 Z(abd) ∧ Z(bcd) → ¬ad ≡ bc,

M 6 ab ≡ a′b′
∧ bc ≡ b′c′

∧ ac ≡ a′c′
∧ Z(abc) → Z(a′b′c′),

M 7 ab ≡ a′b′
∧ ac ≡ a′c′

∧ Z(abc) ∧ Z(a′b′c′) → bc ≡ b′c′,

M 8
∧k

i=2(Z(p0 pi−1 pi )∧ Z(q0qi−1qi ))∧
∧k

i=1
( ∨

f ∈Sk
pi−1 pi ≡ q f (i)−1q f (i)

)
→ p0 pk ≡ q0qk ,

M 9
∧

2≤i≤k,2≤ j≤l
[
Z(p0 pi−1 pi )∧ Z(q0q j−1q j )

]
∧ p0 = p′

0 ∧ pk = p′

l ∧q0 = q ′

0
∧ql = q ′

k ∧
∧

1≤i≤k,1≤ j≤l
[ ∨

f ∈Sk ,g∈Sl
pi−1 p1 ≡ q ′

f (i)−1q ′

f (i) ∧ q j−1q j ≡

p′

g( j)−1 p′

g( j)

]
→ p0 pm ≡ q0qn ,

M 10 (∀a1 . . . akb1 . . . bk)
[( ∧k

i=1 ai 6= bi
)

→
(
∃q0 . . . qk

)[ ∧k
i=2

( ∨
f ∈Sk

Z(q0qi−1qi )
)
∧

∧k
i=1 qi−1qi ≡ a f (i)b f (i)

]]
,

M 11 (∀abcc′) [Z(abc) ∧ ac ≡ a′c′
→ (∃b′) ab ≡ a′b′

∧ bc ≡ b′c′
],

M 12 Z(abc) ∧ ab ≡ cb′
∧ cb ≡ ab′

→ (Z(abb′) ∨ Z(ab′b) ∨ b = b′).
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Axioms Z1–Z4, M1–M11 make up the axiom system put forward in [18], with the
difference that the restriction that k and l be ≤ n(n − 1)/2 does not occur in [18].

Axiom M5 states that a segment bc properly included in a segment ad cannot be
congruent to ad; M6, that if one of two isometric triples (a, b, c) and (a′, b′, c′) is
such that b is between a and c, then b′ must be between a′ and c′. M7 is a form of
the Euclidean Common Notion 3, stating that “if equals be subtracted from equals,
the remainders are equal.” M8 states that the order in which one adds segments
congruent to k given segments is irrelevant, the resulting sum being always “the
same.” M9 states that if there is a path of length q0qn joining p0 and pm , as well as a
path of length p0 pm joining q0 and qn , then the lengths q0qn and p0 pm are identical.
M10 is a rectifiability axiom, stating that any set of k nondegenerate segments can
be placed end to end on a line in some order. M11 states that, if ac and a′c′ are two
congruent segments, and b is a point between a and c, then there must exist a point b′

between a′ and c′, positioned metrically on a′c′ in the same manner b is on ac. M12
states that, if b and b′ are two points on the segment ac such that b′ is positioned

metrically on ca in the same manner b is on ac, then b′ must lie on the ray
→

ab.
We have added M12 to ensure that any two segments can be compared. Given

any two nondegenerate segments ab and cd (with a 6= b and c 6= d), there exist,
by M10, points q0, q1, q2 such that Z(q0q1q2), ab ≡ q0q1, and cd ≡ q1q2. By
M11, there exists q ′ such that q2q ′

≡ q0q1 and q0q ′
≡ q1q2, and, by M12, we

have (i) Z(q0q1q ′) or (ii) Z(q0q ′q1) or (iii) q1 = q ′. Informally speaking, (i) means
ab < cd , (ii) means cd < ab, and (iii) means ab ≡ cd.

That Chen’s [3] proof goes through in this setting can be seen by noticing that the
only properties of metric spaces used in the proof are the ability to add and to com-
pare segments, the number of which can never exceed n(n−1)/2 if there are n points
in the whole space, since the same segment is never used twice. The occurrence of
subtractions of lengths of segments on pp. 196–98 of [3] can be all removed, since
they all appear when comparing two differences, the general form of them being
%(a, b) − %(c, d) ≤ %(a′, b′) − %(c′, d ′). Such comparisons are meaningful inside
our setting as well, as they amount to %(a, b) + %(c′, d ′) ≤ %(a′, b′) + %(c, d).

The definition of L , referred to earlier, for which Chen proved Chvátal’s conjec-
ture, depends on the value of n in SG(n), given that the stepwise process which gives
rise to the line determined by two different points a and b will have to end in at most
(n − 2) steps, as it must generate at least one point at every step. With ϕ defined by

ϕ(uvx) :⇔ Z(uvx) ∨ Z(vxu) ∨ Z(xuv) ∨ x = u ∨ x = v,

the definition of L is

L(abc) :⇔ a = b ∨ b = c ∨ c = a ∨
(
∃x1

1 x1
2 . . . xn−3

1 xn−3
2

)
2∧

i=1

ϕ
(
abx1

i
)
∧

n−4∧
j=1

ϕ
(
x j

1 x j
2 x j+1

1
)
∧ ϕ

(
x j

1 x j
2 x j+1

2
)
∧ ϕ

(
xn−3

1 xn−3
2 c

)
. (9)

Thus, by [3], we have the following theorem.

Theorem 4.1 {Z1–Z4, M1–M12} ` SG(n), with L defined by (9).
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5 Incompatibility

Having presented the specifics of the three axiom systems inside which SG(n) can be
proved, we now ask what we have learned from this example regarding the themes
purity of the method and minimality of assumptions. We have seen that Coxeter
preferred Theorem 2.1 to the other two, given that the axioms are expressed solely
in terms of Z , whereas the others involve notions going beyond Z . The purity of
the method can be considered as preserved only if one thinks of L being a defined
relation, which needs Z in its definition. If one thinks that L and Z are unrelated,
then the proof of SG(n) in terms of axioms involving Z isn’t pure either, as one
would expect a proof from axioms expressed in terms of L . Such a proof can be
provided from axioms for projective planes (or for projective geometry of arbitrary
dimension ≥ 2) in which the coordinate ternary field satisfies the Artin-Schreier-
like condition stated in [15], which ensures that the projective plane is orderable.
That axiom system would not be minimal, even under all possible axiom systems for
projective geometry. As shown in [14], the theory obtained by adding to the axioms
for projective planes all the SG(k) for all k ∈ N is weaker than the theory of all
orderable projective planes (axiomatized using the conditions in [15]).

One point we would like to make with this reverse analysis is that the requirement
of methodological purity is not stronger than that of assumptional minimalism. A
proof can respect the former requirement but proceed from a set of assumptions
which contains axioms not needed in a different proof, which is not methodologically
pure. Regressive analyses may lead to different minimalist axiom systems, some of
which may respect the purity of the method requirement, but the axiom systems
themselves are incomparable.

An easy way to state that the three axiom systems are incompatible is to point out
that the language for Moszyńska geometry contains ≡, which does not appear in the
languages of the other two, and that the language for K1–K8 contains J , which does
not appear in the other two. It remains to show that there are Moszyńska geometries
and models of K1–K8 which do not satisfy all the axioms Z1–Z10.

We take a different approach and show that even if ab ≡ cd is defined to be

¬J (abcd) ∧ ¬J (cdab),

and if J (abcd) is defined to be

(∃uvw) Z(uvw) ∧ cd ≡ uv ∧ ab ≡ uw,

which corresponds to the intuitive meaning of J (even though the axioms K1–K8 by
no means imply that), the three axiom systems are incomparable.

To see this, consider the following Two Nebulae model of K1–K8, which is nei-
ther a model of Z1–Z10, nor a Moszyńska geometry.

Let L = Q(t), ordered by
( ∑n

i=0 ai t i )( ∑m
j=0 b j t j )−1

> 0 if and only if
anbm > 0. Let K be the real closure of L . The x ∈ K for which |x | > n for all
n ∈ N will be called infinitely large, and the x ∈ K for which x−1 is infinitely
large will be called infinitely small. Let C(K ) be the Cartesian plane with K as
coordinate field, with the usual betweenness relation induced by the order of K .
Let ‖(x, y)‖ =

√
x2 + y2. Our model M has the subset of C(K ) consisting of

U ∪ V as universe, where U := {(x, y) ∈ K 2
: ‖(x, y)‖ is infinitely small or is 0}

and V := {(x, y) ∈ K 2
: ‖(x − 1, y)‖ is infinitely small or is 0}. The betweenness

relation B is the restriction of the relation B from C(K ) to U ∪ V , which is the
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union of two infinitely small neighborhoods: that of (0, 0) and that of (1, 0). With
the usual interpretations of L and Z , and with J (abcd) to mean ‖a − b‖ < ‖c − d‖,
all axioms K1–K8 are satisfied (notice that a ∼ b if and only if a and b are both
in U or both in V ). However, in this model neither Z9 nor Z10 hold. Let ε = t−1,
a = (0, 0), b = (1, 0), d = (1 + ε, 0), c = (0, ε), e =

(
0, ε(ε+1)

2ε+1

)
. We have Z(abd),

Z(aec), ¬L(abc), but the segments de and bc intersect in
( 1

2 , ε
2

)
, which is not a

point of M, being neither in U nor in V . Thus Z9 does not hold, and since Z10,
would, together with the linear order axioms, which all hold in M, imply Z9, the
outer form of the Pasch axiom cannot hold in M either. It is also easy to see that
M10 does not hold, as there is no segment whose length is the sum of two segments
of length 1.

A Moszyńska geometry, which is neither a model of K1–K8 nor of Z9 or of
Z10, is the submodel M′ of the standard Euclidean plane C(R), whose universe
U is R×R \{(0, 0)}. That Z9 does not hold can be seen by taking a = (−1, 0),
b =

(
−

1
3 , − 1

3

)
, c = (1, 1), d = (1, −1), e =

(
−

1
3 , 1

3

)
, and noticing that we

have Z(aec), Z(dba), but there is no f in M′ such that Z(efd) and Z(bfc) as that
f would be (0, 0), which is not in U . In other words, in 4acb secant ed cuts side
bc in (0, 0), which does not belong to M′. It is not a model of Z10 either, as Z10
together with all the linear axioms, which M′ satisfies, would imply Z9. K5 does
not hold in this model, for, although (−1, 1) ∼ (1, −1), ¬L((1, 1)(1, −1)(1, 1)),
and (−1, 1)(1, 1) ⊥ (1, −1)(1, 1), we do not have (1, 1) ∼ (−1, 1), as there is no
minimal joining segment between the point (1, 1) and the points on the line passing
through (−1, 1) and (1, −1).

The question whether predicates to be interpreted as notions of ordered geometry
are needed in axiom systems from which SG, which is a pure incidence statement,
can be derived is still open. It was conjectured in [20] (see also [22]) that SG holds
in affine (or projective) planes over fields of characteristic 0, which are not quadrat-
ically closed. Even if such a proof were to exist, which would satisfy—just like the
proof using the incidence-based characterization of orderable projective planes from
[15]—the purity of method criterion, the axiom system used to prove SG would not
be weaker than those presented in the three proofs above, but simply incomparable.

Notes

1. That Postulate 1 of [12] cannot be deduced from Z1–Z10 can be seen by taking as model
the unit circle, with the distance %(a, b) between two points a and b on it defined as the
length of the shorter of the two arcs joining a and b (half the perimeter of the circle,
should they be antipodal points), and where Z(abc) holds if and only if a, b, c are three
distinct points and %(a, b)+%(b, c) = %(a, c). Postulate 1 of [12] follows from Z1–Z10
and (∃abc) ¬L(abc), as shown in [32, Theorem 9, p. 356–57].

2. We could have opted for a language in which J is the only primitive notion, but we
decided to not follow that path, as it would have resulted in a stronger axiom system,
one in which Z would be defined in terms of J and L in terms of Z by (2). That J alone
suffices (in fact, even J ′ alone, defined by J ′(abc) :⇔ J (abac)) to axiomatize all of
Euclidean geometry coordinatized by Pythagorean ordered fields was shown in [31].
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