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Structural Completeness in Fuzzy Logics

Petr Cintula and George Metcalfe

Abstract Structural completeness properties are investigated for a range of
popular t-norm based fuzzy logics—including Łukasiewicz Logic, Gödel Logic,
Product Logic, and Hájek’s Basic Logic—and their fragments. General methods
are defined and used to establish these properties or exhibit their failure, solving
a number of open problems.

1 Introduction

A logic—viewed as a finitary consequence relation—is structurally complete (SC
for short) if each of its proper extensions admits new theorems. Or put another
way, every rule that is admissible (preserves the set of theorems) should also be
derivable (already belong to the consequence relation). A logic is hereditarily struc-
turally complete (HSC for short) if all of its extensions (including the logic itself)
are SC. From an algebraic perspective, a variety is structurally complete if each of
its subquasivarieties generates a proper subvariety, and it is primitive if each of its
subquasivarieties is a variety. Classical Logic and its most common fragments are
structurally complete. However, the property fails for Intuitionistic Logic and many
other nonclassical logics. Moreover, even when it does hold for a logic, structural
completeness can be very sensitive to changes in the language.

The notion of structural completeness is due to Pogorzelski [23] and has been
investigated by many authors including Prucnal [24], Makinson [19], and (from an
algebraic perspective) Prucnal and Wronski [25] and Bergman [4]. Admissible rules
have been studied intensively for intermediate and modal logics by Rybakov [26].
For the purposes of this paper, two strands of research on these topics are particularly
relevant. First, there have been several papers on structural completeness in many-
valued logics, including Łukasiewicz logics, studied by Wojtylak ([29], [30], [31])
and Tokarz [27], and Gödel logics (also known as Gödel-Dummett logics) by Dzik
and Wronski [13]. Secondly, a recent paper of Olson et al. [22] provides a wealth
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of new results on structural completeness for substructural logics and their algebraic
counterparts, residuated lattices. Other related work includes a paper of Dzik [12]
on unification in BL-algebras (the algebras of Hájek’s Basic Logic [18]) and hoops.

In this paper we investigate structural completeness for fuzzy logics. Such logics,
developed in particular by Hájek in [18], are typically (but not always) defined on
the real unit interval [0, 1] with conjunction and implication connectives interpreted
by left-continuous t-norms and their residua. Among logics based on continuous
t-norms, Łukasiewicz Logic Ł, Gödel Logic G, and Product Logic 5 are treated
as fundamental since any continuous t-norm is an ordinal sum of the correspond-
ing three t-norms (see, e.g., [18]). Also important in this context are Hájek’s Basic
Logic BL [18] and Esteva and Godo’s Monoidal t-Norm Logic MTL [14], charac-
terized by validity in all logics based on continuous and left-continuous t-norms,
respectively. Other fuzzy logics featured prominently in the literature include exten-
sions of MTL and BL characterized by properties such as cancellation, n-contraction,
and having a strict or involutive negation (see, e.g., [14] and the survey [10]). All
such “t-norm based” logics admit the weakening theorem A → (B → A) and cor-
respond to classes of residuated lattices satisfying integrality. Interesting “uninorm
based” fuzzy logics without weakening have been studied in [20]; however, we will
leave structural completeness for such logics as a topic for future research.

Positive and negative (hereditary) SC results are established here for fuzzy logics
and their fragments using three methods adapted from the literature, taking advan-
tage of algebraization to consider equivalent quasivarieties as required. First, we
show that SC can be established for a quasivariety Q by defining (partial) embed-
dings from generating algebras for Q into the free algebra for Q with countably many
generators. This approach has been used (implicitly) to show structural completeness
for Łukasiewicz logics [31] and Gödel logics [13] and is extended here to Product
Logic 5, the related Cancellative Hoop Logic CHL, and Basic Logic BL. Secondly,
we extend “Prucnal’s trick,” used to establish SC for a range of implicational logics
in [24], to establish HSC for (fragments of) logics obeying an n-contraction condi-
tion. The key tool is a correspondence between HSC and a “hereditary version” of
the deduction theorem. Finally, we investigate the weaker notion of passive struc-
tural completeness (PSC for short), studied by Rybakov in [26] and called nonover-
flow completeness (in an algebraic context) by Wronski (in, e.g., his presentation
“Overflow rules and a weakening of structural completeness” at the 51st Conference
on the History of Logic, Krakow, 2005). PSC is satisfied for a logic if all rules with
nonunifiable premises are derivable. We use the nonderivability of such rules both
to establish a range of negative results and also to obtain positive PSC results for a
particular class of logics.

Aside from introducing useful general methods, the paper contains the following
new results:

1. the {→, ·} fragment of Ł (the logic of Wajsberg hoops) is not SC (Theo-
rem 3.15);

2. all fragments of CHL and 5 are SC (Theorems 3.17 and 3.21) and the full
logics are HSC (Corollaries 3.18 and 3.22);

3. the {→, ·} fragment of BL (the logic of basic hoops) is not SC (Theo-
rem 3.27), but the implicational fragment is SC (Theorem 3.26);

4. all extensions of Strict Monoidal t-Norm Logic SMTL are PSC (Theo-
rem 5.11).
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2 Basic Notions

2.1 Logics and consequence relations We begin by recalling some general defi-
nitions concerning the theory of logical calculi (for more details see, e.g., [28]). The
notions of a propositional language L (a set of connectives with specified finite ari-
ties) and set of L-formulas FmL over a fixed countably infinite set of propositional
variables are defined in the usual manner. An L-theory T is just a set of L-formulas
and an L-substitution σ is an endomorphism on FmL (understood here as the for-
mula (or term) algebra), writing σ(T ) for {σϕ | ϕ ∈ T }. A logic L in the language L
is a finitary structural consequence relation (in the sense of Tarski) on FmL, omitting
L if the language is clear from the context. That is, L is a relation between theories
and formulas (writing T `L ϕ instead of (T, ϕ) ∈ L and T `L T ′ instead of T `L ϕ
for each ϕ ∈ T ′) satisfying the following conditions:

1. if ϕ ∈ T , then T `L ϕ;
2. if T ′

`L T and T `L ψ , then T ′
`L ψ ;

3. if T `L ϕ, then there is a finite set T ′
⊆ T such that T ′

`L ϕ;
4. if T `L ϕ, then σ(T ) `L σ(ϕ) for each L-substitution σ .

An L-theorem is a formula ϕ such that ∅ `L ϕ (abbreviated as `L ϕ).
A logic L2 in a language L2 ⊇ L1 is said to be an expansion of L1 in L1 if

for each L1-theory T and L1-formula ϕ, T `L1 ϕ implies T `L2 ϕ. The expan-
sion is conservative if also T `L2 ϕ implies T `L1 ϕ for each L1-theory T and
L1-formula ϕ. In this case we say that L1 is the L1-fragment of L2 and denote L1
by L2�L1, observing that the L1-fragment of L2 is uniquely determined. If the lan-
guages L1 and L2 coincide, then we speak of an extension rather than an expansion.

We can now make the notions of structural completeness and hereditary structural
completeness for a logic precise.

Definition 2.1 A logic L is structurally complete (SC for short) if all of its exten-
sions have new theorems and hereditarily structurally complete (HSC for short) if
all of its extensions are SC.

We also recall an alternative well-known characterization of structural completeness
(see, e.g., [22] and [26]) that makes use of the notion of a rule.

Definition 2.2 A rule for a language L is an ordered pair, written T B ϕ, where T
is a finite L-theory and ϕ is an L-formula, called an axiom if T = ∅. A rule T B ϕ
is derivable in the logic L if T `L ϕ and admissible in L if for each substitution σ ,
`L σ(T ) implies `L σϕ.

Theorem 2.3 A logic L is SC if and only if all of its admissible rules are derivable.

Example 2.4 Intuitionistic Logic is famously not SC, having admissible but non-
derivable rules such as

¬p → (q ∨ r)B (¬p → q) ∨ (¬p → r).

However, for certain restrictions of the language (e.g., to implicational formulas)
all the admissible rules are derivable, and so these fragments of Intuitionistic Logic
are SC.

We will also make use of a characterization of hereditary structural completeness
proved in [22]. Let L be a logic and R a set of rules. By L + R we denote the
weakest extension of L where all rules from R are derivable (i.e., the intersection of
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all such extensions). We say that L′ is an axiomatic extension of L if there is a set of
axioms A such that L′

= L + A.

Theorem 2.5 ([22]) The following are equivalent for any logic L :

(1) L is HSC;
(2) every axiomatic extension of L is SC;
(3) every extension of L is an axiomatic extension of L.

2.2 Algebraic semantics It will be helpful to also have an algebraic formulation
of the above structural completeness properties. We assume familiarity with some
standard notions from Universal Algebra as may be found in a good reference book
such as [9]. For convenience, we will use the same terminology for algebras as for
logics, speaking of a language rather than a type (or signature), formulas rather than
terms, and the formula (rather than term) algebra FmL.

Recall that a quasi-identity has the form ϕ1 ≈ ψ1 ∧ · · · ∧ ϕm ≈ ψm ⇒ ϕ ≈ ψ .
A (quasi)variety is a class of algebras of the same language axiomatizable by a set of
(quasi-)identities. For a class K of algebras of the same language, the variety V(K)
and quasivariety Q(K) generated by K are the smallest variety and quasivariety
containing K , respectively.

Definition 2.6 A quasivariety Q is structurally complete (SC for short) if each of
its proper subquasivarieties generates a proper subvariety of V(Q) and is primitive
(deductive) if each of its subquasivarieties is SC.

Notice that a variety V is SC if and only if each proper subquasivariety of V gener-
ates a proper subvariety of V and primitive (the algebraic version of HSC, attributed
to Pigozzi in [4]) if and only if each of its subquasivarieties is a variety.

The logical and algebraic definitions are connected using the comprehensive the-
ory of algebraizable logics of [6]. Let us call a homomorphism from FmL into an
algebra A for L, an A-evaluation. For a class of algebras K of the same language L
and set of FmL-identities 6 ∪ {ϕ ≈ ψ}, we write 6 |HK ϕ ≈ ψ if for any A ∈ K
and A-evaluation e, e(ϕ′) = e(ψ ′) for all (ϕ′

≈ ψ ′) ∈ 6 implies e(ϕ) = e(ψ).
A logic L is elementarily algebraizable (from now on, omitting the adjective “el-

ementarily”) if there is a quasivariety K , a set of identities in one variable E(p), and
a set of formulas in two variables 1(p, q) such that

(i) T `L ϕ iff
⋃

{E(ψ) | ψ ∈ T } |HK E(ϕ);
(ii) 6 |HK ϕ ≈ ψ iff

⋃
{1(ϕ′, ψ ′) | ϕ′

≈ ψ ′
∈ 6} |HL 1(ϕ,ψ);

(iii) ϕ a`L
⋃

{1(ϕ,ψ) | ϕ ≈ ψ ∈ E(ϕ)};
(iv) ϕ ≈ ψ =||HK

⋃
{E(ψ) | ψ ∈ 1(ϕ,ψ)}.

The class K is then called the equivalent quasivariety of L. In our setting (fini-
tary logics and elementary algebraizability) we can assume that both sets E(p) and
1(p, q) are finite.

The following theorem is easily established, using the above conditions to trans-
late between the logical and algebraic definitions of structural completeness.

Theorem 2.7 ([22]) For any algebraizable logic L with equivalent quasivariety Q,

(a) L is SC iff Q is SC;
(b) L is HSC iff Q is primitive.
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We will also make quite heavy use of the following theorem to deal with fragments
of logics. Recall that L-subreducts of an algebra are just subalgebras of the L-reduct
of that algebra.

Theorem 2.8 ([6]) Let L be an algebraizable logic for a language L′ with equiva-
lent quasivariety Q and translations E and 1 in a sublanguage L ⊆ L′. Then L�L
is algebraizable with the same translations and an equivalent quasivariety Q�L con-
sisting of all L-subreducts of algebras from Q.

2.3 Residuated lattices and fuzzy logics We move on now from general defi-
nitions to our particular realm of interest: the class of residuated lattices. These
structures, investigated in detail in, for example, [17] and [8], provide a suitable al-
gebraic framework for a wide range of substructural logics, including a broad family
of fuzzy logics. Since algebras for the most popular of these fuzzy logics are both
integral and commutative (the logics themselves are said to admit weakening and
exchange rules), we restrict our attention in this paper to the following definitions.

An integral commutative residuated lattice (ICRL for short) is an algebra

A = 〈A,∧,∨, ·,→,>〉

with binary operations ∧, ∨, · , →, and a constant > such that
1. 〈A,∧,∨〉 is a lattice with top element >,
2. 〈A, · ,>〉 is a commutative monoid,
3. x · y ≤ z iff x ≤ y → z for all x, y, z ∈ A.

A bounded integral commutative residuated lattice (BICRL for short) is an algebra
〈A,∧,∨, · ,→,⊥,>〉 such that 〈A,∧,∨, · ,→,>〉 is an ICRL with bottom ele-
ment ⊥. The classes of ICRLs and BICRLs both form varieties (see, e.g., [8] for
proofs).

Observe that > = x → x for all x in any (B)ICRL. We also define the following
useful abbreviations both for formulas and elements of a (B)ICRL:

¬x =def x → ⊥

x ↔ y =def (x → y) ∧ (y → x)

x0
=def >

x →
0 y =def y

xn+1
=def x · xn (n ∈ N)

x →
n+1 y =def x → (x →

n y) (n ∈ N).

Given a sublanguage L of the language of BICRLs containing → and a quasi-
variety Q of L-subreducts of (B)ICRLs, we define a logic LQ as

T `LQ ϕ iff {ψ ≈ > | ψ ∈ T } |HQ ϕ ≈ >.

Clearly, Q is the equivalent quasivariety of LQ with translations E = {p ≈ >} and
1 = p � q =def {p → q, q → p}.

The implicational subreducts of ICRLs are called BCK-algebras, and their logic is
called BCK. All logics LQ defined as above are expansions of BCK. Conversely, any
expansion L of BCK in a sublanguage of the language of BICRLs is algebraizable
with the given translations, and its equivalent quasivariety, denoted by QL, consists
of algebras A satisfying

{ψ ≈ > | ψ ∈ T } |HA ϕ ≈ > whenever T `L ϕ.
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Table 1 Properties of Integral Commutative Residuated Lattices

Label Name Condition

(prl) prelinearity > ≈ (x → y) ∨ (y → x)
(div) divisibility x · (x → y) ≈ y · (y → x)
(can) cancellation x → (x · y) ≈ y
(rcan) restricted cancellation > ≈ ¬x ∨ ((x → (x · y)) → y)
(inv) involution ¬¬x ≈ x
(pc) pseudo-complementation ⊥ ≈ x ∧ ¬x
(cn) n-contraction xn

≈ xn−1

Clearly, for any quasivariety Q of L-subreducts of BICRLs, QLQ
= Q, and for any

expansion L of BCK in a sublanguage of the language of BICRLs, LQL
= L. Hence

to recap from the previous section: a logic L is structurally complete if and only if
the quasivariety QL is structurally complete and the quasivariety Q is structurally
complete if and only if the logic LQ is structurally complete.

ICRLs provide algebraic semantics for the logic FL+
ew, where adding ⊥ gives

the logic FLew (also known as Monoidal Logic ML). We obtain algebras for other
substructural logics, including the most popular fuzzy logics, by adding further con-
ditions such as those listed in Table 1.

The fuzzy logics investigated in this paper are displayed in Table 2. We also con-
sider Cancellative Hoop Logic CHL, whose equivalent variety is the class of ICRLs
satisfying (prl), (div), and (can). Our selection includes the fundamental fuzzy log-
ics Ł, G, and 5, and the core logics MTL and BL of left-continuous and continuous
t-norms, respectively. The choice of the remaining logics reflects interesting differ-
ences in structural completeness properties established by our methods. Results for
other logics widely studied in the literature such as IMTL and 5MTL (character-
ized by BICRLs satisfying (prl) and (inv), and BICRLs satisfying (prl) and (rcan),
respectively) follow from our theorems, but are not sufficiently different to merit
special attention.

Table 2 Logics and Their Equivalent Varieties

Label Logic Class of BICRLs satisfying

MTL Monoidal t-Norm Logic (prl)
SMTL Strict MTL (prl), (pc)

CnMTL n-Contractive MTL (n ≥ 2) (prl), (cn)
BL Basic Logic (prl), (div)

CnBL n-Contractive BL (n ≥ 2) (prl), (div), (cn)
G Gödel Logic (prl), (c2)
Ł Łukasiewicz Logic (prl), (div), (int)
5 Product Logic (prl), (div), (rcan)
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For convenience,
1. we denote the class QL (where no confusion can occur) simply by L;
2. we call the algebras from QL, L-algebras;
3. we call linearly ordered L-algebras, L-chains;
4. we denote the ⊥-free fragment of L, obtained by removing ⊥ from the lan-

guage, by L+.
We remark that there exist different names for many of these classes of algebras.
For example, Ł-algebras are term-equivalent to MV-algebras, while G-algebras are
term-equivalent to Heyting algebras satisfying (prl). Also, these quasivarieties are
typically generated by certain distinguished subclasses (see, e.g., the survey paper
on completeness in fuzzy logics [10]):

1. each class of L-algebras in Table 2 is generated both by the class of L-chains
and the class of L-algebras with lattice reduct 〈[0, 1],min,max〉 (also, the
class of CHL-algebras is generated by CHL-chains and CHL-algebras with
lattice reduct 〈(0, 1],min,max〉);

2. in particular, MTL-algebras and BL-algebras are generated by all such alge-
bras where · is a left-continuous t-norm and continuous t-norm, respectively;

3. the classes of algebras for G, Ł, 5, CHL, and BL are generated by one par-
ticular algebra (see Section 3 below for details).

In this paper, we will study the properties of (hereditary) structural completeness
not only for the logics themselves but also for their various fragments (containing at
least implication). However, many of these fragments coincide. To avoid repetition,
let us mention some general patterns. Consider a sublanguage L of the language
{→, · ,∧,∨,⊥} of BICRLs containing implication:

1. the L \ {⊥} fragments coincide for MTL and SMTL;
2. the L∪{∧} and L∪{∧,∨} fragments coincide for all logics extending MTL;
3. the L ∪ {·} and L ∪ {·,∧,∨} fragments coincide for all logics extending BL.

Of course, in particular logics, there may be a further collapse of fragments; we will
remark on this in the relevant sections below.

3 Structural Completeness via Embeddings into Free Algebras

Our aim in this section will be to formalize a condition for structural completeness
already employed implicitly in the literature and use it to establish new results for
(fragments of) fuzzy logics. Let us denote the free algebra with countably many gen-
erators for a quasivariety Q by FQ. Our approach will be based upon the following
key fact.

Theorem 3.1 ([4]) A quasivariety Q is SC if and only if Q = Q(FQ).

Intuitively, the idea will be to show that a quasivariety Q is SC by proving that a
set of algebras generating Q as a quasivariety can all be embedded into FQ. It then
follows that any quasi-identity failing in one of the generating algebras must fail
in FQ. To get us started, we will consider a typical example. We will show that
the variety CHL of CHL-algebras (term-equivalent to cancellative hoops), and hence
also the corresponding logic, is SC. First, we identify a useful generating algebra
(noting that Z−

= {0,−1,−2, . . .}).

Theorem 3.2 ([15]) CHL = Q(Z−) for Z−
= 〈Z−,min,max,+,→, 0〉 and

x → y = min(0, y − x).
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To establish structural completeness, we need to show that if a quasi-identity fails
in Z−, then it fails in FCHL. But this will be the case if we can find a function that
maps every element of Z− to an element of FCHL (i.e., an equivalence class [ϕ]CHL
of formulas) and respects the operations of Z−. That is, we seek an embedding of
Z− into FCHL.

Recall that q0
= > and qn+1

= q · qn for n ∈ N, and consider the mapping
αCHL

: Z−
→ FCHL defined by

αCHL(i) = [q−i
]CHL.

To show that αCHL is an embedding, we first need |HCHL q0
≈ > which is true by

definition, and the following for all i, j ∈ Z−:

(i) |HCHL q−(i+ j)
≈ q−i

· q− j ;
(ii) |HCHL q− min(0, j−i)

≈ q−i
→ q− j .

(i) is almost immediate. For (ii), notice that if i ≤ j , then q− min(0, j−i)
= q0

= >

and |HCHL q−i
→ q− j

≈ >. If i > j , then q− min(0, j−i)
= q i− j and

q−i
→ q− j

= q−i
→ (q−i

· q i− j ). So by cancellativity, |HCHL q−i
→ q− j

≈ q i− j

as required. Finally, [q−i
] = [q− j

] if and only if i = j (also by cancellativity), so
αCHL is one-to-one and hence an embedding.

In what follows, we generalize this reasoning in several directions. We treat qua-
sivarieties generated by classes of algebras (rather than just a single algebra), we
allow partial embeddings (rather than embeddings), and we deal uniformly with sev-
eral fragments of a logic simultaneously.

3.1 General conditions For two algebras A and B of the same language L, A
is partially embeddable into B when each finite subset F of A can be partially em-
bedded into B. That is, there is a mapping f : F → B such that for each c ∈ L

and elements −→a ∈ F satisfying cA(−→a ) ∈ F , f (cA(−→a )) = cB(
−−→
f (a)). A class

K of algebras is (partially) embeddable into B if every member of K is (partially)
embeddable into B. Obviously, embeddability implies partial embeddability.

We show that to prove the structural completeness of a quasivariety Q, it is suf-
ficient to show that for some set of algebras K that generate this quasivariety, each
member of K can be (partially) embedded into FQ.

Theorem 3.3 Suppose that Q = Q(K). If K is partially embeddable into FQ,
then Q is SC.

Proof We make use of Theorem 3.1. Suppose that a quasi-identity γ fails in Q.
Then it fails in some A ∈ K . That is, there is an A-evaluation e that witnesses
this failure. Consider the set F ⊆ A of values assigned by e to the subformulas
occurring in γ . Let f be the partial embedding of F into FQ. Then the evaluation
f ◦ e witnesses the failure of γ in FQ. �

We now extend this result to sublanguages. Let Q be a quasivariety based on a
language L. Recall that the free algebra FQ consists of equivalence classes of for-
mulas, denoted [ϕ]Q for a formula ϕ. We will make use of the canonical morphism
hQ : FmL → FQ defined by hQ(ϕ) = [ϕ]Q. Recall that by Q�L we denote the
class of all L-subreducts of algebras from Q, and if Q is a quasivariety, then so is
Q�L.
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Lemma 3.4 Let Q be a quasivariety for the language L′ and let L ⊆ L′. Then
hQ(ϕ) = hQ(ψ) if and only if hQ�L(ϕ) = hQ�L(ψ) for all ϕ,ψ ∈ FmL.

Proof For ϕ,ψ ∈ FmL, hQ(ϕ) = hQ(ψ) if and only if |HQ ϕ ≈ ψ if and only if
|HQ�L ϕ ≈ ψ if and only if hQ�L(ϕ) = hQ�L(ψ). �

We now formulate our key theorem in such a way that SC can be established uni-
formly for several sublanguages of a given language at the same time. The basic
idea is that our mappings from the generating algebras should be to formulas of a
minimal language Lm , but the canonical morphism should then take these formulas
to equivalence classes in a maximal language L′. SC will then hold for any language
L such that Lm ⊆ L ⊆ L′.

Theorem 3.5 Let Q = Q(K) be a quasivariety for the language L′ and let
Lm ⊆ L′. Suppose that for each finite subset F ⊆ A for A ∈ K , there is a
mapping mA

F : F → FmLm such that hQ ◦ mA
F is a partial embedding of F into FQ.

Then Q�L is SC whenever Lm ⊆ L ⊆ L′.

Proof We make use of Theorem 3.3. Since Q = Q(K), the quasivariety Q�L is
generated as a quasivariety by the class KL = {A�L | A ∈ K}. Let us consider an
algebra A�L ∈ KL and a finite subset F ⊆ A. We know that there is a mapping mA

F
whose range is a subset of FmL. Thus the mapping f = hQ�L ◦ mA

F is a mapping of
F into FQ�L.

We show that f is a partial morphism. Consider a (without loss of generality)
binary connective c ∈ L and a, b ∈ F such that cA�L(a, b) ∈ F . Thus also
cA(a, b) ∈ F and we can use the fact that hQ ◦ mA

F and hQ are (partial) morphisms
to obtain

hQ ◦ mA
F (c

A(a, b)) = cFQ(hQ ◦ mA
F (a), hQ ◦ mA

F (b))

= hQ(c(mA
F (a),mA

F (b))).

Hence, by Lemma 3.4, we obtain

hQ�L ◦ mA
F (c

A(a, b)) = hQ�L(c(mA
F (a),mA

F (b)))

= cFQ�L(hQ�L ◦ mA
F (a), hQ�L ◦ mA

F (b)).

Finally, we show that f is one-to-one. Assume that f (a) = f (b). Then
hQ ◦ mA

F (a) = hQ ◦ mA
F (b) (since mA

F (a),mA
F (b) ∈ FmL we can use Lemma 3.4).

Since hQ ◦ mA
F is a one-to-one mapping, a = b as required. �

Finally, we make an interesting observation. For quasivarieties generated by resid-
uated chains (as is the case for our fuzzy logics), with some restrictions on the lan-
guage, we can obtain a converse to Theorem 3.3.

Theorem 3.6 Let L be a sublanguage of BICRLs containing → and ∨, and let
Q be a quasivariety of L-subreducts of BICRLs generated by a class of linearly
ordered algebras K . Then K is partially embeddable into FQ�L if and only if Q�L
is SC.

Proof One direction is Theorem 3.3. For the opposite direction, let us take A ∈ K
and a finite set F ⊆ A. Consider a set of pairwise distinct variables {pa | a ∈ F}
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and a quasi-identity γ :∧
c∈L;a1,...,an ,cA(a1,...,an)∈F

c(pa1 , . . . , pan ) ≈ pcA(a1,...,an)

⇒ > ≈

∨
a,b∈F;a 6≤b

(pa → pb).

Clearly, γ is not valid in Q: just consider the algebra A and A-evaluation v(pa) = a
(notice that v(pa → pb) 6= >

A for a 6≤ b and since A is linearly ordered, >
A is

finitely join irreducible). But Q is generated by FQ (by Theorem 3.1), so γ is not
valid in FQ.

Let e be an FQ-evaluation satisfying the premises of γ but not its conclusion.
Define a mapping f : F → FQ by f (a) = e(pa). Obviously, f is a partial ho-
momorphism (as it validates the premises of γ ). We show that f is one-to-one. If
a, b ∈ F and a 6= b, then a 6≤ b or b 6≤ a. Assuming the former case, without loss
of generality,

f (a) →
FQ f (b) = e(pa) →

FQ e(pb) = e(pa → pb) < >
FQ .

The first equality is by definition, the second is trivial, and the third follows from the
fact that e(pa → pb) ≤ e(

∨
a,b∈F;a 6≤b(pa → pb)) < >

FQ . Hence, f (a) 6= f (b) as
required. �

This theorem may also be generalized beyond the scope of this paper. We do not
need to assume commutativity (any of the two division operations of a residuated
lattice would work) or integrality. We would just need an extra assumption that
L is algebraizable with a translation E(p) containing just one identity (all known
algebraizable finitary logics have this property) and to change the quasi-identity γ to∧

c∈L;a1,...,an ,cA(a1,...,an)∈F

c(pa1 , . . . , pan ) ≈ pcA(a1,...,an)

⇒ E(
∨

a,b∈F;a 6≤b

(pa → pb)).

A further generalization would be to replace linearly ordered algebras with finitely
subdirectly irreducible algebras in the formulation of the theorem. The only place
that linearity is used in the above proof is to get that > is finitely join irreducible, but
this can also be shown true for finitely subdirectly irreducible algebras (essentially
by following Proposition 1.3.4 of [11]).

3.2 Gödel Logic As preparation for more complicated cases, let us begin by
revisiting (and extending a little) the structural completeness proofs of Dzik and
Wroński for Gödel logic G in [13]. First, we recall the following well-known result
for G, noting that for convenience we reduce the language of BICRLs by removing ·

(since this coincides here with ∧).

Theorem 3.7 G = Q({Gn | 2 ≤ n ∈ N}) = Q(G∞) where

Gn = 〈{1, . . . , n},min,max,→, 1, n〉 with x → y = y if x > y, and n otherwise.

G∞ = 〈[0, 1],min,max,→, 0, 1〉 with x → y = y if x > y, and 1 otherwise.
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Let us now consider the embedding defined in [13] for Gödel Logic with the full
language.

Proposition 3.8 ([13]) For 2 ≤ n ∈ N and distinct variables p1, . . . , pn , let

ϕ1 = ⊥,
ϕ2 = p2 ∨ (p2 → p1),
ϕi = pi ∨ (pi → ϕi−1) for i = 3 . . . n − 1,
ϕn = p1 → p1.

Then αG
n : Gn → FG defined by αG

n (i) = [ϕi ]G is an embedding.

Structural completeness for Gödel Logic follows immediately from Theorem 3.3.

Theorem 3.9 ([13]) G is SC.

Notice, however, that the embedding defined in Proposition 3.8 makes essential use
of →, ∨, and ⊥. So we cannot yet conclude that all fragments of Gödel Logic are
SC. We require embeddings that make no mention of the unwanted connectives.
For positive fragments, this can be achieved by adapting the previous embedding as
follows.

Proposition 3.10 For 2 ≤ n ∈ N and distinct variables p1, . . . , pn , let

ϕ1 = p1,
ϕi = ((pi → ϕi−1) → pi ) → pi for i = 2 . . . n − 1,
ϕn = p1 → p1.

Then αG+

n : G+
n → FG+ defined by αG+

n (i) = [ϕi ]G+ is an embedding.

Proof First we establish the following:
(i) |HG ϕi ∧ ϕ j ≈ ϕi for 1 ≤ i ≤ j ≤ n;

(ii) |HG ϕi → ϕ j ≈ ϕ j for 1 ≤ j < i ≤ n;
(iii) |HG ϕi → ϕ j ≈ > for 1 ≤ i ≤ j ≤ n.

For (i), it is enough to check the case where j = i + 1. For i = n − 1, the claim
is immediate, so suppose that 1 ≤ i < n − 1. Then for any G∞-evaluation e, as
required,

e(ϕi ) ≤ ((e(pi+1) → e(ϕi )) → e(pi+1)) → e(pi+1) = e(ϕi+1).

For (ii), it is enough to check the case where i = j + 1. If i = n, the claim is
immediate, so suppose that 1 ≤ i ≤ n − 1. We want to show

|HG (((pi → ϕi−1) → pi ) → pi ) → ϕi−1 ≈ ϕi−1.

For any G∞-evaluation e, if e(pi ) ≤ e(ϕi−1), then we are done. If e(pi ) > e(ϕi−1),
then

e((((pi → ϕi−1) → pi ) → pi ) → ϕi−1)

= e((ϕi−1 → pi ) → pi ) → ϕi−1) = e(pi → ϕi−1) = e(ϕi−1).

For (iii), we use (i) to get that |HG ϕi → ϕ j ≈ (ϕi ∧ ϕ j ) → ϕ j ≈ >, as required.
Now we can show that αG+

n is an embedding. (i)–(iii) show that the opera-
tions ∧ and → are preserved, and the same holds for ∨ since it is definable us-
ing ∧ and →. Finally, αG+

n is one-to-one. If [ϕi ] = [ϕ j ], then i = j , since
for any G∞-evaluation e where e(pi ) < e(pi+1) for i = 1 . . . n − 1, we get
e(ϕi ) = e(pi ) < e(pi+1) = e(ϕi+1) for i = 1 . . . n − 1. �
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Now we can make use of Theorem 3.5. Our quasivariety Q is G+, generated as a
quasivariety by {G+

n | 2 ≤ n ∈ N}. Our minimal sublanguage is Lm = {→} and we
want to show that G�L is SC for any L such that Lm ⊆ L ⊆ L′. But now by the
previous proposition, for each n = 2, 3, . . ., we have that αG+

n is an embedding (no
need for partial embeddings here) of G+

n into FG+ . Hence G�L is SC.
Notice that this reasoning cannot be extended to cover Theorem 3.9 since the

embedding of Proposition 3.10 fails when we have ⊥ in the language. In this case
we are unable to prove [p1]G = [⊥]G, so we no longer have an embedding into
the appropriate free algebra. However, a small change—replacing p1 with ⊥ in the
definition of ϕ1—does the trick. Hence we get the following theorem.

Theorem 3.11 G�L is SC for {→} ⊆ L ⊆ {→,∧,∨,⊥}.

Note that we will see an alternative way to prove structural completeness (in fact,
hereditary structural completeness) for all fragments of G in Section 4.

3.3 Łukasiewicz Logic It will be easy to show (see Section 5) that Łukasiewicz
Logic Ł is not structurally complete. However, it has been proved by Wojtylak
that the property does hold for certain positive fragments [31] (proofs for this
logic concentrating on different notions of structural completeness may be found
in [27], [29], and [30]). We will revisit (and simplify) this proof in our frame-
work. First, recall the following well-known result, noting that for the finite-valued
Łukasiewicz logics Łn+1 (n = 1, 2, . . .) we transfer the usual semantics on the set
{0, 1/n, . . . , (n − 1)/n, 1} to the (for this paper) more convenient set {−n, . . . , 0}.

Lemma 3.12 Ł = Q({Łn+1 | 1 ≤ n ∈ N}) = Q(Ł∞) where

Łn+1 = 〈{−n, . . . , 0},min,max, · ,→,−n, 0〉

with x · y = max(−n, x + y)
x → y = min(0, y − x);

Ł∞ = 〈[0, 1],min,max, · ,→, 0, 1〉

with x · y = max(0, x + y − 1)
x → y = min(1, 1 − x + y).

Note also that each individual algebra Łn+1 for 1 ≤ n ∈ N generates a variety of
algebras for the n + 1-valued Łukasiewicz logic Łn+1.

Since in Ł disjunction ϕ∨ψ is definable using implication as (ϕ → ψ) → ψ and
strong conjunction ϕ ·ψ is definable using implication and negation as ¬(ϕ → ¬ψ),
many of our usual fragments coincide. Hence we can restrict our attention to the sub-
languages {→}, {→,∧}, {→, ·}, and {→,⊥}, leaving the latter (the full language)
to Section 5. We begin, following the spirit but not the details of the proof in [31],
with the first two cases.

Proposition 3.13 Let 1 ≤ n ∈ N and mŁ
n : Łn+1�{→,∧} → Fm{→} be defined by

mŁ
n (i) = ϕi where

ϕ = ((p →
n−1 q) → p) → p

ϕi = (ϕ →
−i q) → q for i = 0,−1, . . . ,−n.

Then hŁ�{→,∧} ◦ mŁ
n : Łn+1�{→,∧} → FŁ�{→,∧} is an embedding.
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Proof To show that hŁ�{→,∧}◦mŁ
n is a morphism it is enough to show the following:

(i) |HŁ ϕi → ϕ j ≈ > for −n ≤ i ≤ j ≤ 0;
(ii) |HŁ ϕi → ϕ j ≈ ϕ j−i for −n ≤ j < i ≤ 0;

(iii) |HŁ ϕi ∧ ϕ j ≈ ϕmin(i, j) for all −n ≤ i, j ≤ 0.
First, however, let us establish a couple of useful properties.

Claim 1 |HŁ q ∨ ϕn
≈ ϕn and hence |HŁ ϕi ≈ ϕ−i for i = 0,−1, . . . ,−n.

Proof of claim Let e be an Ł∞-evaluation. Then

e(ϕn) = e((((pn−1
→ q) → p) → p)n) = max(e((pn−1

→ q)n), e(pn)).

If e(pn−1) ≤ e(q), then e(ϕn) = 1 and we are done. If e(q) ≤ e(pn), then since
e(pn) ≤ e(ϕn) we are also done. So suppose that e(pn−1) > e(q) > e(pn). It
follows that e(p) ≤ e(pn−1

→ q). But now

e(q) = e(pn−1
∧ q)

= e(pn−1
· (pn−1

→ q))
≤ e((pn−1

→ q)n−1
· (pn−1

→ q))
= e((pn−1

→ q)n)
= e(ϕn).

Finally, using the above, for any Ł∞-evaluation e and 0 ≤ i ≤ n, e(ϕi ) ≥ e(ϕn)
≥ e(q) and so e(ϕi ) = max(e(ϕi ), e(q)) = e(ϕi ), as required. �

Claim 2 For any Ł∞-evaluation e, any formula ψ , and any k > 0,

e(ψk) =

{
ke(ψ)− k + 1 > 0 if e(ψ) > (k − 1)/k

e(ψk) = 0 otherwise.

Proof of claim A simple computation in Ł∞. �

Claim 3 For any Ł∞-evaluation e, e(ϕn) = 0 if and only if (e(q) = 0 and
e(p) = (n − 1)/n).

Proof of claim For the right-to-left direction, if e(q) = 0 and e(p) = (n − 1)/n,
then e(ϕ) = max(e(p), 1 − e(pn−1)) = max(e(p), 1 − 1/n) = (n − 1)/n. So
e(ϕn) = 0. For the left-to-right direction, suppose that e(ϕn) = 0. Then e(q) = 0
by Claim 1. Also e(pn) = 0 and e((pn−1

→ q)n) = 0. So e(p) ≤ (n − 1)/n
and 1 − e(pn−1) ≤ (n − 1)/n (by Claim 2). From the latter inequality we get
e(pn−1) ≥ 1/n and so e(pn−1) = (n − 1)e(p) − (n − 1) + 1 ≥ 1/n (by Claim 2
again). Rearranging, e(p) ≥ (n − 1)/n and thus together e(p) = (n − 1)/n. �

Parts (i) and (iii) follow immediately from Claim 1. For part (ii), we show that for
any Ł∞-evaluation e,

e(ϕ−i
→ ϕ− j ) = 1 − e(ϕ−i )+ e(ϕ− j ) = e(ϕi− j ).

First, assume that e(ϕ− j ) 6= 0. Then using the fact that x → (x · y) = y in Ł∞ for
x · y > 0, we get e(ϕ−i

→ ϕ− j ) = e(ϕ−i
→ ϕ−i+i− j ) = e(ϕi− j ). If e(ϕ− j ) = 0,

then e(ϕn) = 0 and so by Claim 3, e(q) = 0 and e(p) = (n − 1)/n. But (looking
at the first part of the proof of Claim 3) in this case e(ϕ) = (n − 1)/n and so
j = −n (otherwise e(ϕ− j ) 6= 0). As the case of i = 0 is simple, we can assume
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that e(ϕ−i ) > 0 and e(ϕi+n) > 0. Hence the proof is completed using Claim 2 and
observing that

1 − (−i
n − 1

n
− (−i)+ 1) = (n + i)

n − 1
n

− (n + i)+ 1.

Finally, from (ii) and the fact that 6|HŁ ϕi ≈ > for 0 < i ≤ n we obtain that
hŁ�{→,∧} ◦ mŁ

n is one-to-one. �

Hence, by Theorem 3.5, we arrive at the following result.

Theorem 3.14 ([31]) Ł�L is SC for {→} ⊆ L ⊆ {→,∧,∨}.

In Proposition 3.13, we are not able to prove that the embedding preserves strong
conjunction. This leaves one open case: the {→, ·}-fragment of Ł, or algebraically,
the variety of Wajsberg hoops. This has perhaps been overlooked due to the fact that
Wojtylak refers in [31] to the {→,∧,∨}-fragment as the positive fragment. Here we
answer the question negatively.

Theorem 3.15 Ł�{→, ·} is not SC.

Proof We give a direct proof. It is easily seen that the following rule is not derivable
in Ł (just consider, for example, the Ł∞-evaluation that takes p to 0):

p → (p · p)B p.

However, suppose that `Ł�{→,·} σ p → (σ p · σ p) for some {→, ·}-substitution σ .
This means that the {→, ·}-formula σ p is idempotent and hence for every Ł∞-
evaluation e, always e(σ p) = 0 or e(σ p) = 1. But the functions corresponding
to the formulas of Ł are continuous in Ł∞. Also ⊥ cannot be defined in the language
{→, ·} (consider, e.g., the Ł∞-evaluation that takes every variable to 1). So σ p must
be a theorem of Ł�{→, ·}. That is, the rule is admissible in Ł�{→, ·}, and Ł�{→, ·}
is not SC. �

3.4 Cancellative Hoop Logic Structural completeness for CHL was already es-
tablished as an example at the beginning of this section. However, we can now uti-
lize the embeddings for Łukasiewicz Logic as partial embeddings to give a uniform
proof that all fragments of this logic are SC.

Proposition 3.16 For a finite subset F of Z− where n = min F, we define
mZ−

F : F → Fm{→} by mZ−

F (i) = ϕi where

ϕ = ((p →
n−1 q) → p) → p

ϕi = (ϕ →
−i q) → q for i = 0,−1, . . . ,−n.

Then hCHL ◦ mZ−

F is a partial embedding of F into FCHL.

Proof Since the {→,∧}-fragment of Ł is a sublogic of CHL, we obtain the follow-
ing from the proof of Theorem 3.13:

(i) |HCHL ϕi → ϕ j ≈ > for −n ≤ i ≤ j ≤ 0;
(ii) |HCHL ϕi → ϕ j ≈ ϕ j−i for −n ≤ j < i ≤ 0;

(iii) |HCHL ϕi ∧ ϕ j ≈ ϕmin(i, j) for all −n ≤ i, j ≤ 0.
Furthermore, by Claim 1 of the proof of Proposition 3.13 and cancellation, easily

(iv) |HCHL ϕi · ϕ j ≈ ϕi+ j for all −n ≤ i + j ≤ 0.
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Hence hCHL ◦ mZ−

F is a partial mapping of F into FCHL. Moreover, notice that
6|HCHL ϕi ≈ > for 0 < i ≤ n and hence using (ii), hCHL ◦ mZ−

F must also be
one-to-one, that is, a partial embedding. �

So, by Theorem 3.5, we obtain immediately the following.

Theorem 3.17 CHL�L is SC for {→} ⊆ L ⊆ {→,∧,∨, ·}.

Moreover, from [1], Theorem 6.3, we know that CHL has only trivial subvarieties.
That is, its axiomatic extensions are CHL and the inconsistent logic. Since both are
SC, by Theorem 2.5 we obtain the following corollary.

Corollary 3.18 CHL is HSC.

Note that this latter result follows also directly from Theorem 2.7(b) using the fact
established in [16], Chapter 3, Proposition 2.17, that the variety of CHL-algebras
has only trivial subquasivarieties. On the other hand, we can see this corollary and
Theorem 2.7(b) as an alternative proof of [16], Chapter 3, Proposition 2.17.

3.5 Product Logic We turn our attention now to the third fundamental fuzzy
logic, Product Logic 5. As shown in [18], the variety of 5-algebras is generated
as a quasivariety by the algebra

〈[0, 1],min,max, ∗,→, 0, 1〉 with x ∗ y = x · y

and x → y = y/x if x > y, 1 otherwise.

However, for our purposes it will be more useful to consider an alternative generator,
closely related to the generating algebras investigated above for Ł and CHL.

Lemma 3.19 ([18]) 5 = Q(Z−

⊥
) where

Z−

⊥
= 〈Z−

∪ {−∞},min,max,+,→, 0,−∞〉 with x → y = min(0, y − x).

We show structural completeness for fragments of 5 following the same basic idea
as for CHL. However, here we have to be careful about the bottom element: in
the above algebra −∞. Our strategy will be to deal with it in three different ways
depending on the language at hand. First, we can map the bottom element to ⊥ if this
constant is in the language. If not, but we have · in the language, then we make use
of a formula ( f → ( f · f )) → f that acts as a “⊥-surrogate” taking the value −∞ if
f is −∞, and 0 otherwise. Finally, in the implicational fragment, our “⊥-surrogate”
is just a variable f , taking care that all our other elements are mapped to formulas
above f in the formula algebra.

Since the core of the proof remains the same in all three cases, we combine these
methods to make a more complicated but uniform formulation.

Proposition 3.20 For a finite subset F of Z− where n = min F, let

ϕ = ((p →
n−1 q) → p) → p

ϕi = (ϕ →
−i q) → q for i = 0,−1, . . . ,−n.

Take a variable f different from p and q and define the substitution σ by

σr = ((r → f ) → f ) → (( f → r) → r).
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For c ∈ {→, ·,⊥}, define mc
F : F ∪ {−∞} → Fm{→,c} by

mc
F (i) = σϕi for i > −∞

mc
F (−∞) =


f if c = →

( f → ( f · f )) → f if c = ·

⊥ if c = ⊥.

Then
(a) h5�{→,∧,∨} ◦ m→

F is a partial embedding of F ∪ {−∞} into F5�{→,∧,∨};

(b) h5�{→,·} ◦ m·

F is a partial embedding of F ∪ {−∞} into F5�{→,·};

(c) h5 ◦ m⊥

F is a partial embedding of F ∪ {−∞} into F5.

Proof We start by noting the following (easy to prove) properties for each Z−

⊥
-

evaluation e:

(1) e(σr) =

{
e(r) if e( f ) = −∞ and e(r) > −∞

0 otherwise;

(2) e(m·

F (−∞)) =

{
−∞ if e( f ) = −∞

0 otherwise;

(3) if e( f ) > −∞, then e(σϕ) = 0 and thus also e(σϕi ) = 0;

(4) if e( f ) = −∞, then e(σϕ) > −∞ and thus also e(σϕi ) > −∞.

It then follows easily from (1) (reasoning in the algebras Z− and Z−

⊥
) that for any

formulas ψ1 and ψ2 not containing f or ⊥,

|HCHL ψ1 ≈ ψ2 iff |H5 σψ1 ≈ σψ2.

As the formulas ϕ and ϕi are exactly those from the proof of Proposition 3.16 we
obtain

(i) |H5 σϕi → σϕ j ≈ > for −n ≤ i ≤ j ≤ 0;
(ii) |H5 σϕi → σϕ j ≈ σϕ j−i for −n ≤ j < i ≤ 0;

(iii) |H5 σϕi · σϕ j ≈ σϕi+ j for −n ≤ i + j ≤ 0.

For c ∈ {→, · ,⊥} we use (2)–(4) to obtain
(i′) |H5 mc

F (−∞) → σϕ j ≈ > for −n ≤ j ≤ 0;
(ii′) |H5 σϕi → mc

F (−∞) ≈ mc
F (−∞) for −n ≤ i ≤ 0.

As the cases for ∨ and ∧ are corollaries of (i) and (i′) we have that h5�{→,∧,∨} ◦ m→

F
is a partial morphism. To show that the other two mappings are partial morphisms
we use (2)–(4) to show that, for c ∈ {· ,⊥},

(iii′) |H5 σϕi · mc
F (−∞) ≈ mc

F (−∞) for −n ≤ i ≤ 0;
(iii′′) |H5 mc

F (−∞) · mc
F (−∞) ≈ mc

F (−∞) for −n ≤ i ≤ 0.

Finally, to complete the proof we need to show that all three morphisms are one-to-
one. But this follows from (ii) and (ii′) and the simple fact that 6|H5 mc

F (−∞) ≈ >

for any c ∈ {→, · ,⊥} and 6|H5 ϕi ≈ > for any −n ≤ i ≤ 0. �
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Hence combining this proposition with Theorem 3.5, we obtain the following.

Theorem 3.21 5�L is SC for {→} ⊆ L ⊆ {→,∧,∨, · ,⊥}.

Moreover, since the only extensions of Product Logic are Classical Logic or the
inconsistent logic, we have the following.

Corollary 3.22 5 is HSC.

3.6 Basic Logic Our final and most complicated case is Hájek’s Basic Logic BL,
the logic of continuous t-norms. As we will see in Section 5, BL itself is not struc-
turally complete. However, we will show here that certain fragments do have this
property. First, let us consider an appropriate generating set of algebras for the equiv-
alent quasivariety BL based on a particular ordinal sum construction (see [2]).

Definition 3.23 Let (I,≤) be a linearly ordered set with bottom element 1 and let
B be a nontrivial BL-chain. The ordinal sum

⊕
i∈I B is defined as⊕

i∈I

B = 〈(I × (B − {>
B
})) ∪ {>},min,max, · ,→, (1,⊥B),>〉

with top element >, min and max defined lexicographically, and

(i, x) · ( j, y) =

{
(i, x ·

B y) if i = j
min((i, x), ( j, y)) otherwise

(i, x) · > = (i, x)
> · ( j, y) = ( j, y)

> · > = >

(i, x) → ( j, y) =


> if (i, x) ≤ ( j, y)
(i, x →

B y) if i = j and x > y
( j, y) otherwise

(i, x) → > = >

> → ( j, y) = ( j, y)
> → > = >.

Lemma 3.24 ([21]) BL = Q({BLn | 2 ≤ n ∈ N}) = Q(BL∞) where

BLn =

⊕
i∈{1,...,n}

Łn and BL∞ =

⊕
i∈{1,2,... }

Ł∞.

We will speak of the copies of Łn and Ł∞ as components of the algebras BLn and
BL∞, respectively, with the understanding that > is a common element of all com-
ponents. We will refer to elements being in higher, lower, or the same component
with respect to the index set {1, . . . , n} or {1, 2, . . .}.

For convenience, we introduce an auxiliary connective ϕ ≺ ψ =def (ϕ → ψ) → ψ
and observe that, for each BL∞-evaluation e,

e(ϕ ≺ ψ) =

{
> if e(ϕ) is in a higher component than e(ψ)
max(e(ϕ), e(ψ)) otherwise.

Proposition 3.25 For distinct variables p1, . . . , pn let

ϕ1 = p1,

ϕi = (pi ≺ ϕi−1) → (ϕi−1 ≺ pi ) for 2 ≤ i ≤ n,

and for distinct variables q1, . . . , qn let

ψ1 = (ϕ1 →
n−1 q1) ≺ (ϕ1 ≺ q1)

ψi = ψi−1 ≺ ((ϕi →
n−1 qi ) ≺ (ϕi ≺ qi )) for 2 ≤ i ≤ n

ψ(i,x) = (ψi →
−x qi ) → qi for 1 ≤ i ≤ n and −n ≤ x ≤ −1.
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Define mn
BL : BLn�{→} → Fm{→} by mn

BL(>) = > and mn
BL((i, x)) = ψ(i,x). Then

hBL�{→,∧} ◦ mn
BL : BLn�{→,∧} → FBL�{→,∧} is an embedding.

Proof We begin with a series of claims analyzing the formulas defined above.

Claim 1 For 2 ≤ i ≤ n and an arbitrary BL∞-evaluation e,

e(ϕi ) =

{
e(pi ) if e(pi ) is in a higher component than e(ϕi−1)

> otherwise.

Hence, for each j > i , either e(ϕ j ) = > or e(ϕ j ) is in a higher component than
e(ϕi ).

Proof of claim If e(pi ) is in a higher component than e(ϕi−1), then

e(ϕi ) = e((pi ≺ ϕi−1) → (ϕi−1 ≺ pi )) = e(ϕi−1 ≺ pi ) = e(pi ).

If e(pi ) is in a lower component than e(ϕi−1), then e(ϕi−1 ≺ pi ) = >, so e(ϕi ) = >.
Finally, if they are in the same component, then e(pi ≺ ϕi−1) = e(ϕi−1 ≺ pi ), so
e(ϕi ) = >. The second part of the claim is obvious. �

Hence if k is minimal such that e(ϕk) = > (set k = n+1 if there is no such number),
then e(ϕ j ) is in a higher component than e(ϕi ) for any k > j > i and e(ϕ j ) = > for
any j ≥ k.

Claim 2 For 1 ≤ i ≤ n, let us say that a BL∞-evaluation e is i-good if, for each
j ≤ i ,

1. e(ϕ j ) 6= >;
2. e(ϕ j ) and e(q j ) are in the same component;
3. e(q j ) < e(ϕ j )

n−1.

Then

e(ψi ) =

{
e((ϕi →

n−1 qi ) ≺ ϕi ) 6= > if e is i-good
> otherwise.

Hence, e(ψi ) and e(ψ(i,x)) (for each −n ≤ x ≤ −1) are in the same component as
e(ϕi ).

Proof of claim We proceed by induction on i . For the base case, if e(ϕ1)
n−1

≤ e(q1), then e(ϕ1 →
n−1 q1) = > and e(ψ1) = > as required. If e(ϕ1) = >

or e(ϕ1) is in a higher component than e(q1), then e(ϕ1 ≺ q1) = > and e(ψ1) = >

as required. Suppose now that e is 1-good. Then e(ϕ1 ≺ q1) = e(ϕ1) and we are
done. The proof of the second part of the claim is trivial.

For the induction step, suppose that i > 1. If e is not (i − 1)-good, then
e(ψi−1) = > and so e(ψi ) = > as required. If e is (i − 1)-good but not i-good,
then we proceed as in the case i = 1. Hence assume that e is i-good. Observe that
e((ϕi →

n−1 qi ) ≺ (ϕi ≺ qi )) = e((ϕi →
n−1 qi ) ≺ ϕi ) 6= > is in the same com-

ponent as e(ϕi ) and e(ψi−1) 6= > is in the same component as e(ϕi−1) (using the
induction hypothesis). Since e(ϕi ) 6= >, we can use Claim 1 to see that e(ψi−1) is
in a lower component than e((ϕi →

n−1 qi ) ≺ ϕi ) and so the proof is done. (Notice
that we crucially use the fact here that e(ψi−1) 6= >.) Again, the proof of the second
part of the claim is trivial. �
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Claim 3 For 1 ≤ i ≤ n and −n ≤ x ≤ −1,

|HBL qi ∨ ψn
i ≈ ψn

i and |HBL ψ(i,x) ≈ ψ−x
i .

Proof of claim We establish the claim for an arbitrary BL∞-evaluation e. We use
Claim 2 to notice that the only nontrivial case is when e is i-good. However, here we
can proceed as in the proof of Claim 1 occurring in the proof of Proposition 3.13 for
Ł. �

Now to show that our mapping is a morphism it is enough (the case of ∧ is then an
easy corollary) to show

(i) |HBL ψ(i,x) → ψ( j,y) ≈ > for (i, x) ≤ ( j, y);
(ii) |HBL ψ(i,x) → ψ( j,y) ≈ ψ( j,y) for i > j ;

(iii) |HBL ψ(i,x) → ψ(i,y) ≈ ψ(i,y−x) for x > y.
Again, we establish the claims for an arbitrary BL∞-evaluation e. First assume that e
is neither i-good nor j-good. Then parts (i)–(iii) immediately follow from Claims 2
and 3.

Now assume that e is both i-good and j-good. Part (iii) is then a corollary of
Claims 2 and 3 and the corresponding part of the proof of Proposition 3.13 for Ł.
To prove part (i), first notice that the case of i = j is a simple corollary of Claim 2.
For i < j we use Claim 1 to get that e(ϕi ) is in a lower component than e(ϕ j )
(since e(ϕ j ) 6= >). As by Claim 2, e(ψ(i,x)) is in the same component as e(ϕi ) and
e(ψ( j,x)) is in the same component as e(ϕ j ), the proof is done. The proof of part (ii)
is analogous.

Finally to show injectivity, observe that 6|HBL ψ(i,x) ≈ > (any i-good evaluation
would provide a counterexample and such an evaluation clearly exists) and using
parts (ii) and (iii), we have that 6|HBL ψ(i,x) ≈ ψ( j,y) for all (i, x) 6= ( j, y). �

Hence by Theorem 3.5, we arrive at the following result.

Theorem 3.26 BL�L is SC for {→} ⊆ L ⊆ {→,∧,∨}.

Finally, as might be expected from the failure of structural completeness for the
{→, ·}-fragment of Ł, the same result also holds for this fragment of BL.

Theorem 3.27 BL�{→, ·} is not SC.

Proof We use the same underivable rule as in the corresponding case for Ł, namely,
p → (p · p) B p. Suppose that `BL�{→,·} σ p → (σ p · σ p) for some {→, ·}-
substitution σ . Then the {→, ·}-formula σ p is idempotent. But now using the char-
acterization of the free n-generated BL-algebra given in Theorem 6.1 of [3] we know
that any such idempotent formula must be equivalent to >. So `BL σ p and the rule
is admissible. �

4 HSC and the Hereditary Deduction Theorem

We now turn our attention to a different method of establishing (hereditary) structural
completeness for logics, an extension of the well-known “Prucnal’s trick” used for
several implicational propositional calculi in [24]. To illustrate the trick, consider
any extension L of the implication-conjunction fragment G�{∧,→} of Gödel Logic.
Suppose that the rule ϕ1, . . . , ϕn B ψ is admissible in L. Consider a substitution
σ p = (ϕ1 ∧ · · · ∧ ϕn) → p and prove (using some key theorems of G�{∧,→})
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that `L σϕ ↔ ((ϕ1 ∧ · · · ∧ ϕn) → ϕ) for any implication-conjunction formula ϕ.
Since clearly `L σϕi for i = 1, . . . , n, the admissibility of the rule gives `L σψ . So
`L (ϕ1 ∧· · ·∧ϕn) → ψ and by properties of ∧ and →, we obtain ϕ1, . . . , ϕn `L ψ .
Hence L is SC and G�{∧,→} is HSC.

We use this trick here not to establish HSC directly, but rather to show that
the logic in question and all its extensions share a “hereditary version” of the lo-
cal (global) deduction theorem that is (under certain conditions) equivalent to HSC.
Besides establishing a further property of the logic, this method also avoids the need
for ∧ in the language and works in fragments where the trick cannot be applied (see
Theorem 4.8).

4.1 General conditions First, we recall the notion of a local (or global) deduction
theorem for a logic.

Definition 4.1 A logic L has the local deduction theoremLDT with respect to a
set E of sets of formulas in two variables if, for each theory T and formulas ϕ,ψ ,

T, ϕ `L ψ iff (∃1 ∈ E)(T `L 1(ϕ,ψ)).

L has the global deduction theorem GDT with respect to E if E contains just one set
of formulas.

Example 4.2 All the fuzzy logics considered in this paper have the LDT with
respect to the set

E = {{p →
n q} | n ∈ N}.

Notice that a logic can have theLDT with respect to different sets. For example, in
addition to theLDT mentioned in the previous example, Gödel Logic has theGDT
with respect to E = {{p → q}}.

We now introduce the new notion of a “hereditary” deduction theorem, essentially
saying that the appropriate deduction theorem is preserved (with the same set) for all
extensions of the logic.

Definition 4.3 A logic L has the hereditary local deduction theorem HLDT
(hereditary global deduction theorem HGDT ) with respect to a set E of sets of
formulas in two variables if each of its extensions has theLDT (GDT ) with respect
to E .

We can now formulate the crucial theorem of this section.

Theorem 4.4 Let L be a logic with the LDT with respect to E . Then L has the
HLDT with respect to E if and only if L is HSC.

Proof Right-to-left direction. Let L′ be any extension of L. Since L is HSC, by
Theorem 2.5, L′ must be an axiomatic extension of L. Let us denote the set of
additional axioms (closed under substitution) by A. Then T `L′ ϕ if and only if
T,A `L ϕ. In particular, to see that L′ has theLDT with respect to E , note that

T, ϕ `L′ ψ iff T,A, ϕ `L ψ

iff T,A `L 1(ϕ,ψ) for some 1 ∈ E

iff T `L′ 1(ϕ,ψ) for some 1 ∈ E .

Left-to-right direction. Using Theorem 2.5 it is enough to show that any extension
of L is an axiomatic extension of L. Let L′ be an extension of L with a set of rules S.



Structural Completeness in Fuzzy Logics 173

Since L has theHLDT with respect to E , L′ has theLDT with respect to E . Hence,
let us denote by 1ψT,ϕ some (arbitrary but fixed) set in E existing when T, ϕ `L′ ψ

such that T `L′ 1
ψ
T,ϕ(ϕ, ψ).

For a rule R = ϕ1, . . . ϕn Bψ , we define sets AR
n+1, . . . AR

1 of formulas by induc-
tion:

1. AR
n+1 = {ψ};

2. AR
i = {χ(ϕi , δ) | χ ∈ 1δ

{ϕ1,...ϕi−1},ϕi
and δ ∈ AR

i+1} =⋃
δ∈AR

i+1

1δ
{ϕ1,...ϕi−1},ϕi

(ϕi , δ) for i = n . . . 1.

Roughly speaking, AR
1 is the set of formulas resulting from applying the local de-

duction theorem of L′ exhaustively to R. If L′ has the global deduction theorem and
E = {{χ}}, then AR

1 = {χ(ϕ1, χ(. . . χ(ϕn−1, χ(ϕn, ψ)) . . . )}.
Let L̄ be the extension of L with the set of axioms A =

⋃
R∈S AR

1 . We show that L̄
is L′. It is easy to see that L′ proves all the formulas from A, so L̄ ⊆ L′. To prove the
converse, it is sufficient to show that ϕ1 . . . ϕn `L̄ ψ for each rule R = ϕ1 . . . ϕn Bψ
in S. We prove ϕ1, . . . , ϕi−1 `L̄ AR

i by induction on i . The base case i = 1 is
simple. Observe that 1(ϕ,ψ), ϕ `L ψ since 1(ϕ,ψ) `L 1(ϕ,ψ) for any 1 ∈ E .
Thus 1δ

{ϕ1,...ϕi−1},ϕi
(ϕi , δ), ϕi `L δ for each δ ∈ AR

i+1. So AR
i , ϕi `L AR

i+1, and by
the induction hypothesis, we get ϕ1, . . . , ϕi−1, ϕi `L̄ AR

i+1 as required. �

Notice in fact that in the proof of the left-to-right direction, a (seemingly) weaker
property thanHLDT suffices; namely, that any logic L′ extending L hasLDT with
respect to some set of sets of formulas EL′

such that 1(ϕ,ψ), ϕ `L ψ for each
1 ∈ EL′

.

Corollary 4.5 Let L be a logic with the GDT with respect to E . Then L has the
HGDT with respect to E if and only if L is HSC.

Note that a similar connection between HSC and deduction theorems in the special
case of (fragments of) intermediate logics was announced in [32].

4.2 Applications We now present some applications of Theorem 4.4 for “n-
contractive” logics such as CnMTL and CnBL (n ≥ 3). Many of the results obtained
are already known in the literature. However, as will be explained below, the uni-
formity of our approach offers certain (small) advantages over previous work in the
area.

Recall that FL+
ew is the logic of all ICRLs. We also define Hoop Logic HL (since

HL-algebras are termwise equivalent to hoops [5]) as the logic of ICRLs satisfying
(div) (see Table 1). Moreover, we denote the extensions of these (and other) log-
ics such that their algebras additionally satisfy (cn) for 2 ≤ n ∈ N by adding the
prefix Cn .

We note the following useful identities.

Lemma 4.6 Let 1 ≤ n ∈ N. Then
(i) |HCn+1FLew ϕ →

n (ψ → χ) ≈ (ϕ →
n ψ) → (ϕ →

n χ);
(ii) |HFLew ϕ → (ψ ∧ χ) ≈ (ϕ → ψ) ∧ (ϕ → χ);

(iii) |HMTL ϕ → (ψ ∨ χ) ≈ (ϕ → ψ) ∨ (ϕ → χ);
(iv) |HCn+1HL ϕ →

n (ψ · χ) ≈ (ϕ →
n ψ) · (ϕ →

n χ).
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The cases of (i)–(iii) are well known (see, for example, [17]) and (iv) is established
in [16], Lemma 1.10.

Theorem 4.7 The following logics are HSC for 2 ≤ n ∈ N:

(a) CnFLew�L for {→} ⊆ L ⊆ {→,∧};

(b) CnMTL�L for {→} ⊆ L ⊆ {→,∧,∨};

(c) CnHL�L for {→} ⊆ L ⊆ {→,∧, ·};

(d) CnBL�L for {→} ⊆ L ⊆ {→,∧,∨, ·}.

Proof We just prove this theorem for CnMTL�{→,∧} (2 ≤ n ∈ N) since the other
cases follow a very similar pattern. We will show that this logic has the hereditary
global deduction theoremHGDT and hence, by Theorem 4.4, is HSC. Let L be any
logic extending CnMTL�{→,∧}. We show that L has the global deduction theorem
with respect to E = {{p →

n q}}. First observe that (easily) T `L ϕ →
n ψ implies

T, ϕ `L ψ .
Now suppose that T, ϕ `L ψ . We define the substitution σ p = ϕ →

n p. By
a simple induction on formula complexity, we can use the identities of Lemma 4.6
to obtain `L σψ � (ϕ →

n ψ) (since σψ ≈ ϕ →
n ψ holds in any L-algebra).

Using the substitution invariance of L we obtain σ(T ), σϕ `L σψ . Since (using
weakening) T `L σ(T ) and `L σϕ, we obtain T `L ϕ →

n ψ . �

In particular, Intuitionistic Logic is C2FLew so part (a) above is just the well-known
result (see, e.g., [24]) that the implication (and conjunction) fragment of Intuitionistic
Logic is HSC. Note in fact that our results for L = {→,∧} are corollaries of [22],
Corollary 6.8, and parts (b) and (d) for L = {→,∧,∨} are corollaries of [22],
Corollary 8.4 (or of the fact that in these logics ∨ is definable in terms of → and ∧).
Parts (c) and (d) for L = {→,∧, ·} are corollaries of results by Ferreirim [16] that
the variety of n-potent hoops is primitive. The results for L = {→} are corollaries
of [7], Theorem 4.4, where the variety of n-contractive BCK-algebras is shown to
be primitive. Finally, the results for BL were proved independently of these other
sources in [12].

Nevertheless, our method used to obtain all these results has the virtue of unifor-
mity, gives theHGDT for the logics, and can be seen as an alternative proof of the
primitivity of their equivalent quasivarieties. Moreover, it can be used to deal with
tricky cases. As an example, let us prove that all (not just the ⊥-free) fragments of G
are HSC. An alternative proof, given for the full language in [13], consists of show-
ing that each extension of the fragment—that is, a fragment of an n-valued Gödel
logic—is SC.

Theorem 4.8 G�L is HSC for {→} ⊆ L ⊆ {→,∧,∨,⊥}.

Proof The only remaining cases to be shown are those involving ⊥. Let us denote
by ϕ f the formula resulting from ϕ by replacing all occurrences of ⊥ by a new fixed
variable f , and let T f = {ϕ f | ϕ ∈ T }. Define a substitution σ(q) = ⊥ for q = f
and q otherwise. Then clearly σ(ϕ f ) = ϕ. Now consider a logic L extending G (the
proofs for fragments are analogous). We will show that L has theGDT with respect
to {{p → q}}. It is sufficient to prove the following.

Claim If T `L ψ , then { f → q | q occurring in T, ψ} ∪ T f `L ψ f .
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We then just apply the claim to T, ϕ `L ψ . Since ⊥ does not occur in the second
expression we can use the HGDT of the ⊥-free fragment of L established in the
previous theorem to obtain

{ f → q | q occurring in T, ϕ, ψ} ∪ T f `L�{→,∨,∧} ϕ f → ψ f .

But then also σ({ f → q | q occurring in T, ϕ, ψ} ∪ T f ) `L σ(ϕ f → ψ f ). That is,
T `L ϕ → ψ .

Proof of claim Let S denote the set of all variables occurring in T and ψ . Pro-
ceeding contrapositively, consider an L-algebra A = (A,→,∧,∨,⊥,>) and A-
evaluation e such that e( f ) ≤ e(q) for all q ∈ S, e(T f ) ⊆ {>}, and e(ψ f ) 6= >. We
show that in this case T 6`L ψ .

We construct an algebra A′
= ({x ∈ A | e( f ) ≤ x},→ f ,∧ f ,∨ f , e( f ),>) by

restricting the operations of A. Clearly A′ is a subalgebra of A and so is an L-algebra.
Define an A′-evaluation e′ such that e′(q) = e(q) for any q ∈ S ∪ { f } and notice
that e′(χ) = e(χ f ) for any χ ∈ T ∪ {ψ}. Thus e′(T ) ⊆ {>} and e′(ψ) 6= >; that is,
T 6`L ψ . �

5 Passive Structural Completeness

In this section we investigate a weaker notion of structural completeness, obtaining
new methods for proving or disproving that a logic is SC. We then make use of some
simple observations regarding derivable and nonderivable rules to fill in some of the
remaining gaps for fuzzy logics.

As a motivating example, consider the three-valued Łukasiewicz logic Ł3 (see
Section 3). There is no substitution σ such that the formula σ(p ↔ ¬p) is derivable
in Ł3 (or even classically derivable). So the rule p ↔ ¬p B q is Ł3-admissible. On
the other hand, the rule is not Ł3-derivable, since (recalling the definitions of Section
3.3) when e(p) = e(q) = −1 for an Ł3-evaluation e, we have e(p ↔ ¬p) = 0.
Hence (see, e.g., [31]) Ł3 is not SC. However, this same proof also works to show
that Łukasiewicz Logic is not SC. Any theorem of Ł is a theorem of Classical Logic,
and the three-valued algebra Ł3 is an Ł-algebra. So again the rule is Ł-admissible
but not Ł-derivable. Indeed, this proof will work for any logic satisfying these con-
ditions. Let us see now how these ideas can be generalized.

5.1 General conditions We introduce the following key notions.

Definition 5.1 A rule T B ϕ is passive for a logic L if there is no substitution σ
such that `L σ(T ). We say that L is passively structurally complete (PSC) if each
passive rule of L is L-derivable.

Notice that a rule for a logic L is passive exactly when the premises of the rule
fail to be L-unifiable. Passive rules and L-unifiability are considered extensively
by Rybakov in [26], while the notion of passive structural completeness has been
investigated from an algebraic perspective by Wronski and called nonoverflow com-
pleteness.

Example 5.2 Some (fragments of) logics are trivially PSC. Clearly, each SC logic
is PSC (as each passive rule is admissible). Moreover, for any extension L of FLew
and {→} ⊆ L ⊆ {→,∧,∨, ·}, the substitution σ(p) = > (defined, recall as q → q)
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makes any formula of L�L a theorem. So there are no passive rules, and the logic is
PSC.

Example 5.3 A more interesting example is Intuitionistic Logic IL which is PSC
but not SC. The failure of structural completeness is well known (see, e.g., [26]).
For the weaker notion, suppose that T B ϕ is a nonderivable rule of IL. Then clearly
T 6`IL ⊥, and so also by the Deduction and Glivenko theorems, T 6`CL ⊥. Now
let e be a classical evaluation satisfying T . Define a substitution by σ(p) = ⊥ if
e(p) = ⊥ and > otherwise. Clearly, `CL σ(ψ) ↔ > for each ψ ∈ T and since IL
proves the same variable-free formulas as CL, `IL σ(ψ) ↔ > for all ψ ∈ T . So
T B ϕ is not passive in IL. Note that this result was reported by Wronski at the 51st
Conference on the History of Logic, Krakow, 2005.

We now show that the notion of PSC has many nice properties not shared by the
usual notion of structural completeness. In particular, it is preserved upward, that is,
by going to stronger logics.

Theorem 5.4 (PSC upward) Any extension of a PSC logic is PSC.

Proof Let L′ be an extension of a PSC logic L. If T Bϕ is nonderivable in L′, then
it is also nonderivable in L. Since L is PSC, the rule is not passive in L. That is,
there is a substitution σ such that `L σ(T ). But then also `L′ σ(T ), so the rule is
not passive in L′. �

Next we show that PSC is preserved also downward, that is, by restricting to certain
fragments. Since the situation is not as simple as in the upward case, we begin by
introducing an auxiliary notion.

Definition 5.5 L�L is a passive fragment of L if each passive rule in L�L is passive
in L.

The notion of a passive fragment is tailored to obtain the theorem below. Not all
fragments of logics are passive; for example, Ł�{∧,∨,⊥} is not a passive fragment
of Ł (just consider the rule q B⊥). Later, however, we will give a sufficient condition
useful for recognizing passive fragments.

Theorem 5.6 (PSC downward) Any passive fragment of a PSC logic is PSC.

Combining PSC upward and downward, we have that any extension of a passive
fragment of a PSC logic is PSC. Moreover, formulated negatively, we obtain a
useful tool for disproving PSC (and hence SC).

Corollary 5.7 If some logic extending a passive fragment of L is not PSC, then L
is not PSC.

Alternatively, if T 6`L ϕ and T B ϕ is passive in an extension of some passive
fragment of L, then L is not PSC. We now give three conditions for identifying
passive fragments.

Lemma 5.8 Let L be an algebraizable logic in the language L and {→} ⊆ L′
⊆ L.

Then L�L′ is a passive fragment of L if one of the following cases holds:
(a) for each finite set of L-formulas ϕ1, . . . , ϕn , there is an L-substitution σ and

L′-formulas ψ1, . . . , ψn such that |HL σ(ϕi ) ≈ ψi for i = 1 . . . n;
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(b) there exists an L-substitution σ such that for each L-formula ϕ there is an
L′-formula ψ satisfying |HL σ(ϕ) ≈ ψ;

(c) there is a set of L′-formulas9 such that for each n-ary connective c ∈ L and
formulasψ1, . . . , ψn ∈ 9 there isψ ∈ 9 satisfying |HL c(ψ1, . . . , ψn) ≈ ψ .

Proof It is enough to show that (a) is a sufficient condition (since (a) follows im-
mediately from (b) and (b) can be obtained from (c) by setting σ p = ψ for any p
and any ψ ∈ 9).

Let T Bϕ be a passive rule in L�L′. We will show that it is passive in L. Proceed-
ing contrapositively, assume that there is an L-substitution σ such that `L σ(T ).
Suppose that q1, . . . , qn are the variables of T , written T (q1, . . . , qn). For a set of
variables p1, . . . , pn disjoint from q1, . . . , qn , define σ1qi = pi for i = 1 . . . n,
leaving other variables as they are.

By assumption, for σq1, . . . , σqn there is an L-substitution σ2 and L′-formulas
ψ1, . . . , ψn such that |HL σ2σqi ≈ ψi . We define our L′-substitution as σ ′qi = σ1ψi
(this is a sound definition since each formula σ1ψi for i = 1 . . . n does not contain
any of the q1, . . . , qn). So using our assumptions (and also the structurality and
algebraizability of L),

|HL {E(χ) | χ ∈ T (σ1σ2σq1, . . . , σ1σ2σqn)}

and |HL σ1σ2σqi ≈ σ1ψi for i = 1 . . . n.

Hence also by replacement and algebraizability again, `L T (σ1ψ1, . . . , σ1ψn). That
is, `L σ

′(T ). Since σ ′(T ) consists of L′-formulas, we obtain `L�L′ σ ′(T ). So T Bϕ
is not passive in L�L′. �

Example 5.9 As an example of case (c) above, consider an extension L of FLew�L
where L ⊇ {→,⊥}. Let us take 9 = {>,⊥}. Then for each ψ1, ψ2 ∈ {⊥,>} and
# ∈ L, easily |HL ψ1 # ψ2 ≈ ϕ for some ϕ ∈ {>,⊥}. So L�L′ is a passive fragment
of L for any {→,⊥} ⊆ L′

⊆ L.

5.2 Applications We now use these general methods to settle some cases for our
particular class of logics. First, we tackle extensions of the logic SMTL. The crucial
aspect here is the fact that the negation ¬x =def x → ⊥ in an SMTL-chain is strict.
That is, x → ⊥ is > if x = ⊥ and ⊥ otherwise. Observe then that x → y > ⊥

implies x = ⊥ or y > ⊥, and x · y = ⊥ implies x = ⊥ or y = ⊥.

Lemma 5.10 The logic SMTL is PSC.

Proof Suppose that a rule T Bϕ is not derivable in SMTL. Then there is an SMTL-
chain A and A-evaluation e such that e(ψ) = >

A for all ψ ∈ T . We define a
substitution σ by σ p = > if e(p) > ⊥

A and σ p = ⊥ otherwise. To establish the
lemma, it is sufficient to prove the following.

Claim `SMTL σψ ↔ > whenever e(ψ) > ⊥
A and `SMTL σψ ↔ ⊥ whenever

e(ψ) = ⊥
A.

Just recall that e(ψ) = >
A and so `SMTL σψ for all ψ ∈ T . Hence the rule T B ϕ

is not passive.

Proof of claim We proceed by induction on the complexity of ψ , recalling that
SMTL proves the same variable-free formulas as Classical Logic. The base cases
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are immediate. For the induction step, ∧ and ∨ are easy, and the other cases are
handled as follows.

1. ψ = ϕ1 · ϕ2. Suppose that e(ϕ1 · ϕ2) = ⊥
A. Then e(ϕi ) = ⊥

A for
some i ∈ {1, 2} (A is an SMTL-chain). Without loss of generality, let
i = 1. So by the induction hypothesis, `SMTL σϕ1 ↔ ⊥. Hence also
`SMTL σ(ϕ1) ·σ(ϕ2) ↔ ⊥·σ(ϕ2) and `SMTL σ(ϕ1 ·ϕ2) ↔ ⊥. Now suppose
that e(ϕ1 ·ϕ2) > ⊥

A. So easily, e(ϕi ) > ⊥
A and by the induction hypothesis,

`SMTL σϕi ↔ > for i ∈ {1, 2}. Hence also `SMTL σ(ϕ1) · σ(ϕ2) ↔ > · >

and `SMTL σ(ϕ1 · ϕ2) ↔ >.
2. ψ = ϕ1 → ϕ2. Suppose that e(ϕ1 → ϕ2) = ⊥

A. So easily, e(ϕ1) > ⊥
A

and e(ϕ2) = ⊥
A, and by the induction hypothesis, `SMTL σϕ1 ↔ > and

`SMTL σϕ2 ↔ ⊥. Hence also `SMTL (σ (ϕ1) → σ(ϕ2)) ↔ (> → ⊥)
and `SMTL σ(ϕ1 → ϕ2) ↔ ⊥. Now suppose that e(ϕ1 → ϕ2) > ⊥

A.
So e(ϕ1) = ⊥

A or e(ϕ2) > ⊥
A (A is an SMTL-chain) and by the in-

duction hypothesis, `SMTL σϕ1 ↔ ⊥ or `SMTL σϕ2 ↔ >. Hence also
`SMTL (σ (ϕ1) → σ(ϕ2)) ↔ (⊥ → σ(ϕ2)) or `SMTL (σ (ϕ1) → σ(ϕ2)) ↔

(σ (ϕ1) → >). In either case, `SMTL σ(ϕ1 → ϕ2) ↔ > as required. �

As a corollary of this lemma, the PSC upward and downward, and Example 5.9 we
obtain (for fragments without ⊥ the claim is trivial).

Theorem 5.11 Let L be an extension of SMTL and L ⊇ {→}. Then L�L is PSC.

Example 5.12 The logics SMTL, SBL, 5MTL, and 5 (which we already know to
be SC) all extend SMTL and are hence PSC.

Finally, we can use our methods to generalize the example of the three-valued
Łukasiewicz logic presented at the beginning of this section.

Lemma 5.13 The n-valued Łukasiwicz logic Łn is not PSC for 3 ≤ n ∈ N.

Proof We fix 3 ≤ n ∈ N and consider the rule p →
n

⊥,¬p → pB⊥. The formula
p →

n
⊥ is classically equivalent to p → ¬p. So clearly there is no substitution that

makes the premises of our rule classical theorems or, indeed, theorems of Łn. That
is, the rule is passive for Łn. But in the n-valued algebra Łn, we can evaluate p as
−1, and an easy computation shows that the rule is nonderivable in Łn. �

Hence by Proposition 5.7 (recall that Łn is term equivalent to Łn�{→,⊥}) and Ex-
ample 5.9, we obtain a general result.

Theorem 5.14 Let L be an extension of FLew such that Łn is an extension of L for
some 3 ≤ n ∈ N. Then L�L is not PSC for any L ⊇ {→,⊥}.

Example 5.15 In particular, the L-fragments of the following logics for L ⊇

{→,⊥} and n ≥ 3 are not PSC (and hence not SC): FLew, CnFLew, MTL, CnMTL,
IMTL, BL, CnBL, Ł.

Theorem 5.14 is formulated to deal specifically with a range of fuzzy logics. To end
this section, let us take a slight detour to show how the theorem can be strengthened
to obtain an “alternative” proof of [22], Proposition 10.5. In fact, we prove slightly
more by showing that the logics are not even PSC but the core of our proof is the
same as in the original. However, to derive the conclusion, we can use our PSC
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method rather than appeal to Bergman’s theorem (see [4]) relating the SC of a variety
and validity of positive existential sentences in that variety.

Theorem 5.16 Let L be an extension of FLew such that there is a simple L-algebra
satisfying n-contraction for some n ≥ 3 different from the two-valued Boolean alge-
bra 2. Then L�L is not PSC for any L ⊇ {→,⊥}.

Proof Let A be a simple L-algebra satisfying n-contraction different from 2 and let
L′ be the logic defined as LQ({A}). Then clearly L′ extends L and it is sufficient to
show that L′�{→,⊥} is not PSC. Inspecting the proof of Lemma 5.13, observe that
p →

n
⊥,¬p → p B ⊥ is passive in L′�{→,⊥} by the same argument. If we show

that there is an x ∈ A such that xn
= 0 and ¬x ≤ x , then p →

n
⊥,¬p → p B ⊥

is not derivable in L′ and the proof is done. For this, we refer to the proof of [22],
Proposition 10.5. �

6 Summary for Fuzzy Logics

The most interesting cases of our results for fuzzy logics are summarized in Tables 3
and 4, making use of the following key:

HSC The corresponding fragment is HSC.
SC The corresponding fragment is SC; whether it is HSC is unknown.

PSC The corresponding fragment is PSC; whether it is SC is unknown.
¬PSC The corresponding fragment is not PSC (hence also not SC).

¬SC The corresponding fragment is not SC; whether it is PSC is unknown.
¬HSC The corresponding fragment is not HSC; whether it is SC is unknown.

Clearly, some of these results are more informative than others. Indeed, since all
⊥-free fragments of our logics are trivially PSC (there are no passive rules), we do
not mention this fact in Table 3.

Let us identify our sources. The various positive and negative SC and HSC
results for Ł, CHL, 5, and BL are established in the relevant subsections of
Section 3. HSC for the ⊥-free fragments of CnMTL and CnBL (including
G = C2MTL = C2BL) follows from Theorem 4.7. The negative HSC results
for MTL and CnMTL in Table 3 follow, respectively, from the fact that the cor-
responding fragments of Ł are not SC, and Theorem 10.6 of [22]. The negative
PSC results for logics with ⊥ were established in Example 5.15, while PSC for
extensions of SMTL follows from Theorem 5.11. Finally, HSC for fragments of G
with ⊥ was obtained in Theorem 4.8.

Of the problems left open, perhaps the most interesting is the case of structural
completeness for the positive fragments of MTL. Unlike stronger logics such as BL,
there is no (known) easily manipulated set of generating algebras for the correspond-
ing variety. Moreover, although just one example of an admissible but nonderivable
rule is needed to disprove structural completeness, finding such examples can also re-
quire a deep understanding of the logic in question (as, e.g., for the {· ,→} fragment
of BL above). Regarding fragments of logics such as Ł, P, and CHL that are known
to be SC where HSC is unknown, a better understanding of the relevant subvarieties
is required: if we can show that all of these are SC, then the logic is HSC.
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Table 3 Fragments with → and without ⊥

Logics → →,∧,∨ →,∨ →, · →, · ,∧,∨

MTL = SMTL ? ? ? ¬HSC ¬HSC
CnMTL (n ≥ 3) HSC HSC HSC ¬HSC ¬HSC

BL SC SC SC ¬SC ¬SC
CnBL (n ≥ 3) HSC HSC HSC HSC HSC

G HSC HSC HSC HSC HSC
Ł SC SC SC ¬SC ¬SC
5 SC SC SC SC SC

CHL SC SC SC HSC HSC

Table 4 Fragments with → and ⊥

Logics →,⊥ →,∧,∨,⊥ →,∨,⊥ →, · ,⊥ →, · ,⊥,∧,∨

MTL, BL, CnMTL,
CnBL (n ≥ 3) ¬PSC ¬PSC ¬PSC ¬PSC ¬PSC

SMTL PSC PSC PSC PSC PSC
G HSC HSC HSC HSC HSC
Ł ¬PSC ¬PSC ¬PSC ¬PSC ¬PSC
5 SC SC SC HSC HSC
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