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On Interpretations of Bounded Arithmetic
and Bounded Set Theory

Richard Pettigrew

Abstract In “On interpretations of arithmetic and set theory,” Kaye and Wong
proved the following result, which they considered to belong to the folklore of
mathematical logic.

Theorem The first-order theories of Peano arithmetic and Zermelo-Fraenkel set
theory with the axiom of infinity negated are bi-interpretable.

In this note, I describe a theory of sets that is bi-interpretable with the theory of
bounded arithmetic I10 + exp. Because of the weakness of this theory of sets, I
cannot straightforwardly adapt Kaye and Wong’s interpretation of the arithmetic
in the set theory. Instead, I am forced to produce a different interpretation.

1 Introduction

In [4], Kaye and Wong proved the following result, which they considered to belong
to the folklore of mathematical logic.

Theorem 1.1 The first-order theories of Peano arithmetic and Zermelo-Fraenkel
set theory with the axiom of infinity negated are bi-interpretable: that is, they are
mutually interpretable with interpretations that are inverse to each other.

More precisely, they showed that PA and ZF − Inf∗ are bi-interpretable, where
ZF − Inf is obtained from ZF by negating the Axiom of Infinity, and ZF − Inf∗ is
obtained from ZF − Inf by adding an Axiom of Transitive Containment, which says
that each set is contained in a transitive set.

In this note, I describe a theory of sets that is bi-interpretable with the bounded
arithmetic I10 + exp. Because of the weakness of this theory of sets, I cannot
straightforwardly adapt Kaye and Wong’s interpretation of the arithmetic in the set
theory. Instead, I am forced to produce a different interpretation.
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In Section 2, I lay down some notation and definitions that will aid the discussion
of interpretations throughout the paper. In Section 3, I describe a theory of sets
called EA∗ and, in Section 4, I describe the Ackermann interpretation of this theory
in I10 + exp. In Section 5, I consider a natural interpretation of I10 + exp in EA∗,
but note that it is not inverse to the Ackermann interpretation, and, in Section 6, I
describe my alternative to Kaye and Wong’s inverse.

2 Interpretations

Kaye and Wong consider only first-order languages with relation symbols. How-
ever, both I10 + exp and the set theory described in Section 3 are most naturally
formulated in languages that include function symbols. After all, among the ax-
ioms of both theories are schemata that are indexed by the set of bounded quantifier
formulas of the language—the Axiom Schema of Induction for I10 + exp and the
Axiom Schema of Subset Separation for EA∗. And it is most natural to stipulate
which formulas are to count as bounded by appealing to terms of the language built
up using function symbols. Thus, I consider first-order languages with relation sym-
bols and function symbols. However, this is not essential. I could formulate both
theories in languages that contain only relation symbols. And, if I were to do this,
my interpretability results would still go through using Kaye and Wong’s definition
of bi-interpretability for languages that only contain relation symbols.

Like Kaye and Wong, I demand that each language we consider contains a unary
relation symbol Dom and each theory contains the sentence ∀xDom(x).

Suppose L is such a language. Then an L-theory is a consistent set of L-
sentences. Given a theory T1 in language L1 and theory T2 in language L2, an
atomic interpretation mapping of T1 into T2 is a mapping i such that

i. for each function symbol f of L1 and free variables Ex , f (Ex)i is a term of L2
in the same free variables, and

ii. for each relation symbol R of L1 and free variables Ex , R(Ex)i is a formula of
L2 in the same free variables.

Given an atomic interpretation mapping i : T1 → T2, we can extend it to a full
interpretation mapping (also called i), which takes any formula in L1 to a formula in
L2. We define (¬ϕ(Ex))i to be ¬ϕ(Ex)i, (ϕ(Ex) → ψ(Ex))i to be ϕ(Ex)i → ψ(Ex)i, and
(∀yϕ(Ex, y))i to be ∀y(Dom(y)i → ϕ(Ex, y)). Given a full interpretation mapping
i : T1 → T2, I say that i defines an interpretation of T1 in T2 if

i. T2 ` ∃xDom(x), and
ii. for each sentence σ ∈ T1, T2 ` σ i.

Now I define two kinds of mutual interpretability, the second stronger than the
first:

(1) We say that T1 and T2 are mutually interpretable if there are interpretations
f : T1 → T2 and g : T2 → T1;

(2) We say that T1 and T2 are bi-interpretable if there are interpretations
f : T1 → T2 and g : T2 → T1 and

i. for every formula ϕ in L1, T1 ` ∀Ex((ϕ(Ex)f)g ↔ ϕ(Ex)) and
ii. for every formula ψ in L2, T2 ` ∀Ex((ψ(Ex)g)f ↔ ψ(Ex)).

Kaye and Wong proved that PA and ZF − Inf∗ are bi-interpretable. In his doctoral
thesis [3], Homolka described a theory of sets called EA, first formulated by May-
berry, and proved that it is mutually interpretable with I10 + exp.1 Here, I describe
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an extension of EA, which I call EA∗, and I prove that EA∗ is bi-interpretable with
I10 + exp.

3 A Bounded Theory of Finite Sets

In this section, I describe Mayberry’s theory EA. Essentially, EA is obtained from ZF
set theory in three steps: replace the Axiom of Infinity by an axiom that states that
every set is Dedekind finite; restrict the Separation and Replacement axiom schema
to hold only for bounded quantifier formulas; and add an axiom of transitive closure.
In [5], Mayberry also described an extension of EA that is obtained by adding an
axiom that guarantees, for every set, the existence of the first level of the cumulative
hierarchy at which that set occurs: he calls this axiom the Weak Hierarchy Principle
(henceforth, WHP). In this note, I will consider the theory

EA − Transitive Closure − Replacement + WHP.

I will call this theory EA∗. It is this theory that is bi-interpretable with I10 + exp.
EA∗ is a first-order theory. Like I10 + exp, its language contains function

symbols: in I10 + exp, these are used to state the restrictions on induction; in
EA∗, they are used to state the restrictions on subset separation. It has one constant
symbol, ∅. (As usual, this is considered as a 0-place function symbol.) It has three
unary function symbols, P(_) (power set),

⋃
(_) (sum set), and R(_) (rank function):

the latter is introduced by the Weak Hierarchy Principle. It has one binary function
symbol: {_, _} (pair set). And, for each bounded quantifier formula 8, it has the
unary function symbol {x ∈ _ : 8(x)} (subset separation for bounded quantifier
formula), where a bounded quantifier formula is one in which each occurrence of
a quantifier has the form ∀y(y ∈ t (Ex) → 8(Ex, y)) or ∃y(y ∈ t (Ex) ∧ 8(Ex, y)) for
some term t of EA∗.

The axioms of EA∗ are Extensionality, Pair Set, Sum Set, Power Set, Foundation,
Axiom Schema of Subset Separation for Bounded Quantifier Formulas, Dedekind
Finiteness, and the Weak Hierarchy Principle. We state the latter three precisely.

Axiom Schema of Subset Separation for Bounded Quantifier Formulas

∀Ex∀y∀z(z ∈ {u ∈ y : ϕ(u, Ex)} ≡ z ∈ y ∧ ϕ(z, Ex))

for each bounded quantifier formula ϕ.

Axiom of Dedekind Finiteness

∀x, f ( f : x → x ∧ f is one-one → f is onto).

To state Mayberry’s Weak Hierarchy Principle, we require a little preparation.
First, I must introduce the notion of a linear (or total) ordering. As is stan-

dard, I take linear orderings to be sets of Kuratowski-Wiener ordered pairs
(a, b) = {{a}, {a, b}} satisfying the usual conditions. Given a linear ordering
L , define its field as follows:

Field(L) = {x ∈

⋃ ⋃
L : (∃y)[(x, y) ∈ L ∨ (y, x) ∈ L]}.

Given x, y ∈ Field(L), we write x <L y if and only if (x, y) ∈ L .
It follows from the Axiom of Dedekind Finiteness that every linear ordering is

a double well-ordering; that is, if L is a linear ordering, then every subset S of
Field(L) has an L-least and L-greatest element. Thus, I will often write a linear
ordering L as [a0, . . . , an], where a0 and an are the L-least and L-greatest elements
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of Field(L), respectively, and if ak ∈ Field(L), then ak+1 is the L-least element of
{x ∈ Field(L) : ak < x}.

Having introduced linear orderings, I can now say what it means to be a level in
the cumulative hierarchy.

Definition 3.1 Given a set S, we say that S is a level in the cumulative hierarchy if
there is a linear ordering [V0, . . . , Vn] such that V0, . . . , Vn ⊆ S, V0 = ∅, Vn = S,
and for each Vk , Vk+1 = P(Vk).

(Note: since V0, . . . , Vn ⊆ S, the property of being a level of the cumulative hierar-
chy is represented by a bounded quantifier formula.)

With this definition in hand, I can state the Weak Hierarchy Principle.

Weak Hierarchy Principle

∀x(x ∈ R(x) ∧ R(x) is a level in the cumulative hierarchy ∧

∀y(x ∈ y ∧ y is a level in the cumulative hierarchy → R(x) ⊆ y)).

A remark is in order. Like Kaye and Wong, I wish to interpret set theory in arithmetic
using the interpretation described by Ackermann in [1]. If we are to find an inverse
to this interpretation, we must ensure, for every sentence σ of our chosen set theory,
that our chosen arithmetic proves the Ackermann translation of σ only if our set
theory proves σ . Here are two important examples. PA and I10 + exp both prove
the Axiom of Dedekind Finiteness and both prove the Weak Hierarchy Principle.
However, neither sentence occurs as an axiom in Kaye and Wong’s ZF − Inf∗. This
is not a problem because, in ZF − Inf, the Weak Hierarchy Principle is equivalent to
Kaye and Wong’s TC, which says that each set is contained in a transitive set, and, in
ZF without Infinity, the Axiom of Dedekind Finiteness is equivalent to the negation of
Infinity. However, neither of these equivalences holds in the relevant fragments of EA:
Transitive Containment follows from Weak Hierarchy and ¬Infinity follows from the
Axiom of Dedekind Finiteness, but neither converse holds. Thus, we must include the
full strength of the Axiom of Dedekind Finiteness and the Weak Hierarchy Principle
in our axioms.

4 The Ackermann Interpretation

As mentioned above, I will exploit Ackermann’s interpretation of arithmetic in set
theory to interpret EA∗ in I10 + exp. I describe this interpretation in this section; in
Section 6, I describe its inverse.

The Ackermann interpretation of set theory in arithmetic is based on the following
interpretation of the membership relation:

(x ∈ y)a is (∃n < y)(∃m < 2x )[y = 2x+1n + 2x
+ m].

The right-hand side says that the x th bit of y is 1. Further,

Dom(x)a is Dom(x)
(x = y)a is (x = y)

∅a is 0.

To complete my definition of a : EA∗
→ I10 + exp, I must define P(x)a,

⋃
(x)a,

R(x)a, {x, y}
a, and, for each bounded quantifier formula 8, {x ∈ y : 8(x)}a. These
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are straightforward to define, if somewhat intricate. With this in hand, it is equally
straightforward to establish the following.

Theorem 4.1 a defines an interpretation of EA∗ in I10 + exp.

Proof The proofs of Extensionalitya and Foundationa are adapted from the well-
known proofs of these sentences in PA. In that case, they are proved by induction.
In I10 + exp, we identify bounds for the quantifiers in the induction formulas and
proceed as before.

Dedekind Finitenessa is derived as a consequence of the Ackermann interpreta-
tion of what Mayberry calls One Point Extension Induction, which is easily seen to
be provable by bounded induction in I10 + exp (Theorem 8.3.3 of [5]). One Point
Extension Induction says that, for any bounded quantifier formula 8, we have

[8(∅) ∧ ∀x∀z(8(x) → 8(x ∪ {z}))] → ∀x8(x).

The proof concludes by establishing that P(x)a,
⋃
(x)a, R(x)a, {x, y}

a, and
{x ∈ y : 8(x)}a have the properties that the translations of the corresponding
axioms require of them. Details can be found in [3]. �

5 The Ordinal and Cardinal Interpretations

Kaye and Wong note that there is an obvious interpretation of PA in ZF − Inf∗,
which interprets the arithmetic as ordinal arithmetic. Thus, let Ord be the class of
von Neumann ordinals, as usual, and define the following relations on this class:
x +o y = z (ordinal addition) and x ×o y = z (ordinal multiplication). Then let
o : PA → ZF − Inf∗ be the interpretation mapping defined as follows:

Dom(x)o is x ∈ Ord
(x = y)o is (x = y)

(x < y)o is x ∈ y

(x + y = z)o is (x +o y = z)

(x · y = z)o is (x ×o y = z).

Theorem 5.1 o defines an interpretation of PA in ZF − Inf∗.

As Kaye and Wong point out, o is clearly not inverse to a. Thus, we must look
elsewhere. In Section 6, we do this.

Nonetheless, before I seek the inverse interpretation, I note in passing that I cannot
adapt o to give an interpretation of I10 + exp in EA∗. This is a consequence of the
following fact: in EA∗, we cannot prove that the class of von Neumann ordinals is
closed under ordinal addition, let alone multiplication and exponentiation. This, in
turn, is a consequence of the following theorem.

Theorem 5.2 Suppose 8 is a bounded quantifier formula of EA∗. Then

EA∗
` (∀Ex)(∃y)8(Ex, y)

if, and only if, there is a natural number k such that

EA∗
` (∀Ex)(∃y ∈ Pk(R({x1, . . . , xn})))8(Ex, y),

where Pk(x) = P(P(. . . P︸ ︷︷ ︸
k

(x) . . . )).
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Proof sketch This is proved in two steps. First, for bounded quantifier 8, we
show that EA∗

` (∀Ex)(∃y)8(Ex, y) if and only if there is a term t of EA∗ such that
EA∗

` (∀Ex)(∃y ∈ t (Ex))8(Ex, y). Clearly, this is analogous to Parikh’s celebrated
result concerning provable52 formulas of I10 + exp (Theorem 4.4 of [7]), and may
be proved using a similar compactness argument. This is possible in part because
Separation is restricted to bounded quantifier formulas; a single unbounded quan-
tifier instance would render the theorem false. Second, we show, by induction on
the construction of terms in EA∗, that, for any term t of EA∗, there is k such that
EA∗

` ∀Ex(t (Ex) ∈ Pk(R({x1, . . . , xn}))). �

As we will see in Section 6, this result also entails that Kaye and Wong’s inverse to
the Ackermann interpretation cannot be defined from I10 + exp to EA∗.

However, although we cannot define an ordinal interpretation of I10 + exp in
EA∗, we can define a cardinal interpretation (see [3]). To state this, we need some
notation:

1. x ≤c y iff there is an injection from x into y;
2. x 'c y iff x ≤c y and y ≤c x ;
3. x <c y iff x ≤c y but y 6≤c x .

Let c : I10 + exp → EA∗ be the interpretation mapping defined as follows:

Dom(x)c is Dom(x)
(x = y)c is (x 'c y)

0c is ∅
(x < y)c is (x <c y)

(S(x))c is x ∪ {x}

(x + y)c is (x × {∅}) ∪ (y × {{∅}})

(x · y)c is x × y

(Exp(x, y))c is { f : y → x}.

Theorem 5.3 c defines an interpretation of I10 + exp in EA∗.

Under this interpretation, the bounded induction axioms of I10 + exp follow from
∈-induction for bounded quantifier formulas in EA∗ (see Theorem 8.3.3 of [5]).
Again, however, it is clear that c and a are not inverses of each other.

6 The Inverse to the Ackermann Interpretation

To define the inverse to the Ackermann interpretation of ZF − Inf∗ in PA, Kaye and
Wong exploit a function p : V → Ord, which takes each set to its ‘Ackermann code’
in the von Neumann ordinals. That is, p satisfies the following ∈-recursive definition,

p(x) =

∑
y∈x

2p(y)

where the bounded sum and exponentiation operation on the right-hand side are or-
dinal bounded sum and ordinal exponentiation, respectively. With this in hand, they
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define b : PA → ZF − Inf∗ as follows:

Dom(x)b is Dom(x)

(x = y)b is x = y

(x < y)b is p(x) < p(y)

(x + y = z)b is p(x)+ p(y) = p(z)

(x · y = z)b is p(x)× p(y) = p(z),

where the relations in the final three lines on the right-hand side are relations on the
ordinals.

In Section 5, I noted that the von Neumann ordinals are not closed under addi-
tion in EA∗ and I remarked that this precludes the usual ordinal interpretation of
I10 +exp in EA∗. Here again it prevents an interpretation. Clearly, we cannot define
Kaye and Wong’s function p, nor a fortiori their interpretation b. Thus, we must be
more resourceful.

Essentially, Kaye and Wong’s inverse interpretation b exploits two facts: (i) the
von Neumann ordinals provide a model of PA; and (ii) there is a bijection between
the universe and that model that takes a set to its ‘Ackermann code’ in the model. We
cannot adapt their construction because, as we have seen, in EA∗, the von Neumann
ordinals do not provide a model of I10 + exp.

However, we can adapt their strategy. I will define a class of sets in EA∗ with
the following two properties: (i) it provides a model of I10 + exp; and (ii) there is
a bijection between the universe and that model that takes a set to its ‘Ackermann
code’ in the model.

Indeed, the class is V , the class of all sets. And the bijection is simply the identity
mapping. That is, I will define a set 0a, a relation <a, and functions Sa, +a, ×a, and
Expa such that

〈
V, 0a, <a, Sa,+a,×a,Expa

〉
|H I10 + exp. Then I will show that

each set is its own Ackermann code, when considered as an element in this model.
This will give rise to the following natural interpretation d : I10 + exp → EA∗,
which is inverse to a:

Dom(x)d is Dom(x)

(x = y)d is x = y

0d is 0a

(x < y)d is x <a y

(S(x))d is Sa(x)

(x + y)d is x +a y

(x · y)d is x ×a y

(Exp(x, y))d is Expa(x, y).

The definitions of 0a, <a, Sa, +a, ×a, and Expa depend on a function that takes
each level of the cumulative hierarchy Vn to a linear ordering of Vn . To define this
function, we need to introduce the notion of a lexicographical ordering.

Definition 6.1 Given a linear ordering L , define the lexicographical ordering,
Lex(L), of the power set of Field(L) as follows: given X, Y ⊆ Field(L),

X <Lex(L) Y iff the L-greatest element of X 4 Y is in Y
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where X 4 Y is the symmetric difference of X and Y .

Now suppose Vn is a level of the cumulative hierarchy. That is, there is a linear
ordering [V0, . . . , Vn] such that V0, . . . , Vn ⊆ Vn , V0 = ∅, and Vk+1 = P(Vk) for
k = 0, . . . , n − 1. Then we define a local function

Ack : {V0, . . . , Vn} → {L ⊆ Vn × Vn : L is a linear ordering}.

We define Ack by recursion along [V0, . . . , Vn] as follows:

Ack(V0) = [ ] (the empty ordering)
Ack(Vk+1) = Lex(Ack(Vk)).

In EA∗, we can prove that this recursion is effective—that is, we can prove that there
is such a local function Ack. The reason is that a set containing all the values taken
by Ack can be specified prior to carrying out the recursion: the set is the set of those
linear orderings whose fields are subsets of Vn . Thus, it is an instance of definition
by limited recursion in Mayberry’s terminology (see Theorem 9.2.2 of [5]). In EA∗,
recursions may be carried out if it is possible to specify a set containing the range of
the recursively defined function prior to defining the function. Recursions in which
this is not possible are not necessarily effective in EA∗.

It is easy to show that

Ack(V0) ⊆∗ Ack(V1) ⊆∗ · · · ⊆∗ Ack(Vn−1) ⊆∗ Ack(Vn)

where L1 ⊆∗ L2 for linear orderings L1 and L2 if L1 is an initial segment of L2.
Thus, together with the Weak Hierarchy Principle, this construction induces an order
on the universe of sets:

x <a y iff R(x) ⊆ R(y) ∧ x <Ack(R(y)) y.

(Recall that R(x) is the first level of the cumulative hierarchy at which x occurs.) I
claim that the universe of sets, ordered in this way, provides a model of I10 + exp. I
now describe this model precisely.

Let 0a = ∅. Let Sa(x) be the element of the ordering Ack(P(R(x))) that follows
immediately after x . (Since all sets and thus all linear orderings are finite, every
linear ordering has endpoints and immediate successors and predecessors.)

To define addition, multiplication, and exponentiation, we require a little notation:
Given a linear ordering L and x, y ∈ Field(L), let [x, . . . , y]L denote the segment
of L between x and y inclusive.

Now, without loss of generality, suppose x <a y. So x, y ∈ P(R(y)). Then,
since Ack(P(R(y)) is an ordering of P(R(y)), which is a level of the cumulative
hierarchy, it follows that x, y ∈ Field(Ack(P(R(y)))). Then let x +a y be the unique
z ∈ Ack(P(R(y))) such that

Field
(
[{∅}, . . . , x]Ack(P(R(y)))

)
+c Field

(
[{∅}, . . . , y]Ack(P(R(y)))

)
'c Field

(
[{∅}, . . . , z]Ack(P(R(y)))

)
.

In the proof of Theorem 6.3, it will become clear why we must begin with {∅} rather
than with ∅: in short, it avoids a “bug by one” problem. Define x×a y and Expa(x, y)
similarly.

This completes our definition of the interpretation mapping d : I10+exp → EA∗.
The following easy theorem establishes that d defines an interpretation of I10 + exp
in EA∗.
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Theorem 6.2
〈
V, 0a, <a, Sa,+a,×a,Expa

〉
|H I10 + exp.

We now turn to the problem of showing that a and d are inverses. It suffices to prove
the following theorem.

Theorem 6.3
EA∗

` x ∈ y ↔ (the x th bit of y is 1)d.

Proof We prove this indirectly. First, we define a function that assigns to each set
a binary numeral: Given a set x , let Num(x) be the sequence (or binary numeral)
〈s0, . . . , sn〉[x0,...,xn=x]Ack(R(x)) where

si =

{
1 if xi ∈ x
0 if xi 6∈ x .

Then we note that it follows easily from the definition of lexicographical orderings
and Sa(x) that, if Num(x) is

〈1, 1, . . . , 1, 0, sk, . . . , sn〉[x0,...,xk ,...,xn=x]Ack(R(x)) ,

then

〈0, 0, . . . , 0, 1, sk, . . . , sn, 0〉[x0,...,xk ,...,xn=x,xn+1=Sa(x)]Ack(R(Sa(x)))

is Num(Sa(x)). Thus, given x and [x1, . . . , xn = x]Ack(R(x)), the linear ordering

[Num(x1), . . . ,Num(xn)]

contains all binary numerals between Num(x1) = 〈1, 0〉[x0,x1] and Num(xn) inclu-
sive. And, if

Num(x) = 〈s0, . . . , sn〉[x0,...,xn ] ,

then there are
s020

+ · · · + sn2n

such numerals. Thus,

Field
(
[x1, . . . , xn = x]Ack(R(x))

)
'c Field

(
[Num(x1), . . . ,Num(xn)]Ack(R(x))

)
'c s020

+ · · · + sn2n .

Now, suppose x <a y and [x0, . . . , xm = x, . . . , xn = y]Ack(R(y)) ⊆∗ Ack(R(y)).
And suppose

Num(y) = 〈s0, . . . , sm, . . . , sn〉[x0,...,xm=x,...,xn=y]Ack(R(y)) .

Then

x ∈ y

iff sm = 1
iff the Field([x1, . . . , xm])th bit of Field([x1, . . . , xm, . . . , xn]) is 1
iff (the x th bit of y is 1)a
iff (the x th bit of y is 1)d

as required. �

Corollary 6.4 EA∗ and I10 + exp are bi-interpretable. The interpretations a and
d are inverse to each other.
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7 Concluding Remarks

As in ZF − Inf∗, the Axiom of Choice is provable in EA∗: the proof is an easy appli-
cation of One Point Extension Induction for bounded quantifier formulas. Thus, its
Ackermann translation holds in I10 + exp.

A little more interesting is the fact that EA∗ does not prove that for every set there
is a finite von Neumann ordinal of the same size. If EA∗ were to prove this, then it
would prove that the von Neumann ordinals are closed under exponentiation, which
it does not, by Lemma 5.2. Thus, I10 + exp does not prove the translation of this
sentence.

More interestingly still, it is not known whether or not I10 + exp proves the
Ackermann translation of the bounded replacement scheme; that is, for each bounded
quantifier formula 8,

∀x∃!y8(x, y) → ∀x∃y∀z(z ∈ y ≡ (∃u ∈ x)8(u, z)).

The translation of each such sentence is provable in I10 + exp with the bounded
collection scheme for61-formulas, but this is the strongest result known. The equiv-
alence of EA∗ and I10 + exp opens up a new way to investigate this question. The
following result is the best known in EA∗.

Theorem 7.1 Suppose 8 is a bounded quantifier formula of EA∗. Then, if

EA∗
` ∀x∃!y8(x, y),

then
EA∗

` ∀x∃y∀z(z ∈ y ≡ (∃u ∈ x)8(u, z)).

The proof relies on the Parikh-style result used in the proof of Theorem 5.2.

Note

1. Mayberry has since written a book on his system [5]. For the state of the art on this
theory, see [6]. Independently of Homolka’s work, Gaifman and Dimitracopoulos [2] had
described a theory of sets a year earlier, which they dubbed EF, and which is also mutually
interpretable with I10 + exp. I restrict my attention to Mayberry’s theory as studied by
Homolka.
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