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Factorization of the Shoenfield-like Bounded
Functional Interpretation

Jaime Gaspar

Abstract We adapt Streicher and Kohlenbach’s proof of the factorization
S = KD of the Shoenfield translation S in terms of Krivine’s negative trans-
lation K and the Godel functional interpretation D, obtaining a proof of the
factorization U = KB of Ferreira’s Shoenfield-like bounded functional in-
terpretation U in terms of K and Ferreira and Oliva’s bounded functional
interpretation B.

1 Introduction

In 1958, Godel [5] presented a functional interpretation D of Heyting arithmetic
HA® into itself (actually, into a quantifier-free theory, for foundational reasons).
When composed with a negative translation N of Peano arithmetic PA® into
HA® (Godel [4]), it results in a two-step functional interpretation ND of PA®
into HA® [5]. Nine years later, Shoenfield [9] presented a one-step functional
interpretation S of PA® into HA®.

In 2007, Streicher and Kohlenbach [11], and independently Avigad [1], proved
the factorization S = K D of § in terms of D and a negative translation K due to
Streicher and Reus [10], inspired by Krivine [8].

PA? —X> Ha® 2> pHae
\_/
S

In 2005, Ferreira and Oliva [3] presented a functional interpretation B of Heyting
arithmetic with majorizability HAZ, into itself. Like D, when composed with a neg-
ative translation N of Peano arithmetic with majorizability PA% into HA%,, it results
in a two-step functional interpretation N B of PAZ, into HAZ, [3]. Two years later,
Ferreira [2] presented a one-step functional interpretation U of PAZ, into HAZ,.
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By adapting Streicher and Kohlenbach’s proof, we obtain the factorization
U =KB.

PAZ X HAY £, HAY
%

2 Framework

Definition 2.1 ([3], [12])  The Heyting arithmetic HA® that we consider is the usual
Heyting arithmetic in all finite types but with a minimal treatment of equality and no
extensionality, following Troelstra [12].
The Heyting arithmetic with majorizability HAZ, is obtained from HA® by
1. adding new atomic formulas ¢ <, g for all finite types p (where ¢ and g are
terms of type p);
2. adding syntactically new bounded quantifications Yx <, tA and Ix <, tA
(where A is a formula and the variable x does not occur in the term ¢);
3. adding the axioms

Vx <tA < Vx(x <t - A), dx JtA < Ix(x It A A)
governing the bounded quantifications;
4. adding the axioms and rule
x<Jpy<x=<0y, x <y — Vu do(xu <yv A yu < yv),
Ap Au <o — tu Jgo Aqu <qo
Ap — tdgq

governing the majorizability symbol < (where < is the usual inequality be-
tween terms of type 0, A, is a bounded formula, that is, a formula with all
quantifications bounded, and in the rule the variables # and v do not occur
free in the formula A, neither in the terms ¢ and q);

5. extending the induction axiom to the new formulas.

This system is presented in detail in [3].
We will need the following notation.

Notation 2.2 ([3]) An underlined letter ¢ means a tuple (possibly empty) of terms
t1, ..., . We use the abbreviations

tdt=Hd A AN Dy,

VXA =Vx;---Vx,A, dx A :=3x; - - Ax,A,
Vx JtA:=Vx; dt---Vx, A, dx JtA:=3x 1 ---3Ax, IHA,
VxA:=Vx(x dx — A), 3xA :=3x(x dx A A),
Vx<diA:=Vx di(x dx — A), Jx <tA:=3x Jt(x Ix A A).

We consider two logical principles.
Definition 2.3  The law of excluded middle for bounded formulas B-LEM is the
principle
Ap vV —Ap,
where Ay is a bounded formula.
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Definition 2.4 ([2])  The monotone bounded choice B-mAC is the principle
Vx3yAp(x, y) —> 3¥Vx3y DY xAp(x, y),

where A is a bounded formula.

3 Negative Translation and Bounded Functional Interpretations
For the convenience of the reader, we recall the definitions of K, B, and U.

Definition 3.1 ([1], [8], [10], [11])  Krivine’'s negative translation (extended to
arithmetic with majorizability)' AX of a formula A of PA% based on —, Vv, V<,V

is AK := —Ag, where A is defined by induction on the co;nplexity of formulas.

1. If A is an atomic formula, then Ag = —A;

2. (mA)g = —Ag;

3. (AV B)x := Ak A Bg;

4. (Vx 9tA)g = 3x QtAg;

5. (VxA)g = IxAg.
If we consider A a primitive symbol, then

6. (AAB)g = Ak V Bg.
Definition 3.2 ([3])  The bounded functional interpretation A® of a formula A of
HAZ based on L, A, v, —,V¥<,3<,V, 3 is defined by induction on the complexity
of formulas.

1. If A is an atomic formula, then AZ := Jx xVyAp(x,y) := A, where x and y
are empty tuples.

If AB = é)_c‘;’XAB(L y) and BB = glx_/‘;’y_’BB()L/, y'), then
2. (AAB)E :=3x,x'Vy, y(AAB)g(x, %, y,y) =
3x, x'Vy, y'[Ag(x, y) A Bg(x, y)i
3. (Av B)B :=3x, xVy y(A\/B)B(x x', Y, y)
3x, x'Vy, y'[V5 < yAp(x, §) VVF <y Be(x', )]

4. (A—> B)?:=3X,YVx,y(A— B)p(X', Y, x,y) =

3X', ¥YVx, y'[Vy S Yxy Ap(x, y) > Bp(X'x, y)l;

5. (Vz<tA)B = glgg’z(‘v’z JtA)p(x,y) = gl)_c‘g’z‘v’z <JtAp(x,y);
6. 3z <tA)E :=3xVy@z <1A)p(x, y) = )_c‘;’X 2 <iVF D yAp(x, )
7. (VzA)E = 3XVw, y(VzA)p(X, w, y) = IXVw, y¥Yz JwAp(Xw, y);

8. (AzA)® := Jw, iVx(EIzA)B(w, x,y) = glw, Q‘G’XEIZ g w‘;’i JyAp(x, y).

Remark 3.3 ([3])  From (1) and (4) we conclude that if A = g&‘;’XAB()_C, ), then
(—=A)B =3YVx(=A)p(Y, x) =3I¥Vx—Vy I Y xAp(x, y).

Remark 3.4 ([3]) We can prove by induction on the complexity of formulas that
Ap(x, y) is a bounded formula.
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Definition 3.5 ([2])  The Shoenfield-like bounded functional interpretation AY of
a formula A of PAZ, based on —, v, V<, V is defined by induction on the complexity
of formulas. B
1. If A is an atomic formula, then AV :=Vx3yAy(x, y) := A, where x and y
are empty tuples.
If AY =V¥x3yAy(x, y) e BY =Vx'3y By (x/, y'), then

2. (=AY =YY Ax(=A)y (Y, x) :=VYAx3IF <x—Ap (&, Y I);

=

3. (AvB)Y :=Vx,x'3y, y(AV By (x,x, y,y) =
Vx, x'3y, y'[Au(x, y) vV Bu(x', y)I;

4. (V2 1AV :=Vx3y (V2 D1A)y(x, y) = VxIyVz J1Ay(x, y);
5. (VzA)Y := Vuw, iglz(VzA)U(w, xX,y) = Vw, x3
If we consider A a primitive symbol, then

6. (AABY :=Vx,x'3y, Y(AAB)y(x,x',y, ) =

yVz JwAy(x, y).

Vx,x'3y, y'[Au(x, y) A Bu(x', y)l.

Remark 3.6 ([2]) We can also prove by induction on the complexity of formulas
that Ay (x, y) is a bounded formula.

U is monotone on the second tuple of the variables in the following sense.

Lemma 3.7 (monotonicity of U [2]) HA% ~ v)_cvxvzg ylAu (x, 2) — Ay (x, »l

4 Factorization

We want to prove AY < (AX)8 by induction on the complexity of formulas. Be-
cause it isn’t AX but Ag that is defined by induction on the complexity of formu-
las, it would be better to write AV « (=Ag)?. If AY = Vx3yAy(x, y) and
(Ag)E = §Ix_"5’y_’(AK)3(x_’, '), then using B-mAC in the first equivalence and the
monotonicity of U in the second equivalence, we have

AY =VxdyAy(x,y)
< 3yvYx3y A¥xAy(x,y)
AYVxAy(x, Y x), (1)
(—Ag)® =3Y'Vx' ¥y QY ¥ (Ax)p(x,y). )

The comparison of formulas (1) and (2) suggests that we first prove Ay (x, Y x) <
—Vy < Yx(Ak)p(x, y), or even better, Ay (x, y) <> =V5 < y(Ag)p(x, §). Then,
by the above argument, we would have AV <« (AX)8.
The factorization proof is almost the straightforward adaptation of Streicher and
Kohlenbach’s proof but with two tweaks.
1. Instead of proving Ay (x, y) <> —(Ak)g(x, y), along the lines of Streicher
and Kohlenbach’s proof, we prove Ay(x, y) < —-‘;’2 < y(Ak)B(x, Y),
where the appearance of the quantification V y <y is explained by the above
argument.
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2. In proving Ay(x, y) < —05’2 < y(Ak)p(x, y) we need the hypothesis
x<dx A y < y for technical reasons explained in notes.

Theorem 4.1 (factorization U = KB) We have

HAZ + B-LEM - VY, x[Ay(x, Y x) < (A%)p(X, x)], (3
HAZ + B-LEM + B-mAC - AY « (A%)B. 4)

Proof
Step 1  First we prove
HAZ +B-LEM - Vx, y[Ay(x, y) < =5 < y(Ak)p(x, J)] (5)

by induction on the complexity of formulas.
Let us consider the case of atomic formulas A. Using B-LEM in the equivalence,
we have

Ay =A
<~ ——A
= —(Ak)B-

Let us now consider the case of negation —A. Assume ¥ <Y and x < x. Using the
induction hypothesis in the first equivalence and B-LEM in the second equivalence,
we have

(=A)y (Y, x)=3% Qx-Ay(F, Y %)
3% Sx——Vy QY F(Ax)p(&, y)

—Vi dx—Vy JYZ(Ax)B(%, y)

= —Vi Qx[(—=A)k1p(Y, £).

Let us now consider the case of disjunction A v B. Assume x < x, x’ <x/, y <y,
and y’ < y’. Using the induction hypothesis in the first equivalence, B-LEM in the
second equivalence, and intuitionistic logic in the third equivalence,” we have

(AvBy(x,x',y,y)=Au(x,y) v By, y)
< =V5 < y(Ax)p(x, §) vV =y <y (Br)p(x', §)

< =[V5 D y(Ax)s(x, ) AVY Dy (Bx)s(x', §)]

< =¥y, 7 <y, YI(Ak)B(x, §) A (Br)p(x/, 5]

=-V5, 7 Dy, Y I(AV B)klp(x, X', 7, 5.

Let us now consider the case of bounded universal quantification Vz < tA. Assume
x < x and y < y. Using the induction hypothesis in the first equivalence and
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intuitionistic logic in the second and third”® equivalences, we have

(Vz <tA)y(x, y) =Vz d1Ay(x, y)
< Vz 41=V5 < y(Ag)(x, §)
< =3z <1Y5 D y(Ag)(x, §)
< —V§ < y3z AiV§ < (Ak)B(x, §)
= V5 <D y[(Yz S tA)k (. P).
Finally, let us consider the case of unbounded universal quantification VzA. Assume
w <Jw, x dx and y <Jy. Using the induction hypothesis in the first equivalence and
intuitionistic logic in the second and third equivalences, we have
(VzA)y (w, x, y) =Vz JwAy(x, y)
< Vzdw—vy 4 y(Ax)p(x, §)
< =3z dwV¥y 4 y(Ag)s(x, §)
—¥§ 9 y3z QwVy < §(Ag)p(x, §)
‘5’2 y[(VzA)k1p(w, x, 3).

In case we consider A a primitive symbol, let us now see the case of conjunction
AAB. Assume x <x, x' <x/, y<y,and y < y Using the induction hypothesis in
the first equivalence and intuitionistic logic in the second and third equivalences, we
have
(AABy(x,x',y,y)=Au(x, y) A By, y)
< =V < y(Ag)p(x, §) A=VF Dy (Bx)p(x', §)
< =[V3 4 y(Ax)s(x, §) VVY Dy (Bx)s(x', §)]

< ﬁ\?y, &/ <y, y’[\?y < &(AK)B(a_c, F)v

I
<t
|=>
|'\<>
IA
~
:
S
>
oo
N
E
o]
~
~
=
<
<
p—

Step2 Now we prove (3). Assume ¥ <Y and x < x. Using (5) in the equivalence,
we have
Ay(x,Yx) < =Vy <Yx(Ag)p(x, y)
= (—Ax)B(Y, x)
= (A")p(Y, 2).
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Step 3  Finally, we prove (4). Using B-mAC in the first equivalence, the monotonic-
ity of U in the second equivalence, and (3) in the third equivalence, we have

\]

(1]

(2]

(3]

(4]

(5]

(6]

S
<

I

<t

x3yAu(x, y)

Notes

. It still holds a soundness theorem PA% A= HA“<’] + AK and a characterization

theorem PA“<’] A< AK,

The rule for conversion to prenex normal form Vu <o (C A D) — Yu <vC A D (where
the variable u does not occur free in the formula D), despite its innocuous look, does not
hold without the hypothesis v < v. So we need to use the hypothesis x <x Ay <y in

the proof.

. Probably the easiest way to prove the third equivalence is to prove

2 <1V5 D y(Ag)p(x, §) « V5 < yIz DiY5 D F(Ag)p(x, §).

To prove the right-to-left implication, we just take j = y, which we can do because yly.
So here again we need to use the hypothesis x < x Ay < y.
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