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The Sum of Irreducible Fractions with
Consecutive Denominators Is

Never an Integer in PA−

Victor Pambuccian

Abstract Two results of elementary number theory, going back to Kürschák
and Nagell, stating that the sums

∑k
i=1

mi
n+i (with k ≥ 1, (mi , n + i) = 1,

mi < n + i) and
∑k

i=0
1

m+in (with n, m, k positive integers) are never integers,
are shown to hold in PA−, a very weak arithmetic, whose axiom system has no
induction axiom.

A well-known problem in elementary number theory asks one to show that the sum

1 +
1
2

+ · · · +
1
n

is never an integer for n ≥ 2. The proof one often finds offered for this fact is based
on Chebyshev’s theorem (Bertrand’s postulate). If one asks for a proof that, more
generally, the sum

1
n

+
1

n + 1
+ · · · +

1
n + k

,

with k ≥ 1, can never be an integer, then the proof based on Chebyshev’s theorem
needs to be amended. One first notes that, if k < n, then the above sum must be
less than 1, and thus cannot be an integer, and if k ≥ n, then one applies the same
proof based on Chebyshev’s theorem. (This fact seems to have been overlooked by
Oblath [8], who wants to use Chebyshev’s theorem, but finds himself constrained to
use, in case k < n, another result, the Sylvester-Schur theorem, as well.) However,
Kürschák [5] (see also Pólya and Szegö [9], Problem 251; Sierpinński [10], p. 139;
DeTemple [2]; and Farmer [3]) found a much simpler proof which relies on the very
simple observation that among any number (≥ 2) of consecutive positive integers
there is precisely one which is divisible by the highest power of 2 from among all the
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given numbers. Aside from its didactic use, one may wonder whether Kürschák’s
proof is not in a very formal way much simpler, that is, whether it does not require
simpler methods of proof in the sense of formal logic.

When formalized, arithmetic is usually presented as Peano Arithmetic, which
contains an induction axiom schema, stating, loosely speaking, that any set that can
be defined by an elementary formula in the language of arithmetic (i.e., in terms
of some undefined operation and predicate symbols such as +, · , 1, 0, <), which
contains 1, and which contains n + 1 whenever it contains n, is the set of all num-
bers. Several weak arithmetics have been studied in which the types of elementary
formulas allowed in the definitions of the sets used in induction are restricted by cer-
tain syntactic constraints (see D’Aquino [1]). One might think that Kürschák’s proof
would make it in a weaker formal arithmetic than the one dependent on Chebyshev’s
theorem. It turns out, in fact, that no amount of induction is needed at all!

To see this, let’s first generalize the problem further, along the lines of the gener-
alization in Oblath [7], so that there can be no proof based on Chebyshev’s theorem.

Theorem 1 The sum
m0

n
+

m1

n + 1
+ · · · +

mk

n + k
(1)

with (mi , n + i) = 1, mi < n + i , and k ≥ 1, is never an integer.

Proof ([5], [2]) Let a = max{α : 2α
|(n + i) for some 0 ≤ i ≤ k }. Then 2a divides

exactly one of the numbers n, n + 1, . . . , n + k. (If we had n + i = 2a(2r + 1)
and n + j = 2a(2s + 1), with 0 ≤ i < j ≤ k, then n + i < 2a(2r + 2) < n + j ,
contradicting the maximality assumption on a.) Let l = lcm (n, n + 1, . . . , n + k).
Notice that l must be even, and that only one of the integers l · mi

n+i is odd (the one with
2a

|(n + i)). Suppose the sum in (1) is an integer b. Multiplying both (1) and b by l,
we obtain on the one hand an odd number, as the sum of (several) even numbers and
of one odd number, and on the other the even number lb, which have to be equal. �

Moreover, to make it a theorem of arithmetic, we will do away with the fractions
appearing in it, and state it, for all positive k ∈ N, as ϕk , the following statement
(where, for u ≥ 1, we denote by u the term ((. . . ((1 + 1) + 1) + · · · ) + 1), in which
there are u many 1s, and we let 0 = 0; the terms u will be referred to as numerals)

(∀n)(∀m0) . . . (∀mk)(∀p)

k∨
i=0

((∀a)(∀b) mi a 6= (n + i)b + 1) ∨

k∨
i=0

n + i < mi

∨

k∑
i=0

(mi
∏

0≤ j≤k, j 6=i

(n + j)) 6= p
k∏

j=0

(n + j). (2)

The first disjunct of this formula states that mi and n + i are not relatively prime (i.e.,
that (mi , n + i) 6= 1); the second, that one of the conditions mi < n + i does not
hold (the case mi = n + i is covered by the first disjunct); and the third one, that the
sum in (1) is not equal to p. We have not explicitly stated that n 6= 0 and mi 6= 0, as
this was not necessary. If mi = 0, then, for all b, we have (n + i)b + 1 6= 0, so the
first disjunct holds. If n = 0 and m0 6= 0, then n + 0 < m0, and the second disjunct
holds for i = 0.

The arithmetic which we will show that (2) holds in is PA−, which is expressed
in a language containing as undefined operation and predicate symbols only +, · , 1,
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0, and <, and whose axioms A1–A15 were presented in Kaye ([4], pp. 16–18). We
will repeat them here for the reader’s convenience, and we will omit the universal
quantifiers for all universal axioms.

A 1 (x + y) + z = x + (y + z)

A 2 x + y = y + x

A 3 (x · y) · z = x · (y · z)

A 4 x · y = y · x

A 5 x · (y + z) = x · y + x · z

A 6 x + 0 = x ∧ x · 0 = 0

A 7 x · 1 = x

A 8 (x < y ∧ y < z) → x < z

A 9 ¬x < x

A 10 x < y ∨ x = y ∨ y < x

A 11 x < y → x + z < y + z

A 12 (0 < z ∧ x < y) → x · z < y · z

A 13 (∀x)(∀y)(∃z) x < y → x + z = y

A 14 0 < 1 ∧ (x > 0 → (x > 1 ∨ x = 1))

A 15 x > 0 ∨ x = 0

What is missing from PA−, and makes it so weak (indeed, the positive cone of every
discretely ordered ring is a model of PA−), is the absence of any form of induction.

The proof that ϕk holds in PA− will be carried out in an arbitrary model M of
PA−. The idea of proof will be to show that all variables that appear in ϕk must be
numerals. An essential ingredient of the proof is the following fact, which holds in
PA− (see [4], Lemma 2.7, p. 22), for all positive k ∈ N,

x < k → x = 0 ∨ x = 1 ∨ · · · ∨ x = k − 1, (3)

and which allows us to deduce that any element which is bounded from above by a
numeral must be a numeral.

Suppose that, for some positive k ∈ N, ϕk does not hold in M. Then, for all
i = 0, . . . , k, there are mi , p, ai and bi , with mi ai = (n + i)bi + 1 and mi < n + i ,
and such that

k∑
i=0

(mi
∏

0≤ j≤k, j 6=i

(n + j)) = p
k∏

j=0

(n + j). (4)

This can be rewritten, by leaving only the first term of the sum on the left-hand side
and sending all others to the right-hand side with changed sign (subtraction being
meaningful by A13), as m0(n + 1) . . . (n + k) = nq, where by q we have denoted

p
k∏

j=1

(n + j) − (

k∑
i=1

mi
∏

1≤ j≤k, j 6=i

(n + j)).
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The product (n + 1) . . . (n + k) can also be written as a polynomial in n, whose
constant term is k!, that is, as nr + k!; thus m0(nr + k!) = nq . Given that there
are a0 and b0 such that m0a0 = nb0 + 1, if we multiply both sides of the equal-
ity m0(nr + k!) = nq by a0 we obtain (nb0 + 1)k! = n(a0q − a0m0r); thus
k! = n(a0q − a0m0r − b0k!). We know that M must contain a copy of N, and
it may contain other elements as well, called nonstandard numbers. Could n be in
M but not of the form m for some m ∈ N? If it were such an element of M, then it
would be greater than all m with m ∈ N, and thus so would n(a0q − a0m0r − b0k!),
unless a0q −a0m0r −b0k! = 0, which cannot be the case, as k! is not zero. However,
n(a0q − a0m0r − b0k!) cannot be greater than all m with m ∈ N, for it is equal to
such a number, namely, to k! . Thus n must be an m for some m ∈ N. Given that
mi < n + i , the mi must be numerals as well, and thus all variables appearing in
(4), except p, must be numerals. Thus p is a numeral as well, for else the right-hand
side in (4) would be greater than the left-hand side. This means that in (4) all vari-
ables are numerals. However, we know from Kürschák’s proof that such an equation,
involving only numerals, cannot exist. Thus, for all k ∈ N, ϕk holds in PA−.

Another generalization of the original problem, proved by Nagell [6], states that
the sum

1
m

+
1

m + n
+

1
m + 2n

+ · · · +
1

m + kn
is never an integer if n, m, k are positive integers. The proof is rather involved and
uses both a Kürschák-style argument and Chebyshev’s theorem. This statement turns
out to be, with k instead of k, valid in PA− as well. To see this, let, for all positive
k ∈ N, νk stand for

(∀m)(∀n)(∀p) m > 0 ∧ n > 0 →

k∑
i=0

∏
0≤ j≤k, j 6=i

(m + jn) 6= p
∏

0≤ j≤k

(m + jn), (5)

and let M be again a model of PA−. Notice that, if m > k, then ¬νk cannot hold
for any n and p. To see this, suppose that, for some n and p, we had equal-
ity in (5). Given that (m + n) . . . (m + kn) is the largest of all the summands
on the left-hand side, and there are k summands, the sum on the left-hand side is
≤ k(m + n) . . . (m + kn), and thus < m(m + n) . . . (m + kn); thus equality can-
not hold in (5). Thus m ≤ k, and thus, by (3), m must be standard; that is, it
must be u for some 0 < u ≤ k. It remains to be shown that n must be standard
as well. To see this, suppose again that, for some n > 0 and p, we have equality
in (5). Notice that, since m(m + 2n) . . . (m + kn) is the largest product among all∏

0≤ j≤k, j 6=i (m+ jn), for i = 1, 2, . . . k, the sum on the left-hand side of our equality
is ≤ (m + n) . . . (m + kn) + km(m + 2n) . . . (m + kn) (with equality if and only if
k = 1). Thus pm(m +n) . . . (m + kn) ≤ (m +n + km)(m +2n) . . . (m + kn), which
implies pm(m + n) ≤ m + n + km. If n were nonstandard, then this inequality were
possible only if pm = 1, that is, if p = m = 1, which is not possible, for in that case
the first summand on the left-hand side of (5) is equal to the right-hand side; thus
the left-hand side must be larger than the right-hand side, so equality could not have
taken place in (5). Now that m, n, k have all been shown to be standard, Nagell’s
proof implies the truth of our statement, which thus holds in PA−.

Although the proofs that ϕk and νk hold in PA− can be turned into formal deriva-
tions from the axioms of PA−, their length will depend, in the form presented by us,
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on k. If there were no proofs with length not depending on and increasing with k,
then one may see this as a trade-off for the parsimony in assumptions. Weakening
the axiom system would lengthen the proofs.
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