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Quantifier Elimination for a Class
of Intuitionistic Theories

Ben Ellison, Jonathan Fleischmann,
Dan McGinn, and Wim Ruitenburg

Abstract From classical, Fraïssé-homogeneous, (≤ ω)-categorical theories
over finite relational languages, we construct intuitionistic theories that are com-
plete, prove negations of classical tautologies, and admit quantifier elimination.
We also determine the intuitionistic universal fragments of these theories.

1 Introduction

It is often assumed that intuitionistic theories that admit quantifier elimination are
nearly classical. We show that this is not the case. We present a straightforward
method that converts a broad class of classical theories that admit quantifier elimina-
tion into intuitionistic ones.

Intuitionistic quantifier elimination has been studied before; see [11], [10],
and [1], for example. Smoryński in [11] and Bagheri in [1] focus on intuitionistic
theories that are in some ways nearly classical. Instead, we expand on the work
in [10] and, in general, eliminate quantifiers in very intuitionistic theories, which
in our case are theories that prove the negation of certain classical tautologies.
Specifically, we start with a well-known class of classical theories over finite rela-
tional languages that admit quantifier elimination, are Fraïssé-homogeneous, and
are (≤ ω)-categorical. We call these theories JRS theories, after Jaśkowski, Rabin,
and Scott, as explained in Section 2. We construct intuitionistic variations of the
JRS theories and show these new theories retain the properties of completeness
(Theorem 3.1) and quantifier elimination (Theorem 4.8), but in general are very
intuitionistic. We show that if the morphism structure of the canonical Kripke model
is sufficiently rich, then all formulas are equivalent to particularly simple quantifier-
free formulas (Theorem 4.9). Our techniques for proving intuitionistic quantifier
elimination are classical.
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In Section 5, as part of a deeper investigation into the idea of an intuitionistic
model complete theory, we use the techniques and definitions of [6] to find the in-
tuitionistic universal fragment of an intuitionistic JRS theory (Theorem 5.6). In the
general intuitionistic case, quantifier-free formulas need not be universal formulas,
in a sense that will be explained in Section 5. In our case, however, we show that all
formulas are equivalent to quantifier-free, universal formulas (Theorem 5.2).

2 Classical JRS Theories

We review a special family of classical theories that admit quantifier elimination. We
use the single turnstile ` for “intuitionistically proves”; when we wish to indicate a
classical proof, we use the `c notation. Similarly, we write Th(·) for the intuitionistic
theory generated by a set of formulas or a structure, and Thc(·) for the classical
theory. A theory 0 is consistent if ⊥ /∈ 0.

2.1 What is a JRS theory? We consider relational languages L that have only
finitely many predicates {Ri }i<r , all of positive arity. We use >, ⊥, ∧, ∨, →, =, ∃,
and ∀ to form formulas of L. Symbols > and ⊥ are nullary logical operators as well
as atoms. Negation ¬ϕ is short for ϕ → ⊥.

Given a tuple x = x0, x1, . . . , xn−1 of variables, the set At(x) of atoms with all
free variables from x is finite. So the set At±(x) of atoms and negated atoms over x is
also finite. An At±(x)-type is a subset t ⊆ At±(x) such that its conjunction

∧
t , also

written πt or πt (x), is consistent. We write t+ for the subcollection of atoms in t . We
define formula π+

t to be the conjunction of atoms of t+, and σ−
t to be the disjunction

of atoms whose negations occur in t . So πt ↔ (π+
t ∧ ¬σ−

t ) is a tautology. Formula
πt is called an At±(x)-description. A maximal At±(x)-type is called a complete
At±(x)-type, and its corresponding formula πt a complete At±(x)-description. Each
atom of At(x) or its negation occurs in a complete At±(x)-type. Given a model A
and a ∈ A, a satisfies the complete At±(x)-type tpa = (Thc(A) ∩ At±(a))[a/x],
where Thc(A) is the theory of A over the language L(A).

Suppose n ≥ 0. Up to isomorphism, a complete At±(x)-type t has a unique
smallest model. Specifically, At is the model formed from the variables {xi }i<n
by taking equivalence classes modulo the equivalence relation xi ∼ x j defined
by (xi = x j ) ∈ t . We write xi or ai for the equivalence class of xi . Given
a = a0, . . . , an−1 and atom δ(x), set At |H δ(a) if and only if δ(x) ∈ t . So
At |H πt (a). The size |At | of model At is called the level of t . We allow the empty
structure.

Let u be an At±(xxn)-type. Define d(u) = u ∩ At±(x). Then d(u) is an At±(x)-
type. If u is a complete At±(xxn)-type, then d(u) is a complete At±(x)-type. Given
a complete At±(xxn)-type u, define δu to be the sentence

∀x(πd(u) → ∃xnπu).

We call such a sentence a JRS sentence. A (consistent) theory 0 over L is called a
JRS theory if for all xxn and complete At±(xxn)-types u that are consistent with 0
(that is, 0 ∪ {∃xxnπu} is consistent, or 0∀ 0 ∀xxn¬πu), we have δu ∈ 0.

As indicated by Bankston ([2], p. 962), this is not the first time that JRS theories
and sentences have been studied. Gaifman attributes these sentences to Rabin and
Scott (see [7], p. 15) while Lynch attributes them to Jaśkowski (see [9], p. 94), hence
our choice of name.
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2.2 Classical quantifier elimination The following are some well-known facts
about JRS theories.

Theorem 2.1 Let 0 be a JRS theory. Then, up to isomorphism, 0 has exactly
one model of size ≤ ω. Additionally, this model is Fraïssé homogeneous; that is,
isomorphisms between finite submodels extend to automorphisms.

Proof The proof uses the axioms δu to complete a standard back and forth construc-
tion to extend finite isomorphisms to automorphisms. �

Recall that an existential formula is a primitive formula if its quantifier-free part is a
conjunction of atoms and negated atoms.

Theorem 2.2 Let 0 be a JRS theory, and let ∃xnϕ(xxn) be a primitive formula.
Then 0 `c ∃xnϕ ↔

∨
s∈S πd(s), where S = {s : s is a complete At±(xxn)-type

consistent with 0 and 0 `c πs → ϕ}. In particular, JRS theories admit quantifier
elimination.

Proof Formula ∃xnϕ is equivalent to
∨

s∈S ∃xnπs , where an empty disjunction
is identified with ⊥. Apply the JRS sentences of 0: ∃xnϕ is equivalent to∨

s∈S πd(s). �

By the techniques in [8], Henson shows that there are continuum many JRS theo-
ries, even if the language has only one binary predicate. The work [2] of Bankston
and one of the authors offers other construction techniques for JRS theories. Count-
able JRS theories can be built via certain types of games and can also be viewed as
theories whose tree of finite substructures satisfies certain properties (see [2], Theo-
rem 5.7). That is, given a theory 0, form the following rooted tree T0 of types: for
each x = x0, . . . , xn−1, take all complete At±(x)-types of level n that are consistent
with 0 (each such type essentially contains

∧
i< j<n xi 6= x j ). When we order these

types by set inclusion, we get a tree with the minimal type {>,¬⊥} as its root, and
with finitely many nodes at each level. Obviously, T0 is uniquely determined by the
universal fragment 0∀ of 0.

Given a universal theory 5, we define the JRS extension 0 of 5 as the theory
axiomatizable by 5 and all JRS sentences δu for which 5 0 ∀x¬πu . For a given
universal theory 5, the consistency of the JRS extension is nicely expressible as a
model-theoretic property on the collection of finite substructures At of5. A class of
models K has the amalgamation property if for all models A, B, and C in K where
A embeds in B and A embeds in C, there is a model D in K such that B embeds in
D, C embeds in D, and this diagram commutes. If K includes the empty structure,
then the amalgamation property immediately implies the joint embedding property.
This particularly applies to Theorem 2.3.

Theorem 2.3 The JRS extension 0 of a universal theory5 is consistent if and only
if the collection of models of the form At , for t ∈ T5, has the amalgamation property.
If 0 is consistent, then 0∀ = 5.

Proof First, suppose 0 is consistent. Let A be the unique (up to isomorphism)
model of 0 of size ≤ ω. Consider finite models At , Au , and Av of 0∀ and suppose
that At embeds in both Au and Av . Without loss of generality, we may assume that u
and v are complete At±(xxn)-types and that t is a complete At±(x)-type. For some
a ∈ A, A satisfies πt (a), δu and δv , so we have A |H ∃xπu(ax)∧ ∃xπv(ax). Fix a, b
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and c such that A |H πu(ab) ∧ πv(ac). Let w = tpabc. Then Aw is the amalgam of
Au and Av over At .

Conversely, suppose that the collection of models of 5 of the form At has the
amalgamation property. We sketch a construction of a model A of 0 as the limit
of an ω-chain of models of the form At . Suppose we have a model At of size n.
For each complete At±(xxn)-type u consistent with 5 and for all a ∈ At such that
At |H πd(u)(a) there is an amalgam A(u,a) of At and Au over Ad(u). As next model
in the ω-chain, take the amalgam of all A(u,a) over At . So 0 is consistent.

For the last claim, it suffices to show that every finite structure of 5 embeds into
A, the unique largest model of size ≤ ω. Proceed by induction on the number of free
variables in complete types consistent with5. If u is a complete At±-type consistent
with 5, then so is d(u). By the inductive hypothesis, Ad(u) embeds into A. By the
JRS axiom δu , Au also embeds into A. �

2.3 Classical examples We present some examples of JRS theories and construc-
tion methods of new JRS theories from old.

Example 2.4 Let L be any language with finitely many predicate symbols of pos-
itive arity, and set 5 to the minimal “empty” theory. Since all finite structures are
allowed, amalgamation is obvious. By Theorem 2.3, the JRS extension of 5 is con-
sistent. This is an example of Burris’s “theory of everything” [3].

Example 2.5 Let L be the minimal language (equality is the only relation). Theory
0 = 0e is the theory of infinite sets, with 0∀ the “empty” theory. The tree T0 has
just one node t ⊇ {xi = x j → ⊥ : i < j < n} at each level n.

Example 2.6 Let L be the language based on a new predicate x 6= y for inequal-
ity. The theory of infinite sets 0 = 0ne has universal fragment axiomatizable by
x 6= y ↔ (x = y → ⊥). This direct translation makes 0ne “as JRS as” 0e.

Given a theory 0, we write 0UH for the theory axiomatizable by its universal Horn
fragment. Recall that models of 0UH are, up to isomorphism, submodels of products
of models of 0. If 0 is a JRS theory, then it is companionable with few existential
formulas; that is, for each x, there are only finitely many inequivalent (over 0) exis-
tential formulas with variables from x. So 0UH has a model companion (0UH)

∗ by
Burris and Werner’s work [4].

Example 2.7 It is a simple exercise to show that the theory of the random graph
0g is a JRS theory such that (0g)UH = (0ne)UH (where we identify the single
binary predicate R with the binary predicate 6=). Since 0g is model complete,
0g = ((0ne)UH)

∗. Comparing this with 0e = ((0e)UH)
∗ shows that seemingly trivial

changes to language may significantly affect the derived universal Horn theories and
their companions.

Example 2.8 Let L be the language based on x ≤ y. The theory 0lo of dense linear
order without endpoints is a well-known JRS theory.

Example 2.9 Let L be the language based on x ≤ y. Let 0p be the theory of
the random poset. Then it is a standard exercise to show 0p = ((0lo)UH)

∗ (see [5],
p. 132, for example). Additionally, 0p = ((1)UH)

∗ where 1 is the non-JRS but
obviously model complete trivial theory of a two-node linear order.

Note that (0UH)
∗ need not be a JRS theory, even if 0 is the JRS theory of a finite

model.
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3 Intuitionistic Theories from JRS Theories

Given a (classical) JRS theory 0JRS and its unique (up to isomorphism) model AJRS
of size ≤ ω, we construct the Kripke model AM as follows. We follow notational
conventions in [6]; our Kripke models are functors from small categories to the cat-
egory of L-structures and morphisms. The underlying category of AM consists of
a single node with associated node structure AJRS. We include all morphisms from
AJRS to AJRS as arrows. Let 0M be the intuitionistic theory of AM.

We can choose AM to be countable and get the same theory 0M. Instead of in-
cluding all morphisms, let A′

M have single node structure AJRS and include only a
collection of morphisms closed under composition such that every finite graph of an
endomorphism of AJRS has a complete endomorphism extension in the collection.
A straightforward proof by induction on sentence complexity shows that AM and
A′

M have the same intuitionistic theory 0M. So our Kripke model can be chosen
countable—take a category of countably many morphisms and a single countable
object.

Theorem 3.1 0M is complete.

Proof Let ϕ be an L-sentence. If AM 
 ϕ, then we are done. Otherwise, AM 1 ϕ.
But we have only one node, so AM 
 ¬ϕ. �

Theorem 3.1 in no way implies that 0M proves classical logic. For example, if there
is an endomorphism of AJRS which is not an embedding, then for some Ri and some
a we have AM 1 Ri (a) ∨ ¬Ri (a), so AM 
 ¬∀x(Ri (x) ∨ ¬Ri (x)). In [10], Ruiten-
burg introduces one concept of a very intuitionistic theory to distinguish theories that
are somehow even more “not classical.” The two theories in [10], involving equal-
ity and linear order, are both examples of very intuitionistic theories. In general,
suppose that instead of just one nonembedding endomorphism, we have two endo-
morphisms f and g, tuples a and b, and formulas ϕ and ψ such that AM 
 ϕ( f a)
and AM 1 ψ( f b), as well as AM 1 ϕ(ga) and AM 
 ψ(gb), as holds for the two
examples from [10]. Then 0M ` ¬∀xy((ϕ(x) → ψ(y)) ∨ (ψ(y) → ϕ(x))), and
therefore 0M is a very intuitionistic theory.

However, if AJRS is such that every endomorphism is also an embedding, then
theory 0M is not of new interest to us, because of the following theorem.

Theorem 3.2 If all endomorphisms of AJRS are embeddings, then 0M = 0JRS, and
so 0M is a classical theory.

Proof Since 0JRS admits quantifier elimination, it is model complete. Thus, all
embeddings of 0JRS models are elementary embeddings. Apply Theorem A.1 in the
Appendix. �

The examples from [10], as well as the examples from Subsection 2.3, satisfy the
following special condition: We say that a model A is morphism homogeneous if
whenever a, b ∈ A are such that tp+

a ⊆ tp+

b then there is an endomorphism f of A
such that f (a) = b. A classical JRS theory 0JRS is morphism homogeneous if its
unique countable model AJRS is. We show in Theorem 4.9 that if AJRS is morphism
homogeneous, then 0M admits a particularly elegant kind of quantifier elimination.

Example 3.3 Not all AJRS are morphism homogeneous. Let L be the lan-
guage with unary predicate P(x) and binary predicate x < y, and let 0JRS be the
(classical) theory of the finite model AJRS with domain AJRS = {a, b} such that
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AJRS |H ¬P(a) ∧ P(b) ∧ (a < b) and no other nontrivial atomic sentences. We
have that tp+

a ⊆ tp+

b (in fact, tp+

b = tp+
a ∪{P(x)}). However, there is no morphism

of AJRS taking a to b. That is, assume f is a morphism such that f (a) = b.
Then we must have AJRS |H f (a) < f (b). But this is not true if f (a) = b, as
AJRS |H ∀x ¬(b < x).

4 Intuitionistic Quantifier Elimination in 0M

Recall that a theory has few (quantifier-free) formulas if for all x = x0, x1, . . . , xn−1
there are finitely many nonequivalent (quantifier-free) formulas with all free vari-
ables from among x. All classical theories over the finite relational language L have
few quantifier-free formulas. So by quantifier elimination, 0JRS has few formulas.
We show that the intuitionistic theory 0M admits quantifier elimination and also has
few formulas. Our methods are classical.

Given a finite list of variables x = x0, x1, . . . , xn−1, we first consider the com-
plexity over 0M of the collection of quantifier-free formulas with all free variables
from x. Let C(x) be the following Kripke model. As nodes for the underlying cate-
gory C(x) we take all complete At±(x)-types t that are (classically) consistent with
0JRS. We turn C(x) into a poset category as follows. Given a pair of nodes t and u,
we set t ≤ u exactly when there are a ∈ AJRS and endomorphism f of AJRS such
that t = tpa and u = tp f (a) (that is, AJRS |H πt (a) ∧ πu( f (a))). So t ≤ u implies
t+ ⊆ u+. To each node t we associate finite classical model At . If t ≤ u, then the
morphism sends the equivalence class xi (t) of xi in At to the equivalence class xi (u)
of xi in Au . We write xi for the “global” element t 7→ xi (t) of C(x). The collection
of nodes |C(x)| is finite. Note that AJRS is morphism homogeneous exactly when
t+ ⊆ u+ implies t ≤ u for every t and u in |C(x)|.

Lemma 4.1 Let ϕ(x) be quantifier-free, and a ∈ AJRS. Then AM 
 ϕ(a) if and
only if tpa 
 ϕ(x(tpa)).

Proof We complete the proof by induction on the complexity of ϕ for all elements
a simultaneously. The case for atoms and the induction steps for ∧ and ∨ are easy.
Let ϕ equal ψ → θ .

Suppose AM 
 ψ(a) → θ(a). Let tpa ≤ u such that u 
 ψ(x(u)). It suffices to
show that u 
 θ(x(u)). There is an endomorphism f such that u = tp f (a). By the
inductive hypothesis, AM 
 ψ( f (a)). By supposition, AM 
 θ( f (a)). So again by
the inductive hypothesis, u 
 θ(x(u)).

Conversely, suppose tpa 
 ψ(x(tpa)) → θ(x(tpa)). Let f be an endomorphism
such that AM 
 ψ( f (a)). It suffices to show AM 
 θ( f (a)). By the inductive
hypothesis, tp f (a) 
 ψ(x(tp f (a))). By definition tpa ≤ tp f (a) so, by supposition,
tp f (a) 
 θ(x(tp f (a))). Again by the inductive hypothesis, AM 
 θ( f (a)). �

To each quantifier-free ϕ(x) assign Jϕ(x)K = {t ∈ |C(x)| : t 
 ϕ(x(t))}. We can
rewrite Lemma 4.1 above as AM 
 ϕ(a) exactly when tpa ∈ Jϕ(x)K. The sets Jϕ(x)K
form a finite Heyting algebra of upward closed subsets of the poset C(x) given by

Jϕ ∧ ψK = JϕK ∩ JψK,
Jϕ ∨ ψK = JϕK ∪ JψK, and
JϕK ∩ JψK ⊆ JθK if and only if JϕK ⊆ Jψ → θK,

where we write JϕK as short for Jϕ(x)K, and so on. Subsets of the form Jϕ(x)K are
definable. Upward closed subsets of C(x) form the open subsets of the usual poset
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topology. So definable subsets are open. Below we show that open subsets are
definable.

Lemma 4.2 For all quantifier-free formulas ϕ(x) and ψ(x) we have 0M `

∀x(ϕ → ψ) exactly when Jϕ(x)K ⊆ Jψ(x)K. Modulo provable equivalence over 0M,
there are for each x only finitely many quantifier-free formulas with all free variables
from x.

Proof Suppose that AM 
 ∀x(ϕ(x) → ψ(x)). Let t ∈ Jϕ(x)K. It suffices to show
t ∈ Jψ(x)K. There is a ∈ AJRS such that t = tpa. By Lemma 4.1, AM 
 ϕ(a). By
supposition, AM 
 ψ(a). Again by Lemma 4.1, tpa ∈ Jψ(x)K.

Conversely, suppose Jϕ(x)K ⊆ Jψ(x)K. Let a ∈ AJRS be such that AM 
 ϕ(a).
It suffices to show AM 
 ψ(a). By Lemma 4.1, tpa ∈ Jϕ(x)K. By supposition,
tpa ∈ Jψ(x)K. By Lemma 4.1 we get AM 
 ψ(a).

So JϕK = JψK exactly when 0M ` ∀x(ϕ ↔ ψ). The second claim now follows,
as |C(x)| is finite. �

Given t ∈ |C(x)|, define t̂ = {u ∈ |C(x)| : t ≤ u} and ť = {u ∈ |C(x)| : u � t}.
So t̂ is the smallest open subset containing t , and ť is the largest open subset not
containing t . Clearly, t̂ ⊆ Jπ+

t (x)K.

Lemma 4.3 Let t ∈ |C(x)|. Then ť = Jπ+
t (x) → σ−

t (x)K.

Proof Suppose s ≤ t . Then there are a ∈ AJRS and endomorphism f such
that s = tpa and t = tp f (a). So AM 
 π+

t ( f (a)) and AM 1 σ−
t ( f (a)). So

AM 1 π+
t (a) → σ−

t (a). By Lemma 4.1, s = tpa /∈ Jπ+
t (x) → σ−

t (x)K.
Conversely, suppose s � t . There is a ∈ AJRS such that s = tpa. It suffices to

show that AM 
 π+
t (a) → σ−

t (a). Let s ≤ u and let f be an endomorphism such
that u = tp f (a) and AM 
 π+

t ( f (a)). Then by supposition, u 6= t and therefore there
is an atomic formula δ such that (¬δ) ∈ t and AM 
 δ( f (a)). So AM 
 σ−

t ( f (a)).
�

Let t ∈ |C(x)|. We write ρ−
t or ρ−

t (x) for∧
u(π

+
u → σ−

u ),
where

∧
ranges over all u such that t+ ⊆ u+ but t 6≤ u. An empty conjunction is

identified with >. We write ρ+
t or ρ+

t (x) for π+
t ∧ ρ−

t .

Lemma 4.4 Let t ∈ |C(x)|. Then t̂ = Jρ+
t (x)K. So all open subsets of C(x) are

definable.

Proof To show t̂ ⊆ Jρ+
t (x)K, it suffices to show t ∈ Jρ+

t (x)K. Obviously,
t ∈ Jπ+

t (x)K. Let u be such that t+ ⊆ u+ and t � u. Then, by Lemma 4.3,
t ∈ Jπ+

u (x) → σ−
u (x)K. And thus t ∈ Jρ+

t (x)K.
Conversely, suppose v ∈ Jρ+

t (x)K. There is a ∈ AJRS such that v = tpa. Then
AM 
 ρ+

t (a). So AM 
 π+
t (a) and t+ ⊆ tp+

a . Let u be such that t+ ⊆ u+ and
t � u. Then AM 
 π+

u (a) → σ−
u (a). By Lemma 4.3, tpa 6= u. Thus t ≤ tpa = v.

The second claim follows from the fact that all open sets are finite unions of
sets t̂ . �

An open subset U is called prime if whenever U is the union U = V ∪ W of two
open subsets, then U = V or U = W . A prime open subset has depth n if there is a
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sequence of prime open subsets U0 ⊆ U1 ⊆ · · · ⊆ Un such that Ui 6= Ui+1 for all
i and Un = U , but there is no longer sequence with these properties. So the empty
subset has depth 0. The following is now obvious.

Lemma 4.5 In C(x), each open subset equals a finite union of prime open subsets.
A nonempty open subset is prime if and only if it is of the form t̂, for some t ∈ |C(x)|.

Proof All open subsets in the poset topology are finite unions of sets of the form
t̂ , so it suffices to prove that sets t̂ are prime. This is immediate since t̂ ⊆ U is
equivalent to t ∈ U . �

Corollary 4.6 Over 0M, every quantifier-free formula ϕ is equivalent to formula∨
{ρ+

t : t ∈ JϕK}.

Proof Immediate from Lemmas 4.5 and 4.4. �

Lemma 4.7 For all formulas ϕ(xxn), and for all t ∈ C(xxn), 0M includes the
sentence,

∀xxn(ϕ ∧ ρ+
t → (σ−

t ∨ ∀xn(ρ
+
t → ϕ))).

Proof Fix ϕ, t ∈ C(xxn) and a, b ∈ AJRS and suppose AM 
 ϕ(ab) ∧ ρ+
t (ab).

If AM 
 σ−
t (ab) then we are done, so suppose not. Then t = tpab. We need to

show that for arbitrary c ∈ AJRS and endomorphism f , if AM 
 ρ+
t ( f (a)c) then

AM 
 ϕ( f (a)c). Fix such an element c and endomorphism f . Then tp f (a)c ∈ t̂ by
Lemma 4.4. So tpab ≤ tp f (a)c and there is a morphism g such that tpg(ab) = tp f (a)c.
By the first supposition, AM 
 ϕ(g(ab)). By Fraïssé homogeneity, there is an auto-
morphism h such that h(g(ab)) = f (a)c, so AM 
 ϕ( f (a)c). �

We are now ready to prove our main result.

Theorem 4.8 Theory 0M admits quantifier elimination.

Proof We eliminate quantifiers from formulas of the form ϕ ∧ θ where θ is
quantifier-free (we recover all formulas by letting θ be >). By Corollary 4.6, θ is
equivalent to a formula of the form

∨
t∈S{ρ+

t } for some set S ⊆ |C(x)|. Thus, each
ϕ ∧ θ is equivalent to

∨
t∈S{ϕ ∧ ρ+

t }. So it suffices to eliminate quantifiers from
formulas of the form ϕ ∧ ρ+

t , where t ∈ S. Fix such a formula, and proceed by
induction on the depth of Jρ+

t K and the number of free variables of ϕ.
Given ϕ ∧ ρ+

t , if we have no free variables in ϕ, then by Theorem 3.1, ϕ ∧ ρ+
t

is equivalent to a quantifier-free formula (namely, ρ+
t or ⊥). Otherwise, apply

Lemma 4.7. There are two cases.
In the first case, we get ϕ ∧ ρ+

t ∧ σ−
t . As above, we use Corollary 4.6 to

rewrite ϕ ∧ (ρ+
t ∧ σ−

t ) as
∨

u∈R(ϕ ∧ ρ+
u ) for some set R ⊆ |C(x)|. Since∨

u∈R ρ
+
u → (ρ+

t ∧ σ−
t ), each ρ+

u implies ρ+
t . By Lemma 4.2, for each u ∈ R,

Jρ+
u K ⊆ Jρ+

t K. Likewise, since each ρ+
u implies σ−

t , Jρ+
u K ⊆ Jσ−

t K. By Lemma 4.5,
each Jρ+

u K is prime, and therefore Jρ+
u K ⊆ JδK for some atom δ found in σ−

t . So
Jρ+

u K 6= Jρ+
t K. By our inductive hypothesis on depth, each ϕ ∧ ρ+

u is equivalent
to a quantifier-free formula, and therefore ϕ ∧ ρ+

t is equivalent to a quantifier-free
formula.
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In the second case, we get ϕ ∧ ρ+
t ∧ ∀xn(ρ

+
t → ϕ), which is equivalent to

∀xn(ρ
+
t → ϕ)∧ρ+

t . By the inductive hypothesis on free variables, this is equivalent
to a quantifier-free formula. �

As a corollary we get the following.

Theorem 4.9 Let ϕ(x) be a formula. Over 0M, ϕ is equivalent to a disjunction of
formulas ρ+

t with t ∈ |C(x)|. If 0JRS is morphism homogeneous, then ϕ is equivalent
to a disjunction of conjunctions of atoms π+

t , with t ∈ |C(x)|.

Proof The first claim is immediate from Corollary 4.6 and Theorem 4.8. If 0JRS
is morphism homogeneous, then for each t , 0M ` π+

t ↔ ρ+
t . So every quantifier-

free formula ϕ is equivalent to
∨

{π+
t : t ∈ JϕK}, and therefore to a disjunction of

conjunctions of atoms. �

As an illustration of Theorem 4.9 in the presence of morphism homogeneity, see the
quantifier elimination results about the two theories in [10].

5 The Universal Fragment of 0M

Every classical model complete theory is uniquely determined by its universal frag-
ment. Given the universal fragment, one can recover the model companion as the
largest inductive theory preserving this universal fragment. As a start to a general-
ization of this process to intuitionistic theories, we find the universal fragments of
our intuitionistic theories that admit quantifier elimination. We first need to explain
what we mean by an intuitionistic universal sentence. The definition is motivated by
Theorem 5.1 below; see also [6].

Recall that a Kripke model is essentially a functor A from a (small) category A
to the category of classical L-structures and morphisms. That is, to each i in |A|

we assign a classical structure Ai , and to each arrow f : i → j in A we assign a
morphism A f : Ai → A j . We define “Kripke submodel” by A ⊆ B if and only if
A ⊆ B as categories, and all morphisms and node structures of A are restrictions of
the corresponding morphisms and node structures of B. A sentence is universal if it
can be built from the atoms using the operations ∧, ∨, →, and ∀, with the restriction
that no implications or universal quantifications occur in negative places.

Theorem 5.1 An intuitionistic theory 1 is axiomatizable by universal sentences if
and only if its class of Kripke models is closed under Kripke submodels.

Proof Immediate from [6], Theorem 4.1. �

Note that in the absence of Excluded Middle, not every quantifier-free formula is
equivalent to a universal formula. Therefore, the following is an addition to Theo-
rem 4.9.

Theorem 5.2 Let ϕ(x) be a formula. Over 0M, ϕ is equivalent to a quantifier-free
universal formula.

Proof This easily follows from Theorem 4.9 since each ρ+
t is a universal formula.

�

Next, we axiomatize the universal fragment of 0M.

Lemma 5.3 Let t ∈ |C(x)|. Then 0M includes universal sentence ∀x(π+
t →

(σ−
t ∨ ρ−

t )).



290 B. Ellison, J. Fleischmann, D. McGinn, and W. Ruitenburg

Proof Fix a ∈ AJRS and suppose that AM 
 π+
t (a). If AM 
 σ−

t (a), we are done,
so suppose AM 1 σ−

t (a). Then t = tpa. Suppose we have endomorphism f and
u ∈ C(x) such that t+ ⊆ u+, t � u, and AM 
 π+

u ( f (a)). Since t � u, u 6= tp f (a).
So AM 
 σ−

u ( f (a)). �

Lemma 5.4 Let t /∈ |C(x)|. Then 0M includes universal sentence ∀x(π+
t → σ−

t ).

Proof Fix a ∈ AJRS and suppose that AM 
 π+
t (a). Since AJRS 6|H πt (a), we have

AJRS |H σ−
t (a). So AM 
 σ−

t (a). �

Note that the sentences ∀x(π+
t → σ−

t ) from Lemma 5.4 axiomatize the universal
fragment of the classical theory 0JRS. Since these sentences are geometric, the fol-
lowing well-known result applies.

Lemma 5.5 Let B be a Kripke model and ϕ a geometric sentence. Then B 
 ϕ if
and only if for each node k ∈ |B|, node structure Bk |H ϕ.

The schemas from Lemmas 5.3 and 5.4 suffice.

Theorem 5.6 The axiom schemas
∀x(π+

t → σ−
t ) for all x and t /∈ |C(x)|, and

∀x(π+
t → (σ−

t ∨ ρ−
t )) for all x and t ∈ |C(x)|

together axiomatize the universal fragment of 0M.

Proof Let 1 be the set of all universal sentences described above. Let B 
 1
be a Kripke model. By [12], Theorem 2.6.8, and because L is countable, we may
suppose that B is a tree (poset) of height ω, and for all i ∈ |B| the domain of the
node structure Bi is at most countable. Let r ∈ |B| be the root of B. We construct a
rooted Kripke model D with root r such that B ⊆ D and D 
 0M.

First we construct an intermediate rooted Kripke model C with C = B,
Bi ⊆ Ci ∼= AJRS for every i ∈ |C|, and C f � Bi = B f for every f : i → j
in C. The construction is by induction on the height of C. Let Cr = AJRS. By
Lemmas 5.4 and 5.5, every node structure Bi is a model of (0JRS)∀. So up to
isomorphism, Bi ⊆ AJRS for every i ∈ |B|. So without loss of generality, we
may suppose that Br ⊆ Cr . Now suppose that Ci is defined for some i ∈ |C|,
with Bi ⊆ Ci ∼= AJRS. Let j ∈ |C| be any immediate successor of i , and let
f : i → j be the unique arrow from i to j in C. Without loss of generality,
we may suppose that B j ⊆ Ci . We claim that there exists a C j ∼= AJRS such
that B j ⊆ C j , and a morphism C f : Ci → C j such that C f � Bi = B f .
Let L∗ be the language L extended by a new function symbol f ∗, and let
2 = Thc(Ci )∪ { f ∗(b) = B f (b) : b ∈ Bi } ∪ (Thc(Ci )∩ At(Ci ))[c/ f ∗(c), c ∈ Ci ],
where Thc(Ci ) is the theory of the classical model Ci over the language L(Ci ). Let
20 be any finite subset of 2. Then

20 ⊆ Thc(Ci ) ∪ { f ∗(b) =

B f (b) : b ∈ b} ∪ (Thc(Ci ) ∩ At(Ci ))[c/ f ∗(c), c ∈ Ci ],

for some finite b ⊆ Bi . Obviously, t = tpb is consistent with 0JRS. Let
u = tpB f (b). Then, since B f is a morphism, we have t+ ⊆ u+. Assume
t 6≤ u. Then B 
 ∀x(π+

t → (σ−
t ∨ (π+

u → σ−
u ))). Since i 
B π+

t (b), we
have i 
B σ−

t (b) ∨ (π+
u (b) → σ−

u (b)). Since Bi |H πt (b), we have i 6
B δ(b),
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for every ¬δ ∈ t . So i 6
B σ−
t (b). So we must have i 
B π+

u (b) → σ−
u (b).

Since B f is a morphism, we have j 
B π+
u (B f (b)). By the definition of forcing,

j 
B σ−
u (B f (b)). So j 
B δ(B f (b)) for some ¬δ ∈ u. So B j |H δ(B f (b)) for

some ¬δ ∈ u. Contradiction. So t ≤ u. So there is an endomorphism f ∗
: Ci → Ci

such that f ∗ � b = B f � b. Let C∗

i be the expansion of Ci to L∗ where f ∗ is inter-
preted as this endomorphism. Then C∗

i |H 20. So by compactness, 2 is consistent.
Let C∗

j be a countable model of2, and let C j be the L-reduct of C∗

j . Then Ci � C j ,
and f ∗

: Ci → C j is a morphism such that f ∗ � Bi = B f . (Note that f ∗ is a total
function on C j , but it is only a morphism on Ci ⊆ C j .) Set C f = f ∗. Since AJRS
is the unique model of 0JRS of size less than or equal to ω, we have C j ∼= AJRS. So
the claim is proven. This completes the construction of C. Clearly, B ⊆ C.

Let D be the extension of C generated by adding for each i ∈ |C| all possible
morphisms from Ci to itself. Then for all ϕ ∈ L(AJRS) we have D 
 ϕ if and only
if AM 
 ϕ, by a straightforward induction on the complexity of ϕ. So D 
 0M.
Also B ⊆ D. So by Theorem 5.1, B forces the universal fragment of 0M. So 1
axiomatizes the universal fragment of 0M. �

Appendix A Kripke Models of Classical Logic

It is well known that Kripke models satisfy classical logic exactly when all mor-
phisms between node structures are elementary embeddings. See [11], p. 110, for
one direction. For the reader’s convenience, we include a full proof. Recall that clas-
sical predicate logic CQC is axiomatizable over intuitionistic logic by the schema
∀x(ϕ(x) ∨ ¬ϕ(x)).

Theorem A.1 Let A be a Kripke model. Then the following are equivalent:
1. For all arrows f : k → m of A, morphism A( f ) is an elementary embedding.

That is, for all L(Ak) sentences ϕ(a),
Ak |H ϕ(a) if and only if Am |H ϕ(a) f .

2. For all nodes k ∈ |A|, and every sentence ϕ in L,
CQC `c ϕ implies k 
 ϕ.

3. For every node k and for every sentence ϕ(a) in L(Ak) we have
Ak |H ϕ(a) if and only if k 
 ϕ(a).

Proof

(2) ⇒ (3) We proceed by induction on the complexity of sentences. (3) holds for all
atomic sentences, while the induction steps for existential statements, conjunctions,
and disjunctions all follow directly from the definitions.

Given a node k, suppose Ak |H ψ → θ , where (3) holds for ψ and θ . If Ak |H ψ ,
then Ak |H θ . By the inductive hypothesis, k 
 θ , and so k 
 ψ → θ . Otherwise,
Ak 6|H ψ . Then by the inductive hypothesis, k 1 ψ . By (2), k 
 ψ∨¬ψ , so k 
 ¬ψ .
So k 
 ψ → θ .

Now suppose that k 
 ψ → θ , where (3) holds for ψ and θ . If Ak |H ¬ψ , then
Ak |H ψ → θ trivially. Otherwise, Ak |H ψ . By the inductive hypothesis, k 
 ψ , so
k 
 θ . By the inductive hypothesis again, Ak |H θ . So Ak |H ψ → θ .

Suppose Ak |H ∀xψ(x), where (3) holds for ψ(a), for all a ∈ Ak . Then,
Ak |H ψ(a) for all a ∈ Ak . By the inductive hypothesis, k 
 ψ(a) for all a ∈ Ak .
Assume k 1 ∀xψ(x). Then there exists f : k → m where m 1 ψ f (b), for
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some b ∈ Am . By (2), m 
 ψ f (b) ∨ ¬ψ f (b), so m 
 ¬ψ f (b). Therefore,
m 
 ∃x¬ψ f (x). Now k 
 ∃x¬ψ(x) or k 
 ¬∃x¬ψ(x) (again by (2)). The latter
cannot hold, since m 
 ∃x¬ψ f (x), so k 
 ∃x¬ψ(x). So, k 
 ¬ψ(a) for some
a ∈ Ak , a contradiction. Thus, k 
 ∀xψ(x).

Finally, suppose k 
 ∀xψ(x). So k 
 ψ(a) for all a ∈ Ak . By the inductive
hypothesis, Ak |H ψ(a) for all a ∈ Ak . So Ak |H ∀xψ(x).

(3) ⇒ (2) If CQC `c ϕ, then B |H ϕ for all classical models B. Thus, given a
node k, and a sentence ϕ proven by CQC, we have Ak |H ϕ. By (3), k 
 ϕ, proving
(2).

(3) ⇒ (1) Let f : k → m, and suppose Ak |H ϕ(a). By (3), k 
 ϕ(a), and so
m 
 ϕ(a) f . By (3) again, Am |H ϕ(a) f .

(1) ⇒ (3) We again proceed by induction on the complexity of sentences. By the
definition of forcing, (3) always holds for atomic sentences, and the inductive steps
for conjunctions, disjunctions, and existential statements are easy.

Suppose Ak |H ψ → θ . Let f : k → m be a morphism such that m 
 ψ f . By
the inductive hypothesis, Am |H ψ f . By (1), Am |H ψ f

→ θ f , hence Am |H θ f .
By the inductive hypothesis, m 
 θ f , so k 
 ψ → θ .

Suppose k 
 ψ → θ . If Ak |H ψ then, by the inductive hypothesis, k 
 ψ . Then
k 
 θ , so by the inductive hypothesis again, Ak |H θ . Thus, Ak |H ψ → θ .

Suppose Ak |H ∀xψ(x), with (3) holding for ψ f (b), for all b ∈ Am , where m is a
node with morphism f : k → m. Given such an f , by (1) we have Am |H ∀xψ f (x).
Then, for all a ∈ Am , Am |H ψ f (a). By the inductive hypothesis, for every a ∈ Am
we have m 
 ψ f (a). As f is arbitrary, we have that k 
 ∀xψ(x).

Finally, suppose k 
 ∀xψ(x). Then for all a ∈ Ak we have k 
 ψ(a). By the
inductive hypothesis, Ak |H ψ(a) for all a ∈ Ak . So Ak |H ∀xψ(x). �
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