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Common Knowledge of Rationality
in Extensive Games

Boudewijn de Bruin

Abstract We develop a logical system that captures two different interpreta-
tions of what extensive games model, and we apply this to a long-standing debate
in game theory between those who defend the claim that common knowledge
of rationality leads to backward induction or subgame perfect (Nash) equilib-
ria and those who reject this claim. We show that a defense of the claim à la
Aumann (1995) rests on a conception of extensive game playing as a one-shot
event in combination with a principle of rationality that is incompatible with it,
while a rejection of the claim à la Reny (1988) assumes a temporally extended,
many-moment interpretation of extensive games in combination with implausi-
ble belief revision policies. In addition, the logical system provides an original
inductive and implicit axiomatization of rationality in extensive games based on
relations of dominance rather than the usual direct axiomatization of rationality
as maximization of expected utility.

1 Introduction

There is wide disagreement between game theorists and logicians about the epis-
temic foundations of the solution concept of backward induction or subgame perfect
(Nash) equilibrium. The disagreement centers on the question whether or not com-
mon knowledge of rationality leads to backward induction. Aumann [2; 3; 4] argues
in favor of this claim, while related but weaker claims have been defended by Broome
and Rabinowicz [16], and Rabinowicz [33]. Reny [34; 35] argues against the claim,
and related claims have been defended by Basu [8], Ben-Porath [9], Bicchieri [11],
Binmore [12], Clausing [20], and Stalnaker [39].

The purpose of this paper is not to substantiate one line of argument or another.
Rather, by analyzing the logical form of the arguments à la Aumann [2] and à la
Reny [34], we point out that important modeling assumptions have been overlooked.
We have devised a logical formalism that captures two different interpretations of
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what extensive games in fact model: they are models of one-shot forms of strategic
interaction or of many-moment forms of interaction.

The first main claim of this paper is that the argument a la Aumann [2] assumes
the one-shot interpretation in combination with a principle of rationality that is in-
compatible with it. The second main claim is that the argument à la Reny [34]
assumes the many-moment interpretation in combination with implausible belief re-
vision policies.

From a game theoretic point of view, the originality of the approach outlined
here inheres in its espousal of two interpretations of extensive game play, in the
formalization of these interpretations and in laying bare assumptions the relevance of
which to arguments about backward induction and common knowledge has hitherto
gone unnoticed.

From a logical point of view, the originality of our approach lies in offering a new
way to formalize game theoretic rationality. Whereas in our formalization of the
argument à la Reny [34] we adopt the standard treatment in terms of expected utility
maximization, in our formalization of the argument à la Aumann [2] we present an
inductive and implicit axiomatization of rationality. To our knowledge, this is the
first time this has been done.

To put it slightly imprecisely, the thrust of this paper is not so much to prove new
theorems but rather to disentangle new assumptions underlying old results. We show
the logician how to put to use his or her formalism in other fields, and we show
the game theorist how to shed light on his or her formalism with greater degrees of
precision.

An important earlier comparative study is that of Halpern [26]. The difference
from the present analysis is that Halpern compares Aumann [2] with Stalnaker [38]
rather than with Reny [34]. Moreover, Halpern does not distinguish between one-
shot and many-moment interpretations of extensive game play, and he does not give
an inductive and implicit axiomatization of rationality. Relevant general references
in the logic and games literature include Aumann [5], Baltag [6], van Benthem [10],
Bonanno [13; 14], Feinberg [23; 24], Kaneko [27], Pauly [30; 31], Pietarinen [32],
and Wolter [41].

Section 2 of this paper gives a brief survey of game theoretic and logical notational
conventions (some familiarity with game theory and epistemic logic is assumed).
Section 3 deals with the one-shot interpretation, while Section 4 treats the many-
moment interpretation. Both sections first introduce the interpretation before going
on to explore the necessary axioms. The relevant theorem is stated and proved, and,
finally, we turn to a discussion. Conclusions are presented in Section 5.

2 Notation

2.1 Game theory An extensive (form) game 0 with perfect information and play-
ers from I is based on a finite tree (X,≺, ρ) where ρ is the root or starting point of
the game and ≺ a strict (irreflexive and transitive) partial ordering of the nodes such
that ρ ≺ x for all x 6= ρ. The inverse is written �. Nodes x without y � x are called
terminal nodes.

The depth d(x) of a node x is roughly the maximum number of edges connecting
x with a terminal node; roughly, for an inductive definition, would be more precise.

A player function ι associates all nonterminal or decision nodes D with elements
from I indicating which nodes are within a player’s control.
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Utility functions ui : X\D → R are used to represent the players’ von Neumann
and Morgenstern preference orderings. An extensive game 0 is called generic when-
ever all ui are injective.

A strategy of player i is a function mapping all his decision nodes to immediate
successors. That is, a function s : ι−1(i) → X such that x ≺ s(x) but x ≺ y ≺ s(x)
for no y. In general, we use the term strategy for the function s on ι−1(i) (a function
defined on all decision nodes of player i) and restrict the use of the term action to
the restriction of s to one single decision node of player i .

The subgame generated by x is simply the game based on the tree generated by x
with the obvious restrictions for the player function and the utility functions. If 0 is
an extensive game, the subgame generated by some decision node x is written 0x .

The normal form nf (0) of an extensive game 0 is a triple (I, (Si )i , (vi )i ) where I
collects the set of players of 0, Si all strategies player i has in 0, and vi :

∏
i Si → R

are utility functions such that

vi (s1, . . . , si , . . . , sN ) = ui (O(s1, . . . , si , . . . , sN )),

where O is a function mapping a tuple of strategies to the terminal node of the
extensive game that is reached when the players play according to these strategies.
We shall write ui (s, t) for vi (O(s, t)). If nf (0) = (I, (Si )i , (vi )i ), and if X1, X2,
and so on, are sets of strategies satisfying X i ⊆ Si for all i ∈ I, then the subspan
of nf (0) with respect to

∏
i X i is the triple (I, (X i )i , (vi |X i )i ) obtained from nf (0)

by removing for all i the strategies in the complement of X i (with respect to Si ) and
modifying the utility functions correspondingly.

We write nsd0i (X1, . . . , X N ) for the strategies that are not strictly dominated (in
other words, strictly undominated) for player i in the subspan of nf (0)with respect to∏

i X i , that is, strategies for which there is no strategy in X i which does strictly better
against any combination of opponents’ strategies. We are in general interested in
dominance relations in subspans of the normal form of subgames of some underlying
game, that is, in constructs of the form nsdx

i (X1, . . . , X N ), where X i ⊆ Si . To
compute such sets (the idea is simpler than the construction), consider the subgame
0x of 0 generated by x , construct its normal form nf (0x ), delete from nf (0x ), for all
j , the strategies not coinciding on 0x with any strategy from X j , find out which of
the remaining strategies in the resulting subspan of nf (0x ) are strictly undominated,
and then take all strategies from Si coinciding on 0x with such a strictly undominated
strategy. For weak dominance, we define nwdi and its relativizations similarly.

The set containing the strategies coinciding with the backward induction strategy
on the subgame generated by x is written BIxi . Assuming that the extensive game
is generic in the sense that no player is indifferent between any two terminal nodes,
BIxi contains all strategies prescribing the uniquely optimal action at x if x is an
immediate predecessor of a terminal node. Reasoning downward to the root of the
game, BIzi collects all strategies prescribing the uniquely optimal action at decision
node z under the assumption that at decision nodes y � z higher up in the game tree
i plays according to BIy . Clearly, BIρi is a singleton also written BIi . For terminal
nodes x we use the convention that BIxi = Si .

2.2 Logic The logical symbols used are negation and the connectives
(
where

∧(∨)
is used for large conjunctions (disjunctions)

)
, epistemic operators Ki (knowl-

edge of player i), EI (knowledge of every player i ∈ I ), and CI (common knowledge
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among all players i ∈ I). We often write X for
∨

X whenever X is a set of propo-
sitional formulas for strategies, using the term propositional formula throughout as
a relatively neutral term lacking the connotation of atomic proposition or prime for-
mula that the term proposition letter may carry (see Barwise [7], p. 23).

Epistemic operators with superscript x for decision node x appear in the many-
moment interpretation, as do probabilistic doxastic operators Px

i (ϕ) = pk , for knowl-
edge and probabilistic beliefs of player i at the decision moment at which decision
node x is reached, with, in principle, uncountably many symbols pk .

Nonlogical symbols include propositional formulas ik (player i plays his kth strat-
egy), ixk (player i plays according to his kth strategy in the subgame generated by x),
and ik(x) (player i plays, at x , the action prescribed by his kth strategy).

When writing about utility we use constructs of the form ui (k, l) = r (the utility
to player i of playing his kth strategy against opponent strategy l is r ), with, in
principle, uncountably many symbols r, and ux

i (k, l) = r (the utility to player i of
playing his kth strategy in the subgame generated by x against opponent strategy l is
r ). For our purposes it is entirely harmless to assume an uncountable language.

For various rationality principles we use propositional formulas Nratxi (player i
is rational, in the subgame generated by x , at all reached decision nodes; on-path
rationality, see below), Frati (player i is rational, in all subgames of the game and
at all decision nodes, reached or unreached; off-path rationality, or rationality in
Aumann’s sense, see below), and Rratxi (player i is rational, in the subgame generated
by x , in Reny’s sense), with primed variants.

The prime formulas p of the formalism are, then, of the forms ik , i x
k , ik(x),

ui (k, l) = r , ux
i (k, l) = r , Nratxi , Frati , and Rratxi , and the well-formed formulas

are derived from them in the usual manner:

ϕ : = p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | EIϕ | CIϕ | Pi (ϕ) = q.

We use nsdi (X1, . . . , X N ), nwdi (X1, . . . , X N ), and BIi , and superscripted variants
for subgames, for the sets of the obvious propositional formulas of strategies (and,
with the above convention, for the disjunctions of their elements).

Standard doxastic and epistemic axioms are used with usual abbreviations K, T,
D, 4, 5. For common knowledge, the C axiom is CIϕ ↔ EI(ϕ ∧ CIϕ). Stan-
dard axioms for linear (in)equalities, axioms fixing the Kolmogorov interpretation of
probability theory, and axioms inter-relating probabilistic and nonprobabilistic be-
liefs are needed (Fagin and Halpern [22]). In particular, we need the following two
axioms:

Cons �iϕ ↔ Pi (ϕ) = 1.
KnProb Pi (ϕ) = q → �i Pi (ϕ) = q .

The proof rules of modus ponens and necessitation are standard. For common knowl-
edge, the rule of induction is

If ` ϕ →

∧
i∈I

Ki (ϕ ∧ ψ), then ` ϕ → CIψ.

3 One-Shot Interpretation

The mathematical differences between normal form games and extensive games
strongly suggest that the former model situations of simultaneous and independent
choice while the latter model temporally extended situations of sequential choice.
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But are we forced to adopt such a perspective? The one-shot interpretation agrees
with the founding fathers of game theory in answering this question negatively: play-
ing an extensive game is playing its normal form, because extensive form and normal
form are “strictly equivalent” (von Neumann and Morgenstern [40], p. 85). That is,
whenever players play an extensive game, what they really do is choose, at one point
in time, their strategies for the entire game (Fudenberg and Tirole [25], p. 85; Os-
borne and Rubinstein [29], pp. 94–95).

This does not completely determine a unique one-shot interpretation though.
There is room for disagreement about the relevant kind of rationality principles, for
one could decide to invoke some aspects of the sequential structure of the game to
ascertain whether a strategy is rational or not. A strategy maps all decision nodes of
a player to actions. But choosing, for some decision node, one action over another
implies that certain decision nodes will not be reached. Or, in a vocabulary that is
more in line with the one-shot interpretation, the action prescribed by the strategy at
such decision nodes will not influence the outcome of the game.

To capture the differences, a strategy is called on-path rational whenever the ratio-
nality depends only on what happens on the actual path through the extensive game;
it is called off-path rational if it prescribes rational actions at every decision node,
reached or unreached.

Aumann [2] asserts that

each player chooses a strategy, in the usual game theoretic sense of the
term. . . ; that is, he decides what to do at each of his vertices x in the game
tree, whether or not x is reached. (Aumann [2], p. 7, notation changed)

This seems to demonstrate that he adopts a one-shot conception of extensive game
play. Yet he also writes that “when deciding what to do at x , the player considers the
situation from that point on: he acts as if x is reached” (Aumann [2], p. 7, emphasis
his, notation changed). He concludes that

it is this feature that distinguishes the current analysis from a strategic [i.e.,
normal] form analysis. (Aumann [2], p. 7)

If we attribute to Aumann the one-shot interpretation and also accept this con-
clusion, then, contrary to what we suggested earlier, there seems to be a difference
between the one-shot interpretation and playing the normal form of an extensive
game. But there is no inconsistency. When we define the one-shot interpretation in
terms of normal form game play, we focus on the objects of choice. According to
the one-shot interpretation, the objects of choice of an extensive game are in fact the
strategies of its normal form.

And Aumann agrees. When he goes on to contrast his view with the strategic
form analysis he is in fact concerned with rationality principles, not with objects of
choice. For Aumann, to evaluate the rationality of a strategy one has to go beyond
the information of the normal form and inspect the prescriptions of the strategy at
all decision nodes of the underlying extensive game. That is, he adopts a one-shot
interpretation of extensive game play with an off-path conception of rationality. This
is underscored by his statement that a rational player,

no matter where he finds himself—at which vertex—[,]. . . will not knowingly
continue with a strategy that yields him less than he could have gotten with a
different strategy. (Aumann [2], p. 7)

Or, in alternative wording,
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For each of his vertices x and strategies k, it is not the case that [player]
i knows that k would yield him a higher conditional payoff at x than the
strategy he chooses. (Aumann [2], p. 10, notation changed)

All in all, Aumann adopts a one-shot interpretation with off-path rationality. This is
the same as playing normal form games as far as the objects of choice are concerned.
But it is different with respect to the rationality principle.

3.1 Axioms To capture the one-shot interpretation in formal terms, the following
axioms are used, given an extensive game with perfect information 0:

Strat≥1
∧

i
∨

k ik .

Strat≤1
∧

i
∧

k 6=l ¬(ik ∧ il).

KnStrat
∧

i
∧

k(ik ↔ Ki ik).

Sub1
∧

i
∧

k(i
x
k ↔

∨
l∈D il) where D contains the indices of the

strategies coinciding with k on the subgame generated by x .

Sub2
∧

i
∧

k(ik(x) ↔
∨

l∈D il) where D contains the indices of the
strategies coinciding with k on decision node x .

UtSub
∧

i
∧

k,l,m,n(u
x
i (k,m) = ux

i (l, n))whenever i’s kth and lth, and
j’s mth and nth, strategies coincide on the subgame generated
by x .

The first three axioms establish that players have to pick exactly one strategy and that
they have to know what they do. Sub1 states that the use of a superscript does indeed
involve the restriction of some strategy to the relevant subgame; Sub2, that function
notation is used to talk about the action taken at some decision node; UtSub, that the
superscript works well when applied to utility functions. Although these axioms are
not very interesting in themselves, they are necessary to determine what it is to play a
game. Without them, players could refuse to act or choose more than one strategy or
act unknowingly and so on. That is, these axioms are simply there to fix the meaning
of some of the propositional formulas of our formal system.

Similarly fixing the meaning of propositional formulas, but more interesting in
itself, is our way of formalizing on-path and off-path rationality. The originality of
our approach is not to axiomatize rationality in terms of expected utility maximiza-
tion, but rather inductively and implicitly by means of the following three axioms,
phrased, without loss of generality, for two players i and j 6= i :

NRatbas Nratxi → nsdx
i (Si , S j ).

NRatind (Nratxi ∧ Ki X i ∧ Ki X j ) → nsdx
i (X i , X j ).

FRat Frati ↔
∧
ρ�x Nratxi .

These axioms need some explanation. First a preliminary remark about applying
on-path rationality to subgames: In the one-shot interpretation, objects of choice,
strategies, are always functions mapping all decision nodes of a player to actions.
Beliefs, then, are beliefs about which such strategies opponents will choose. How-
ever, it makes perfect sense to speak about the on-path rationality of a strategy in any
subgame, for one can consider the restriction (to the subgame) of a strategy and eval-
uate its rationality as a course of action in the subgame in the light of the restrictions
(to the same subgame) of the strategies one expects one’s opponents to play. It is this
idea that is captured in the first two axioms.
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What it is rational to do often depends essentially on one’s beliefs, but not always.
The first axiom captures the base case without beliefs. It states that player i , if on-
path rational in the subgame 0x generated by x , will never choose a strategy which
prescribes bad actions independently of what his opponents play: if player i is on-
path rational in 0x , he will not choose any strategy of which the restriction to 0x
coincides with a strategy strictly dominated in the normal form of 0x .

The second axiom states that, if he is on-path rational in 0x , player i will never
play a strategy that is strictly dominated in the normal form of 0x from which those
strategies (both of his opponents as well as himself) have been removed that he be-
lieves will not be chosen. The beliefs are represented by sets X i and X j of strategies.
The third axiom, finally, states that player i is off-path rational in the entire game if
he is on-path rational in all of its subgames.

Before turning to the characterization result, we emphasize some of the features
of our inductive and implicit axiomatization of rationality. First, the axioms give nec-
essary conditions for rationality, but no sufficient conditions. While this may seem
a technical drawback of the axiomatization, there is in fact a conceptual reason why
it is impossible to phrase sufficient conditions in terms of the behavior of the play-
ers only as players may be imagined who stumble upon rational actions by accident
rather than by deliberation. That a player obtains the best possible score in a game,
for instance, does not entail he played rationally.

Second, in contrast to the standard way of defining rationality in terms of expected
utility maximization (the route followed in the section on Reny), our approach makes
it easy to reveal procedural aspects of epistemic characterization results. Drawing a
line between a base case without beliefs and an inductive step with beliefs makes it
possible to mimic steps of removing noninductive strategies by steps in the hierarchy
of common knowledge. This becomes very explicit in the inductive character of the
proof of the characterization result.

Third, there is an interesting link to findings from experimental economics (or be-
havioral game theory, to be precise). Many experiments suggest that actual players
only converge to playing backward induction over time (Camerer [19], and refer-
ences therein). An obvious interpretation in terms of our formalism is that it takes
some time for the players to become aware of full inductive reasoning and higher
levels of common knowledge. In other words, they need their time to prove the
characterization result.

Fourth, as we shall see, the present inductive and implicit axiomatization makes
it easy to study variant rationality notions in alternative characterization results.

3.2 Characterization result Given an extensive game with perfect information 0,
let proof system 0KCFrat consist of the following axioms: all propositional tautolo-
gies, K, C, the proof rules modus ponens, necessitation, and induction, all axioms for
one-shot game-playing situations for 0, plus the three rationality axioms presented
above. The claim à la Aumann that common knowledge of rationality leads to back-
ward induction is the following theorem. In fact, since our rendering does not use the
T axiom, the epistemic assumption is better described as common true belief about
rationality.
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Theorem 3.1 Let 0 be a finite generic N-person extensive game with perfect in-
formation. Then, for all decision nodes x,

`0KCFrat (CFrat ∧ Frat) →

∧
i

BIxi .

To prove the theorem we need two lemmas. First, to collect all (propositional formu-
las for) backward induction strategies in any subgame 0x , we take all strategies that
prescribe backward induction actions in all real subgames of 0x and obtain the set⋂

x≺y BIy
i . Some of the strategies in this set, however, do not prescribe the backward

induction action at x , and therefore we restrict attention to those elements for which
there is no strictly better alternative given that all players take backward induction
actions at decision nodes y � x . This is establishes the first lemma.

Lemma 3.2
BIxi = nsdx

i
( ⋂

x≺y

BIy
1, . . . ,

⋂
x≺y

BIy
N
)
∩

⋂
x≺y

BIy
i .

In the formalism proposed, the formula
∧

x≺y
∨

BIy
i states that at any y � x player

i plays according to backward induction (if y is a decision node of his). The in-
tersection

⋂
x≺y BIy

i not being empty (it contains all strategies available to i in 0
that prescribe backward induction actions in 0x ), it is straightforward to observe
that `0KCFrat

∧
x≺y

∨
BIy

i →
∨ ⋂

x≺y BIy
i . With the convention to omit disjunction

symbols in front of sets of propositional formulas, this establishes the second lemma.

Lemma 3.3
`0KCFrat

∧
x≺y

BIy
i →

⋂
x≺y

BIy
i .

We are now ready for the proof of Theorem 3.1.

Proof We prove the result for N = 2 with players i and j 6= i . For more than
two players one only needs to add the relevant conjuncts and to expand nsdx

i to
a function taking three or more arguments. Suppressing the proof system, we have
` Frati → Nratxi by axiom FRat, and the case of d(x) = 1 reduces to axiom NRatbas
with an application of Lemma 3.2. Let d(x) > 1. The inductive hypothesis gives for
every y � x

` (CFrat ∧ Frat) → BIy
i .

Because we are dealing with finite games we can aggregate the proofs for all y � x
and both players i and j into

` (CFrat ∧ Frat) →
( ∧

x≺y

BIy
i ∧

∧
x≺y

BIy
j
)
,

and, applying Lemma 3.3, into

` (CFrat ∧ Frat) →
( ⋂

x≺y

BIy
i ∧

⋂
x≺y

BIy
j
)
.

An application of the necessitation rule for Ki , and the K axiom, together with some
propositional reasoning, yields

` CFrat →
(
Ki

⋂
x≺y

BIy
i ∧ Ki

⋂
x≺y

BIy
j
)
.
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Since, as we saw, ` Frati → Nratxi , we obtain

` (CFrat ∧ Frat) →
(
Nratxi ∧ Ki

⋂
x≺y

BIy
i ∧ Ki

⋂
x≺y

BIy
j
)
.

Applying the NRatind axiom we arrive at

` (CFrat ∧ Frat) → nsdx
i
( ⋂

x≺y

BIy
i ,

⋂
x≺y

BIy
j
)
.

Invoking the inductive hypothesis again, and applying Lemma 3.3, we can make the
consequent of this formula somewhat more precise in

` (CFrat ∧ Frat) → nsdx
i
( ⋂

x≺y

BIy
i ,

⋂
x≺y

BIy
j
)
∩

⋂
x≺y

BIy
i ,

which is
` (CFrat ∧ Frat) → BIxi ,

by Lemma 3.2. �

3.3 Discussion We have presented two varieties of the one-shot interpretation of
extensive game play: one with on-path rationality and one with off-path rationality.
Aumann was seen to adopt the latter version. We do not believe, however, that the
latter version is conceptually consistent. More precisely, we believe that off-path
rationality is strictly incompatible with the true spirit of the one-shot interpretation.

The reason is that there is no sensible rationale behind taking care of what would
happen at unreached, off-path nodes in a situation in which the objects of choice are
strategies from the normal form of an extensive game. In a one-shot situation it just
does not make sense to talk about nodes being reached or not. The game-playing
situation is a strategic predicament in which the players choose a strategy that fixes
a complete plan of action for the entire game. Temporal deliberation is senseless, as
is thinking about players having beliefs at various points in a temporally extended
sequence of decision moments. No nodes are reached or unreached. There is only
one decision moment and the outcome of the game is determined on the basis of the
strategies the players choose at that precise decision moment.

Does the fact that the one-shot interpretation leaves no room for rationality no-
tions that transcend the normal form entail that the epistemic characterization result
of backward induction fails to be significant, or that backward induction cannot be
epistemically characterized in a one-shot interpretation? We answer the first question
affirmatively: there is no sense to any epistemic characterization that presupposes the
one-shot interpretation together with a form of rationality that goes beyond on-path
rationality by using the specific structural properties of extensive games.

The second question, however, need not be answered affirmatively. It is not diffi-
cult to see that once we rephrase the NRat axioms in terms of weak rather than strict
dominance, backward induction can be characterized on the basis of on-path rational-
ity at the root of the game only. Given an extensive game with perfect information 0,
let proof system 0KCNrat′ consist of the following axioms: all propositional tautolo-
gies, K, C, the proof rules modus ponens, necessitation, and induction, all axioms for
one-shot game-playing situations for 0, plus the following two rationality axioms:

NRat′bas Nrat′xi → nwdx
i (Si , S j ).

NRat′ind (Nrat′xi ∧ Ki X i ∧ Ki X j ) → nwdx
i (X i , X j ).
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The claim that common knowledge of rationality in terms of weak dominance leads
to backward induction is the following theorem.

Theorem 3.4 Let 0 be a finite generic N-person extensive game with perfect in-
formation. Then, for all decision nodes x,

`0KCNrat′ (CNrat′ρ ∧ Nrat′ρ) →

∧
i

BIρi .

To prove this theorem, first observe that on the level of the normal form of the exten-
sive game, the relevant solution concept is iterated weak dominance. The actual out-
come of a process of iterative elimination of weakly dominated strategies depends on
the exact definition of the elimination algorithm (Fudenberg and Tirole [25], p. 461).
For our purposes, however, a lemma due to Moulin [28] shows this to be irrelevant.

Lemma 3.5 Let 0 be a finite generic N-person extensive game with perfect infor-
mation, and let nf (0) be its normal form. Then

1. the natural algorithms for iterated weak dominance yield a unique strategy
profile in nf (0);

2. these algorithms all yield the same strategy profile;
3. the strategies from this profile correspond to the backward induction stra-

tegies of 0.

The proof of Theorem 3.4 is, then, a straightforward analogue of the proof of Theo-
rem 3.1.

This is all very well, but it precipitates us into another kind of problem, for the
rationality of weak dominance, as well as the solution concept of iterated weak domi-
nance, are not unproblematic (Asheim and Dufwenberg [1]; Brandenburger, Frieden-
berg, and Keisler [15]; Samuelson [36]). A discussion of the problems falls outside
the scope of this paper. References to alternative attempts to characterize backward
induction in terms of common knowledge are given in Section 1.

Before proceeding, we should mention that we have left undiscussed and un-
formalized the background assumption that the utility functions of the players are
commonly known among them. It is clear that this assumption is necessary for the
characterization result. If, for instance, player i does not know that player j knows
i’s utility structure, player i cannot from knowledge of j’s knowledge about i’s ra-
tionality deduce anything about j’s knowledge about i’s prospective strategy choice.

It would be fairly easy to formalize common knowledge of utility though. An
axiom scheme such as

KnUt
∧

i
∧

k,l(ui (k, l) = r → Ki ui (k, l) = r),
would capture the fact that player i knows what utility he attaches to any terminal
node. Ranging over an (if you wish, finite) set of real numbers including the correct
utilities (that is, including the set {x |ui (k, l) = x for some k, l, i}), the antecedent
ui (k, l) = r turns out true for the utility r that i assigns to O(k, l), while the con-
sequent says that i knows he so assigns utility. In fact, in a critique of the epistemic
characterization of the solution concept studied by Dekel and Fudenberg [21] we
have formalized common knowledge of the fact that players are approximately cor-
rectly informed about their opponents’ utility functions (de Bruin [18]).

For present purposes, however, no analytical clarity would be gained by making
common knowledge of utility explicit in the formalism. The logically and game
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theoretically interesting distinctions here have to do with rationality, not with utility.
That is why we have left common knowledge about utility unformalized.

4 Many-Moment Interpretation

The one-shot interpretation of extensive games deals conceptually with situations
in which players choose a strategy for a sequential strategic decision problem at
one point in time; there is one and only one decision moment at which a strategy
for the entire game is chosen. The many-moment interpretation, by contrast, takes
extensive games as models of a temporal succession of many decision moments; the
objects of choice are actions at decision nodes, not strategies for the entire game.
A different view of the objects of choice brings with it a different view of what the
players’ beliefs and rationality principles are. At every decision moment a player has
beliefs about the future development of the game, which, in principle, may change
over time; moreover, they range over actions, not strategies. Similarly, rationality
principles pertain to actions rather than strategies, and they may change over time,
too.

r r r r
r r r
ρ x1 x2

1 2 1

D1 d1 D2

A1 a1 A2

(1, 0) (0, 2) (3, 0)

(0, 3)

Figure 1 Reny’s Game

Reny [34] clearly adopts the many-moment interpretation, referring to the game
shown in Figure 1:

I claim that if player one does not take the dollar and end the game in the first
round [does not play D1], but instead leaves it so that player 2 must decide
whether or not to take the two dollars [whether or not to play d1], then it is
no longer possible for rationality to be common knowledge. (i.e. At [sic]
player two’s information set, it is not possible for rationality to be common
knowledge). (Reny [34], pp. 364–65)

Such reasoning makes no sense in the one-shot interpretation, according to which no
decision nodes are reached at all. On the contrary, strategies are chosen which may
or may not induce a path through the game tree to reach some decision node. But
it does not make sense to speak about the beliefs or the knowledge of the players
at those decision nodes. The players have beliefs at the moment they choose their
strategy, but the game stops after that.

Reny, by contrast, considers beliefs of a player at some decision moment. Such
beliefs describe the expectations of a player about what actions will be taken at all
decision nodes in the subgame generated by the current decision node. In principle,
the many-moment interpretation would leave two possibilities open. The beliefs
at some decision moment could, first, be viewed as dependent on what happened
before; that is, they would be sensitive to the history of the decision moment in the
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sense, for instance, that a player could decide to believe his opponent to be irrational
if the current decision node can only be reached by the irrational play of his opponent.
Second, the beliefs could be completely insensitive to the history. We shall see that
Reny’s inconsistency result presupposes a history-sensitive view of belief formation.

4.1 Axioms Before presenting the axioms for the many-moment interpretation
we need to set down some notation. Without loss of generality, we consider a two-
person extensive game with players i and j 6= i . Given beliefs Px

i (i
x
k ) = pk and

Px
i (j

x
l ) = pl , first define an auxiliary and admittedly quite strange notion of some-

thing like the expected utility conditional on reaching some immediate successor
y � x as

EUi (y,Px
i ) =

∑
k,l

pkplu
y
i (k, l).

Then define EUi (k, x,Px
i ), the intended interpretation being the expected utility of

playing according to the kth strategy at the decision moment at which node x is
reached, as

EUi (k, x,Px
i ) = EUi (y,Px

i )

for that y that is reached when at x player i plays according to his kth strategy.
To capture the many-moment interpretation formally, the following axioms are

used, given an extensive game with perfect information 0:
Strat≥1

∧
i
∨

k ik .

Strat≤1
∧

i
∧

k 6=l ¬(ik ∧ il).

Sub1
∧

i
∧

k(i
x
k ↔

∨
l∈D il) where D contains the indices of the

strategies coinciding with k on the subgame generated by x .

Sub2
∧

i
∧

k(ik(x) ↔
∨

l∈D il) where D contains the indices of the
strategies coinciding with k on decision node x .

UtSub
∧

i
∧

k,l,m,n(u
x
i (k,m) = ux

i (l, n)) whenever i’s kth and lth,
and j’s mth and nth strategies coincide on the subgame gener-
ated by x .

KnStratM
∧

i
∧

k(ik ↔
∧
ρ�x Kx

i ik).

KnWhere
∧

i Kx
i
∧

j
∨

y≺x,k∈D jy
k where D contains the indices of the

strategies that are consistent with reaching x .
The first five axioms are those axioms from the one-shot interpretation that do not
contain a Ki . The motivation is similar. Let us now turn to the last two axioms.
KnStratM ensures that at every moment during a game, players know what their
choice of strategy is. This is a strong assumption because it entails that they know,
too, what they will choose at every possible future occasion. KnWhere is there to
guarantee that players know, at some decision moment, which decision node has
been reached.

To formalize rationality we need one axiom:
RRat Rratxi ↔

((Kx
i
∧

k,l ux
i (k, l) = ri,k,l∧∧

k Px
i (i

x
k ) = pk∧∧

l Px
i (j

x
l ) = pl∧
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im(x)) →
∧

k EUi (m, x,Px
i ) ≥ EUi (k, x,Px

i )).

This is a straightforward relativization to subgames of the principle of expected util-
ity maximization. The antecedent of the right-hand side contains a condition on
knowledge of the utility structure and on probabilistic beliefs about what player i
himself and his opponent j will play. In the consequent it is stated that i will maxi-
mize his expected utility given his knowledge and beliefs.

As announced, additional axioms are needed to fix the belief formation policies
of the players. First, players do not revise their beliefs during game play as long as
this does not lead to inconsistency:

StratPers
∧

i
∧

j Px
i (j

z
k) = Py

i (j
z
k) for x � y � z.

More precisely, this belief persistence axiom states that if x � y � z, then the beliefs
that player i has at x about the action of his opponent or himself at z will be the same
at y. Of course, if game play has passed z and the beliefs have been contradicted,
then i will have different beliefs. But as long as z has not been reached the beliefs
remain constant.

StratPers concerns beliefs about strategies; RatPers, beliefs about rationality. It
states that a player will never give up his beliefs in someone’s rationality as long as
that person has not moved; in more technical vocabulary, that if i believes at x that j
is rational at some future node y, then i will not change that belief as long as j has
not moved:

RatPers
∧

i
∧

j (K
x
i Rraty

j ↔ Kx
i Rratzj ) where x � y ≺ z, ι(z) = j , and

no u with ι(u) = j exists such that y ≺ u ≺ z.

It is left to the reader to verify that a striking consequence of this is that either i
believes j to be rational everywhere, or nowhere.

4.2 Inconsistency result Given an extensive game with perfect information 0, let
proof system 0KDCPRrat consist of the following axioms: all propositional tau-
tologies, K, D, C, all axioms for linear (in)equalities and probabilistic reasoning, the
proof rules modus ponens, necessitation, and induction, all axioms for many-moment
game-playing situations for 0, plus the three rationality and persistence axioms given
above. Since our rendering does not use the T axiom, the epistemic assumption is
better described as common true belief about rationality.

Theorem 4.1 There is an extensive game with perfect information such that for all
game-playing situations that consist of at least two decision moments there cannot
be common knowledge of rationality at the second decision moment.

Reny’s original proof involves showing that no game-playing situation of the game
shown in Figure 1 can have common knowledge of rationality at its second moment:
every second decision moment would be a moment at which at x1 player 2 has to
move. But as in this game there is no way for both players to play on and gain
(only one will gain from playing on), the suggestion may arise that at the end the
inconsistency result is not very surprising. However, the result holds for games where
both players would gain from playing on, too, and to underscore this we use in
the proof the game shown in Figure 2 rather than Reny’s original game shown in
Figure 1. In fact, Reny’s [35] characterization result reveals that the class of games
for which inconsistency results can be proved is fairly large.
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r r r r
r r r
ρ x1 x2

1 2 1

D1 d1 D2

A1 a1 A2

(1, 0) (0, 2) (3, 1)

(2, 4)

Figure 2 A Centipede Game

Proof We can make use of the two interrelation axioms Cons and KnProb because
all relevant beliefs in this proof are probability one beliefs.

Claim 1 ` Cx1Rratx1 → Kx1
2 Kρ

1 d1.

Proof of Claim 1 It suffices to show

` Cx1Rratx1 → Kρ
1 d1, (1)

because from this a simple argument using the rule of necessitation for Kx1
2 would

finish the proof. Because of the StratPers axiom, however, to prove (1) it suffices to
show

` Cx1Rratx1 → Kx1
1 d1. (2)

To show (2), in turn, we prove

` Cx1Rratx1 → (Kx1
1 Rratx1

2 ∧ Kx1
1 Kx1

2 D2), (3)

and then apply necessitation for Kx1
1 to an instance of the rationality axiom to get

` (Kx1
1 Rratx1

2 ∧ Kx1
1 Kx1

2 D2) → Kx1
1 d1

to finish the proof of Claim 1. The remainder of the proof of Claim 1 is devoted,
then, to showing (3). Clearly we have

` Cx1Rratx1 → Kx1
1 Rratx1

2 .

To prove
` Cx1Rratx1 → Kx1

1 Kx1
2 D2, (4)

observe that with the RatPers axiom for Kx1
2 and necessitation for Kx1

1 it can be
shown that

` Kx1
1 Kx1

2 Rratx1
1 → Kx1

1 Kx1
2 Rratx2

1 ,

because x2 is a successor of x1 at which 1 moves for which in addition no y with
x1 � y � x2 exists at which it is 2’s turn. Hence

` Cx1Rratx1 → Kx1
1 Kx1

2 Rratx2
1 .

Applying the rationality axioms yields (4) concluding the proof of Claim 1.

Claim 2 ` Cx1Rratx1 → Kx1
2 Rratρ1 .

Proof of Claim 2 Easy consequence of the RatPers axiom.
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Claim 3 ` (Kx1
2 Kρ

1 d1 ∧ Kx1
2 Rratρ1 ) → Kx1

2 ¬A1.

Proof of Claim 3 This is straightforward from the rationality axioms plus appropri-
ate application of the rule of necessitation.

Claim 4 ` Cx1Rratx1 → ⊥.

Proof of Claim 4 Because of the KnWhere axiom we have ` Kx1
2 A1. Now we show

that
` Cx1Rratx1 → ¬Kx1

2 A1

to complete the proof. Combining Claim 1 and Claim 2 gives

` Cx1Rratx1 → (Kx1
2 Kρ

1 d1 ∧ Kx1
2 Rratρ1 )

to which application of Claim 3 gives

` Cx1Rratx1 → Kx1
2 ¬A1.

An application of the D axiom finishes the proof of Claim 4, and of the theorem. �

4.3 Discussion Given the game theoretic view of rationality as expected utility
maximization, we should answer not so much the question whether RRat is plausi-
ble, but rather whether the belief persistence principles embodied in StratPers and
RatPers are plausible. We distinguish the plausibility of the principles in general,
and the plausibility of the specific instances in the proof of Theorem 4.1.

The general plausibility of the StratPers axiom first; that is,∧
i

∧
j

Px
i (j

z
k) = Py

i (j
z
k)

for x � y � z. A possible argument in favor of this principle would be this. If
at x player i believes that at some z � x his opponent j will choose action a, say,
then there is no need for i to revise his beliefs at some intermediate y (satisfying
x � y � z, that is) as long as i has not received any contradictory information
on his way from x to y. But information contradicting that j choose a can only
be information that j chooses, at z, an action different from a. Such information i
cannot have received at the intermediate y. So at y player i will not need to revise
his beliefs. Arguably, this yields a defense of StratPers.

Yet this argument overlooks subtle ways of obtaining pertinent information. A
reason for player i’s belief that j will choose a at z may be his belief that at z player
j will choose rationally. If, however, on the path from x to y, player i has seen j
choosing irrationally, this reason is no longer available. Player i might revise his
beliefs in such a way that at z player j will play irrationally, too, and not choose a.

This is a general problem with the StratPers axiom. It completely ignores the fact
that the reasons that one may have for particular beliefs may change over time, and
that consequently one will need to reconsider or even revise one’s beliefs, even if
they are not directly contradicted by observed facts.

Similar arguments work against the general plausibility of the RatPers axiom; that
is, ∧

i

∧
j

(Kx
i Rraty

j ↔ Kx
i Rratzj ),
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where x � y ≺ z, ι(z) = j , and no u with ι(u) = j exists such that y ≺ u ≺ z. For
imagine that only irrational play on the part of j may get him from y to z. Although i
believes, at x , that j will not take that irrational route, it is still questionable whether
i should maintain that even if j plays irrationally he will, at node z, return to playing
rationally.

Now it may of course be that the use of the belief persistence axioms in the proof
of Theorem 4.1 is harmless or unproblematic. Let us, then, see where they are used
in the proof. StratPers is used to prove

` Kx1
1 d1 → Kρ

1 d1

in Claim 1. The general problem that confronts us is clearly revealed. The rea-
sons for the belief Kx1

1 d1 are the beliefs Kx1
1 Rratx1

2 ∧ Kx1
1 Kx1

2 D2. This is so because
` (Kx1

1 Rratx1
2 ∧ Kx1

1 Kx1
2 D2) → Kx1

1 d1 is obtained by necessitation on an instance
of the RRat axiom. But these reasons, although perhaps available at x1, may not be
available at ρ. That is, it may be doubted whether Kρ

1 Rratx1
2 ∧ Kρ

1 Kx1
2 D2.

One way to substantiate doubt would concern the second conjunct. As inspection
of the proof of Claim 1 shows, the reasons for Kx1

1 Kx1
2 D2 involve inter alia (1’s

beliefs about 2’s beliefs about) the rationality of player 1 at x2, or Kx1
1 Kx1

2 Rratx2
1 . The

question whether this may figure as reasons for the beliefs at the root of the game (for
Kρ

1 d1) then boils down to the question whether these reasons were already available
at the root of the game, that is, whether Kρ

1 Kx1
2 Rratx2

1 follows from Kx1
1 Kx1

2 Rratx2
1 .

It may come as an anticlimax that there do not seem to be any serious problems
here. It is about player 1 imagining (at the root and at x1) what player 2 will or
does believe at x1 about player 1 at x2. But player 1 will not have obtained any new
information about player 2’s beliefs (at x1!) while going from the root to x1. At the
root, player 1 imagines player 2’s beliefs at x1. And at x1, player 1 imagines player
2’s beliefs then and there, once again. There is no difference between these cases.
There would have been a difference had the statement compared player 2’s beliefs at
the root with his beliefs at x1. But that is not the issue here. Conclusion: StratPers
causes no harm to the plausibility of the assumptions of Theorem 4.1.

What about RatPers? It is, first, used to prove

` Kx1
1 Kx1

2 Rratx1
1 → Kx1

1 Kx1
2 Rratx2

1 .

One may find this problematic because it involves the rationality of player 1 at a
decision moment when he need not pick an action. But apart from that there do not
seem to be reasons to doubt this line of reasoning. Player 1 does not move at x1,
so player 2, if he believes that 1 is rational at the decision moment corresponding
to x1, has no reason to say that 1 would not be rational at the possible succeeding
decision moment. And player 1 believes all this. An anticlimax again: RatPers is
unproblematic here. RatPers is, however, also used to prove

` Cx1Rratx1 → Kx1
2 Rratρ1 .

And here we find something dubious at the end, for it is here that a belief revision
policy is forced upon player 2 that is rather excessively rigid. It excludes, for in-
stance, sensible dealings with a situation of the following kind. Player 2 has actually
arrived at x1; so player 1 has moved across. Player 2 believes that this was irrational
but he also thinks that it was only an incident or an accident or a mistake. He believes
at x2 that player 1 was irrational at the first decision moment, but he also believes
at x2 that player 1 is rational at the second decision moment (and perhaps even the



Common Knowledge of Rationality 277

third). This kind of subtle belief revision policy is excluded by RatPers. Either a
player is believed to be rational everywhere or irrational everywhere.

To summarize, the proof of Theorem 4.1 boils down to showing that there is
a contradiction between having arrived at x1 and there being common knowledge
of rationality at x1. Such a contradiction can only be shown if, from the fact that
there is common knowledge of rationality at x1, it can be derived that one cannot
be at x1: more specifically, that one cannot be at x1 since it can only be reached
irrationally. That can only be demonstrated successfully if, from common knowledge
of rationality at x1, something follows about the beliefs and rationality at ρ.

But there is nothing in the concept of common knowledge at some decision mo-
ment that forces us to interpret it in such a temporally extended way and to adopt
corresponding belief revision policies. In other words, there is nothing against al-
lowing a game playing situation in which at the first decision moment there is no
common knowledge of rationality, while there is in the second. The RatPers axiom
(together with the StratPers axiom) exclude that possibility. This means that they
are too strict. As an aside, one may find fault with Reny’s inconsistency result on
the basis of the fact that it presupposes the KnStratM axiom. For, as we have seen,
from this axiom it follows that players already know what action they will pick at
every future decision node, thus obviating some of the point of the many-moment
interpretation.

5 Conclusion

We have developed a logical system to capture two different interpretations of what
extensive games model. We have applied this to a long-standing debate in game
theory between those who defend the claim that common knowledge of rationality
leads to backward induction or the subgame perfect (Nash) equilibrium, and those
who reject the claim. In particular, the logical analysis reveals that a defense of the
claim à la Aumann [2] holds on to a conception of extensive game playing as a one-
shot event in combination with a principle of rationality that is incompatible with it,
while a rejection of the claim à la Reny [34] assumes a temporally extended, many-
moment interpretation of extensive games in combination with implausible belief
revision policies.

Apart from offering two interpretations of extensive game play, the logical ma-
chinery devised to analyze the defense of the claim à la Aumann was seen to be
interesting in itself as it provides an inductive and implicit axiomatization of ratio-
nality in extensive games based on relations of dominance rather than the usual direct
axiomatization of rationality as maximization of expected utility.

Some open questions remain. First, how general is the framework we present?
Although a full answer cannot be given at this stage, we have shown elsewhere that
several well-known, normal form game characterization theorems can be treated in
our framework (De Bruin [17]). Furthermore, in a paper criticizing a characterization
result due to Dekel and Fudenberg [21] we have proved a new characterization result
for normal form games (De Bruin [18]). This shows the framework to be fruitful and
flexible.

Second, can the formal system be extended to cover epistemic characterizations
of solution concepts for extensive games with imperfect information? This will be
more difficult because many such solution concepts are already peculiarly epistemic
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in themselves, which makes it hard to separate epistemic conditions from solution
concept.

Third and finally, do the present observations bear any relevance to the backward
induction paradox (Sorensen [37], and references therein)? We believe they do, es-
pecially insofar as it is suggested that a solution to the paradox should distinguish
one-shot interpretations from many-moment ones. This, however, is at present still
work for the future.
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