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Lattices of Theories in Languages without Equality

J. B. Nation

Abstract If S is a semilattice with operators, then there is an implicational
theory Q such that the congruence lattice Con.S/ is isomorphic to the lattice of
all implicational theories containing Q.

The author and Kira Adaricheva have shown that lattices of quasi-equational the-
ories are isomorphic to congruence lattices of semilattices with operators. That is,
given a quasi-equational theoryQ, there is a semilattice with operators S such that the
lattice QuTh.Q/ of quasi-equational theories containing Q is isomorphic to Con.S/.
There is a partial converse: if the semilattice has a largest element 1, and under strong
restrictions on the monoid of operators, then Con.S;C; 0;F / can be represented as
a lattice of quasi-equational theories. Any formulation of a converse will necessarily
involve some restrictions, as there are semilattices with operators whose congruence
lattice cannot be represented as a lattice of quasi-equational theories. In particular,
one must deal with the element corresponding to the relative variety x � y, which
has no apparent analogue in congruence lattices of semilattices with operators.

In this note, it is shown that if S is a semilattice with operators, then Con.S;C;
0;F / is isomorphic to a lattice of implicational theories in a language that may not
contain equality. The proof is a modification of the previous argument, Adaricheva
and Nation [1], but not an entirely straightforward one. En route, we also investigate
atomic theories, the analogue of equational theories for a language without equality.

For classical logic without equality, see Church [4] or Monk [12]. More recent
work includes Blok and Pigozzi [2], Christie et al. [3], Czelakowski [5], and Elgueta
[6]. The standard reference for quasi-varieties is Viktor Gorbunov’s book [7].

The rules for deduction in implicational theories are given explicitly in Section 3.
Our main result, Corollary 8, of course depends on these. It does not depend on
the model theory used to interpret how it applies to structures, and indeed, there
are options in this regard. So there are two versions of this paper. The longer one
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includes a suitably weak model theory to interpret the results, while the shorter one
proceeds more directly to the main theorem. This is the short version; both are
available on the author’s website: www.math.hawaii.edu/~jb.

1 Atomic Theories

1.1 Language Let us work in a language L that has a set of variables X , constants,
function symbols, relation symbols, and punctuation, but no primitive equality rela-
tion. Constants are regarded as nullary functions, but assume that L has no nullary
relations.

1.2 Structure An L-structure is A D hA;F A;RAi with the following interpreta-
tion. The carrier set A is nonempty. For each k-ary function symbol f , there is
a function f A W Ak ! A. For each k-ary relation symbol R, there is a relation
RA � Ak . Relations of A are allowed to be empty. A much more general interpreta-
tion is used in the long version, but this traditional view suffices for our purposes.

1.3 Congruence A congruence � on A is a set of relations R� such that R� � RA

for each relation symbol R. Since there is no special relation � satisfying particular
properties, that’s it. Reflexivity, transitivity, and compatibility are all implications,
so structures with equality properly belong in Section 3. (However, the congruence
lattices of semilattices with operators in the main results are congruences in the
traditional sense.)

The structure hA;F A;R� i is denoted A=� .

1.4 Atomic theories As usual, form the absolutely free structure F D FL.X/. No
relations hold on F, but we can form R.F/, the set of all potential relation instances
on F. The elements of F are called terms, and members of R.F/ are atomic formulas.

Note that F is an algebra in the usual sense, and any map � W X ! F can be
extended to a homomorphism in the usual way. We refer to these endomorphisms as
substitutions and use Sbn.F/ to denote the monoid of all substitutions.

A subset † � R.F/ is an atomic theory if whenever R.t/ 2 † and � 2 Sbn.F/,
then R.�t/ 2 †. That is, atomic theories are just sets of relations on F that are
closed under substitution.

By general principles, the lattice of all atomic theories of L forms an algebraic
lattice ATh.L/.

2 Lattices of Atomic Theories

2.1 Fully invariant congruences and lattices of atomic theories A fully invariant
congruence is a set of relations closed under substitution endomorphisms. These
again form an algebraic lattice FiconF.

The collection of all atomic theories extending a given theory † is also an alge-
braic lattice, denoted by ATh.†/. Without a primitive equality, the only means of
deduction for atomic formulas is substitution. Evidently, the following holds.
Theorem 1 For an atomic theory †, the lattice ATh.†/ is isomorphic to
FiconF†.X/ with X countably infinite.
The structure of the lattices At.†/ is the topic of the fourth part of this series (see
Holmes, Kitsuwa, Nation, and Tamagawa [8]). In particular, these lattices are com-
pletely distributive and coatomic.

http://www.math.hawaii.edu/~jb
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3 Implicational Theories

Formally, an implication is an ordered pair hF;Qi with F a finite set of atomic
formulas and Q an atomic formula. Thus each P 2 F and Q are of the form
A.t/ with A a relational symbol and t 2 Fn. To reflect the intended interpretation,
we write an implication hF;Qi with F D ¹P0; : : : ; Pmº as either F H) Q or
&Pi H) Q. The antecedent is allowed to be empty: ; H) P is equivalent to P .
The formal definition insures that the conjunction in the antecedent is idempotent,
commutative, and associative.

A collection T of implications is an implicational theory if
(i) F H) P is in T whenever P 2 F ;
(ii) when F H) Q is in T and F � G, then G H) Q is in T ;
(iii) whenever F H) Q is in T for all Q 2 G, and G H) R is in T , then

F H) R is in T ;
(iv) T is closed under substitutions: if ˆ 2 T and � W X ! F, then �ˆ 2 T .

Note that condition (iii), transitivity, implies modus ponens:
(v) if Pi 2 T for all i and &Pi H) Q is in T , thenQ 2 T .
The free T -structure on X is FL.X/ with the purely atomic relations of T , de-

noted FT .X/. Thus A.t/ holds in FT .X/ if and only if A.t/ is in T .

4 Relative Congruences

Let T be an implicational theory. A congruence � on A is a T -congruence if
A=� 2 Mod T , that is, A with the relations � satisfies all the formulas of T . So
a congruence � , regarded as a set of relations, is a T -congruence if, whenever
&Pi H) Q is in T and Pi .˛x/ 2 � for some substitution ˛ W X ! A and all
i , then Q.˛x/ 2 � . Again, the set of all T -congruences on A forms an algebraic
lattice ConT .A/, as the closure operator conT is finitary in nature.

For any set M of atomic formulas, let conT .M/ denote the T -congruence gen-
erated by M , that is, the smallest T -congruence containing M . Thus conT .M/

containsM and all its T -consequences.
Consider the substitution endomorphisms of the free algebra FT .X/, that is, the

homomorphisms " generated by maps "0 W X ! F. These maps form a monoid,
denoted Sbn.F/. (Since the relational part of an endomorphism is not determined by
the substitution for the variables, F may have other endomorphisms.)

The substitution endomorphisms of F act naturally on the compact congruences
of ConT .F/. For " 2 SbnF, defineb"�conT .R.s//� D conT

�
R."s/

�
;b"�_

j

'j

�
D

_
j

b"'j :
Lemma 2 below checks the crucial technical detail thatb" is well defined, and hence
join preserving, because  �

W
j 'j implies b" � W

jb"'j for principal con-
gruences  and 'j in ConT .F/. Also note thatb" is zero preserving: the least T -
congruence�T of F contains exactly those relations A.t/ such that A.t/ is in T , andb".�T / D �T because T is closed under substitution. Let bE D ¹b" W " 2 SbnFº.

The next lemma reflects the interpretation that conT .M/ consists ofM and all its
T -consequences.
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Lemma 2 If T is an implicational theory, then conT .Q/ �
W
i conT .Pi / holds

in ConT .F/ if and only if &iPi H) Q is in T .

5 Lattices of Implicational Theories

Form the lattice ITh.T / of all implicational theories extending T , an algebraic lattice.
Theorem 3 For an implicational theory T ,

ITh.T / Š Con S;

where S D hU;_; 0;bEi with U the semilattice of T -congruences that are compact in
ConT .F/, E D Sbn.F/, and F D FT .X/ with jX j D @0.
At one point, we use a technical variant, with the same proof.
Theorem 4 Let T be an implicational theory, and let n � 1 be an integer. The
lattice of all implicational theories that

(1) contain T , and
(2) are determined relative to T by implications in at most n variables

is isomorphic to Con Sn, where Sn D hU;_; 0;bEi with U the semilattice of T -
congruences that are compact in ConT .F/, E D Sbn.F/, and F D FT .n/.
For the proof of this theorem, and for its application, it is natural to use two structures
closely related to the congruence lattice instead (see [1]). For an algebra A with a
join semilattice reduct, let DonA be the lattice of all reflexive, transitive, compatible
relations R such that �� R; that is, x � y implies xRy. Let EonA be the lattice of
all reflexive, transitive, compatible relations R such that

(1) R ��; that is, xRy implies x � y, and
(2) if x � y � z and xRz, then xRy.

Lemma 5 If A D hA;_; 0;F i is a semilattice with operators, then ConA Š
DonA Š EonA.
The proof of the lemma is fairly straightforward and can be found in [1, Part I].

Proof Define the map � W ITh.T /! Don S by .�;  / 2 �.K/ if and only if there
are P0; : : : ; Pm;Q0; : : : ;Qn such that
� for each j , the implication &Pi H) Qj is in K,
� � D

W
i conT .Pi / in ConT .F/, and

�  D
W
j conT .Qj / in ConT .F/.

In the other direction, define � W Don S! ITh.T / such that &Pi H) Q is in �.R/
if and only if

�W
conT .Pi /; conT .Q/

�
is in R.

The proof of the theorem is mostly routine checking, modulo Lemma 2.
First, we check that �.K/ 2 Don S. Reflexivity follows from property (i) of K.
The transitivity of �.K/ requires some care. Suppose ��.K/ �.K/', where

� D
_
i

conT .Pi /;

 D
_
j

conT .Qj / D
_
k

conT .Rk/;

' D
_
`

conT .S`/;
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with the corresponding implications being in K. Now &Qj H) Rk is in T for all
k by Lemma 2, and T � K. Thus &Pi H) Rk is in K for all k by (iii). Apply (iii)
once more to obtain &Pi H) S` in K for all `, whence ��.K/'.

The compatibility of �.K/ with join, ��.K/ implies � _ '�.K/ _ ', follows
from conditions (i) and (ii). Compatibility with substitutions is condition (iv).

That � �  implies ��.K/ follows from Lemma 2 and T � K.
We conclude that �.K/ 2 Don S. It is also clear that � is order preserving.
Next, given R 2 Don S, check that �.R/ is an implicational theory. Properties (i)

and (ii) follow from �� R and the transitivity of R. For property (iii), note that if�W
i conT .Pi /; conT .Qj /

�
2 R for all j , then

�W
i conT .Pi /;

W
j conT .Qj /

�
2 R

since R is compatible with respect to joins. If in addition
�W

j conT .Qj /;
conT .S/

�
2 R, then

�W
i conT .Pi /; conT .S/

�
2 R by the transitivity of R. Fi-

nally, closure under substitution, (iv), is immediate from the definition ofb".
Moreover, �.R/ � T by Lemma 2, and � is order preserving.
Finally, using Lemma 2 again, we note that ��.R/ D R and ��.K/ D K for all

appropriate R and K.

Recall that there is a natural equa-interior operator on lattices of quasi-equational
theories. Given a quasi-equational theory Q and a theory T in QuTh.Q/, define
�.T / to be the implicational theory generated by Q and all the equations valid in T .
This interior operator has the following properties (see [7]):
(I1) �.x/ � x.
(I2) x � y implies �.x/ � �.y/.
(I3) �2.x/ D �.x/:
(I4) �.1/ D 1.
(I5) �.x/ D u for all x 2 X implies �

�W
X
�
D u.

(I6) �.x/ _ .y ^ z/ D .�.x/ _ y/ ^ .�.x/ _ z/:
(I7) The image �.L/ is the complete join subsemilattice of L generated by

�.L/ \ Lc .
(I8) There is a compact elementw 2 L such that �.w/ D w and the interval Œw; 1�

is isomorphic to the congruence lattice of a semilattice. Thus the interval
Œw; 1� is coatomistic.

In view of (I5), let �.x/ D
W
¹z W �.z/ D �.x/º. A ninth property was added in [1].

(I9) For any index set I , if �.x/ � c and
V
�.zi / � �.c/, then �

�
�.x/ _V

i2I �.x ^ zi /
�
� c.

There is also a natural interior operator defined on the congruence lattice of any
semilattice with operators, where �.�/ is the congruence generated by the 0-class
of � . This operator satisfies properties (I1)–(I7) and (I9). However, it need not sat-
isfy (I8), which for lattices of quasi-equational theories refers to the relative variety
determined by x � y.

These ideas fit into our current setting thusly. Let ATh�.T / denote the lattice of
implicational theories generated by T and a set of purely atomic formulas. Note that
ATh�.T / is a complete join subsemilattice of ITh.T /.

In the representation of Theorem 3, relatively atomic theories of T correspond to
congruences �.I /with I anbE-closed ideal of S. Thus ATH�.T / is isomorphic to the
lattice �.Con S/ for the natural interior operator, which in turn is isomorphic to the
lattice of bE-closed ideals of S. In particular, ITh.T / has a natural interior operator
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satisfying properties (I1)–(I7) and (I9), and all the consequences of that apply (see
[1]).

Under the circumstances, the special role of property (I8) for implicational theo-
ries in languages with equality invites further analysis.

6 Restoring Equality

At this point, we pause to note that T could contain implications saying that a binary
relation� is an equivalence relation and, moreover, a congruence in the usual sense.
That is, T could contain the laws

(1) x � x,
(2) x � y H) y � x,
(3) x � y&y � z H) x � z,
(4) x � y H) f .x; z/ � f .y; z/ for all functions f ,
(5) x � y H) .R.x; z/” R.y; z// for all predicates R.

This relation can then be regarded as equality. In this case, T -congruences corre-
spond to regular congruences, EqTh.T / Š ATh�.T / and QuTh.T / Š ITh.T /.

Bjørn Kjos-Hanssen points out that while there may be no such relation, there is
at most one, in view of (5).

7 Representation

Now we provide a converse to Theorem 3.

Theorem 6 Let B be an implicational theory in a language L with the following
restrictions and laws.

(1) L has only unary predicate symbols.
(2) L has only unary function symbols.
(3) L has one constant symbol e.
(4) B contains the laws P.f .e// for every predicate P and every formal com-

position f of functions of L.
Then every implication holding in a theory extending the theory of B is equivalent
(modulo the laws of B) to a set of implications in only one variable. Hence the
lattice of theories of B is isomorphic to Con.S/, where S D hT;_; 0;bEi with T the
semilattice of compact congruences of ConB.F/, E D Sbn.F/, and F D FB.1/.

Proof The atomic formulas of L are of the form A.h.u//, where A is a predicate,
h is a formal composition of functions, possibly empty, and u is a variable or e. In an
implication &Pi H) Q, the conclusion involves at most one variable. A law that
is equivalent, modulo the laws of B, is obtained by replacing every other variable
occurring in the antecedent by e.

Theorem 7 Let S be a join semilattice with 0, and let M be a monoid of operators
acting on S. Then there is an implicational theory C such that Con.S;C; 0;M/
is isomorphic to Con.T;_; 0;bE/ with T the semilattice of compact congruences of
ConC .F/, E D Sbn.F/, and F D FC .1/.

Proof Our language will include unary predicates A for each nonzero element a
of S, unary operations f for each f 2M, and a constant e.

Again, L-terms are of the form A.h.u//, where A is a predicate, h is a formal
composition of functions, and u is a variable or e. Denote the single variable by x.
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The construction begins by assigning a set of predicates to each nonzero element
of S. For each a 2 S and formal composition h D f1 � � � fk , assign the predicate
A.h.x// to h?.a/, where h? denotes h evaluated in Mopp, that is, h? D fk � � � f1. In
this way each element of S may be assigned multiple predicates, but they will all be
of the form B.g.x// for different predicates B and sequences g. For s 2 S, let P .s/

denote the set of predicates assigned to s. Thus P .s/ D ¹A.h.x// W h?.a/ D sº.
Define C to be the quasi-variety determined by these laws.
(1) P.f .e// for every predicate P and every formal composition f of functions

of L.
(2) A.i.x//” A.x/ for every A, where i is the identity element of M.
(3) A.h.x//” A.h?.x// for every formal composition.
(4) ˇ H) ˛ whenever a � b, ˛ 2 P .a/, ˇ 2 P .b/.
(5) &ˇj H) ˛ whenever a �

P
bj , ˛ 2 P .a/, ˇj 2 P .bj / for each j .

The laws (1) ensure that Theorem 6 applies, so that we may work with FC .1/. Note
that the laws (4) are redundant as a special case of (5).

The universe of F D FC .1/ is all terms h.u/ with h a sequence of operations, and
u either x or e. The operations correspond to elements of M, and there is a unary
predicate for each nonzero element of S. Note that A.t/ holds in the free structure
only for t D e or t D h.e/. The substitution endomorphisms of F are determined by
the image of x. For a term t , let "t denote the endomorphism with x 7! t .

Since C satisfies &ˇj H) ˛ whenever a �
P
bj , ˛ 2 P .a/, and each

ˇj 2 P .bj /, we see that every C -congruence of F is the set of predicates assigned
to some ideal of S, along with A.h.e// for every A and h. Conversely, every ideal
determines such a C -congruence, and principal ideals determine compact congru-
ences. In fact, the congruence corresponding to # s is conC .˛/ for any ˛ 2 P .s/.
Thus the semilattice of compact C -congruences of FC .1/ is isomorphic to S, as
desired.

As a matter of notation, let ‚s denote the congruence that has all the relationsS
¹P .t/ W t � sº, plus the base relations of the form B.g.e// given by (1). Denote

the set of base relations by B. Thus ‚s D ¹A.h.x// W h?.a/ � sº [ B.
It remains to show that the action of bE on T, the semilattice of compact C -

congruences of FC .1/, mimics the action of Mopp on S. The relevant facts are these:
� b"h.e/.‚s/ � B for any h, whence B is the zero congruence, so this operator

does not affect the congruences of T.
� b"h.x/.‚s/ D ‚h?.s/ for any sequence h and element s.
� If f and g are sequences, thenb"f .x/ Db"g.x/ if and only if ‚f ?.s/ D ‚g?.s/

for all s, if and only if f ? D g?.
� b"f .x/b"g.x/ Db".gf /.x/.

The crucial calculation is the second one. Note thatb"h.x/.‚s/ D conC

®
"h.x/A

�
f .x/

�
W f ?.a/ � s

¯
[ B

D conC

®
A
�
f .h.x//

�
W f ?.a/ � s

¯
[ B:

Now f ?.a/ � s implies .f h/?.a/ D h?f ?.a/ � h?.s/, sob"h.x/.‚s/ � ‚h?.s/.
But the left-hand side includes "h.x/S.x/ D S.h.x//, and that is a generator for
‚h?.s/, whence equality holds.

This completes the proof of the theorem.
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Combining these results (which now avoid problems that occurred in the presence of
equality in [1, Part II]), we obtain the desired result.

Corollary 8 Let S be a join semilattice with 0, and let M be a monoid of oper-
ators acting on S. Then there is an implicational theory C such that the lattice of
implicational theories of C is isomorphic to Con.S;C; 0;M/.

8 Overview

It is useful to step back and consider the situation from a distance. There are (at least)
four plausible settings:
(IA) algebras, language with equality;
(IB) pure relational structures, language with equality;
(II) structures with functions and relations, language with equality;
(III) structures with functions and relations, language without equality.

Likewise, there are three types of theories:
(1) atomic theories ATh.T /;
(2) implicational theories ITh.T /;
(3) relative atomic theories ATh�.T /.

That makes twelve combinations, not all equally interesting.
The traditional setting for equational theories is algebras (IA). There we have

the results of McKenzie [11], Newrly [13], and Nurakunov [14] leading to Lampe’s
zipper condition (see [9], [10]) and its generalizations. Are there any versions of this
that apply in other settings?

The historic setting for quasi-equational theories is general structures (II), though
pure relational structures (IB) played a role. The results of [1] are the apparent ana-
logues here, and in this note we see how this generalizes to the setting (III). The
ultimate goal is still to deal with case (II) and to discern what is special about the
quasi-equational theory of algebras (IA).

Atomic theories of structures with equality (II) can be viewed as relative atomic
theories of structures without equality (III). This seems an odd viewpoint, but per-
haps it explains some of the complexity of lattices of equational theories.
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