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Generalizing the Depth Relevance Condition:
Deep Relevant Logics Not Included in R-Mingle

Gemma Robles and José M. Méndez

Abstract Brady has shown how to define a class of deep relevant logics from
Meyer’s crystal lattice CL. The aim of this paper is to generalize Brady’s result
by showing how to define a class of deep relevant logics from each weak rele-
vant matrix (weak relevant matrices only verify logics with the variable-sharing
property). A class of deep relevant logics not included in R-Mingle is defined.

1 Introduction

As it is well known, according to Anderson and Belnap [2], the following is a neces-
sary property of any relevant logic S.

Definition 1.1 (Variable-sharing property—vsp, for short) If A! B is a theorem
of S, then A and B share at least one propositional variable.

In [5], Brady strengthens the vsp requiring for a formula of the form A ! B to be
a theorem that A and B share at least one propositional variable at the same depth,
where “the depth of an occurrence of a subformula B in a formula A is roughly the
number of nested!’s required to reach the occurrence of B in A” (see [5, p. 63]).
Brady names this property the depth relevance condition (drc). And logics with the
drc are named deep relevant logics. He shows that the following logic DR (and so
any logic included in it) has the drc.

Axioms

(A1) A! A,
(A2) .A ^ B/! A=.A ^ B/! B ,
(A3) Œ.A! B/ ^ .A! C /�! ŒA! .B ^ C /�,
(A4) Œ.A! B/ ^ .B ! C /�! .A! C /,
(A5) A! .A _ B/=B ! .A _ B/,
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(A6) Œ.A! C / ^ .B ! C /�! Œ.A _ B/! C �,
(A7) ŒA ^ .B _ C /�! Œ.A ^ B/ _ .A ^ C /�,
(A8) ::A! A,
(A9) .A! :B/! .B ! :A/,

(A10) A _ :A.

Rules

(R1) A; A! B ) B ,
(R2) A; B ) A ^ B ,
(R3) C _ A; C _ .A! B/) C _ B ,
(R4) C _ A) C _ :.A! :A/,
(R5) E _ .A! B/; E _ .C ! D/) E _ Œ.B ! C /! .A! D/�.

Brady’s aim is to set the drc as a necessary syntactical condition for some paracon-
sistent logics lacking the contraction axiom, used in deriving Curry’s paradox. And
the logic DR “is chosen as an intuitive subsystem of DT obtained by removing the
less intuitive axioms from DT” ([5, p. 64]), to wit:

(t1) Œ:.A! B/! .A! B/�! Œ.B ! C /! .A! C /�,
(t2) Œ:.A! B/! .A! B/�! Œ.C ! A/! .C ! B/�,
(t3) :ŒA! .A! B/� _ .A! B/,
(t4) .:A! A/! :.A! :A/,
(t5) :A _ .:A! A/.

Remark 1.2 DR is originally defined by introducing disjunction _ via the defini-
tion A _ B Ddf :.:A ^ :B/.

Brady’s strategy essentially consists in relativizing valuations in Meyer’s crystal lat-
tice CL to levels of depth by determining the value of outer levels in implicative
formulas by valuations at inner levels. Implicative formulas are defined as follows.

Definition 1.3 (Implicative formulas) A wff A is implicative iff A is of the form
B ! C , where B and C are wffs. (See Section 2 on the languages and logics
considered in the paper.)

Meyer’s CL is a simplification of Belnap’s M0 used by the latter to prove for the
first time that the logic of entailment E has the vsp (see [8, pp. 95, ff.], [3], [2, Sec-
tion 22.1.3]. M0 and CL are displayed below in Examples 4.4 and 4.5, respectively).

The aim of this paper is to generalize Brady’s strategy by using weak relevant
matrices (wr-matrices). The notion of a wr-matrix is introduced in [13]. These
matrices have the property that logics verified by them (see Section 2 below) have the
vsp. Following Brady, it will be shown how to relativize valuations in wr-matrices in
order to restrict the class of logics with the vsp verified by each particular wr-matrix
to a subclass of logics with the drc.

In [13] it is proved that logics far off the spectrum of standard relevant logics have
the vsp and related properties shown to be predicable of E and R by Anderson and
Belnap (see [2, Section 22.1.3]). In a similar way, it is proved in the present paper
that there are logics with the drc that neither include nor are included in DR but that,
nevertheless, do not have the contraction axiom as a theorem. In fact, a logic with
the drc not included in R-Mingle (RM) shall be defined. As it is known, R-Mingle is
the result of adding the axiom “mingle” (A! .A! A/) to R, and it lacks the vsp.
Although interesting on their own, these logics with the drc not included in RM are
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mostly introduced by way of an example, because it follows from Brady’s method
that each wr-matrix generates a class of logics with the drc.

The structure of the paper is as follows. In Section 2, we set a series of prelim-
inary definitions including those of logical matrix, degree of formulas, depth of a
subformula within a formula, and the depth relevance condition. Section 3 is a brief
discussion on the relations between the drc and the Ackermann and converse Ack-
ermann properties. In Section 4, weak relevant matrices (wr-matrices) are defined,
and it is proved that if a logic S is verified by a wr-matrix, then S has the vsp. In
Section 5, wr-model structures are defined. Wr-model structures are built upon wr-
matrices, and it is proved that any logic verified by a wr-model structure has the drc.
In Section 6, a wr-matrix is displayed, verifying a class of logics not included in RM.
In Section 7, a wr-model structure is built upon the wr-matrix defined in Section 6.
Then, it is shown that this model structure verifies a class of deep relevant logics not
included in RM3, a strong extension of RM (see [4] on RM3). Finally, in Section 8,
we end the paper with some conclusions on the results obtained as well as with some
comments on further work related to the present topic.

As pointed out above, our results are based on those by Brady in [5]. And we have
maintained, as much as possible, Brady’s notation and terminology, especially when
defining wr-model structures.

2 Logical Matrices: Preliminary Definitions

We shall consider logics formulated in the Hilbert-style form defined on proposi-
tional languages with a set of denumerable propositional variables and some (or all)
of the connectives: ! (conditional),  (deep relevant conditional), ^ (conjunc-
tion), _ (disjunction), : (negation), the biconditional$ and! being defined in
the customary way.

The set of wff is also defined in the usual way; A, B , C , and so on, are metalin-
guistic variables.

The notion of a logical matrix is defined as follows.

Definition 2.1 A logical matrix M is a structure .K; T; F; f!; f^; f_; f:/,
where

(1) K is a set;
(2) T and F are nonempty subsets of K such that T [ F D K and T \ F D ;;
(3) f!, f^, f_ are binary functions (distinct from each other) on K, and f: is a

unary function on K.

It is said that K is the set of elements of M, T is the set of designated elements, and
F is the set of nondesignated elements. The functions f!, f^, f_, and f: interpret
in M the conditional, conjunction, disjunction, and negation, respectively. In some
cases, one or more of these functions may not be defined.

Now, let L be a propositional language, A1; : : : ; An, B be wff of L, and S be a
logic defined on L. On the other hand, let M be a logical matrix, and let vm be an
assignment of elements of M to the propositional variables of B . That B is assigned
the element j of K is expressed as follows: vm.B/ D j .

Then, we set the following.
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Definition 2.2 Let M be a logical matrix. M verifies B iff for any assignment,
vm, of elements of K to the propositional variables of B , vm.B/ 2 T . M falsifies B

iff M does not verify B .

Definition 2.3 LetA1; : : : ; An ) B be a rule of derivation, and let M be a logical
matrix. Then, M verifies A1; : : : ; An ) B iff for any assignment, vm, of elements
of K to the variables of A1; : : : ; An and B , if vm.A1/ 2 T; : : : ; vm.An/ 2 T , then
vm.B/ 2 T . M falsifies A1; : : : ; An ) B iff M does not verify A1; : : : ; An ) B .

Finally, we have the following definition.

Definition 2.4 Let M be a logical matrix. M verifies S iff M verifies all axioms
and rules of derivation of S.

Remark 2.5 Formulas of the form A B are not interpreted by logical matrices
but by model structures defined on wr-matrices (see Section 5 below).

Next, we shall proceed to define the depth relevance condition. In order to do this,
we need (see [8, Section 11.1]) the notions of “degree of a formula A” (in symbols,
deg.A/) and “depth of a formula B in another formula A” (in symbols, dŒB; A�). Let
A be a wff. Then, deg.A/ is defined inductively as follows.

Definition 2.6 (Degree of formulas)

(1) If A is a propositional variable, then deg.A/ D 0.
(2) If A is of the form :B and deg.B/ D m, then deg.A/ D m.
(3) If A is of the form B _C (B ^C ; B ! C ), deg.B/ D m, and deg.C / D n,

then deg.A/ D max¹m; nº.
(4) If A is of the form B  C , deg.B/ D m, and deg.C / D n, then

deg.A/ D max¹m; nº C 1.

So, the degree of a formula A is the maximum number of nested ’s in A.
Let now A be a wff, and let B be a subformula of A. Then, dŒB; A� is defined

inductively on occurrences of B in A as follows.

Definition 2.7 (Depth of a subformula within a formula)

(1) We have dŒA; A� D 0.
(2) If dŒ:B; A� D n, then dŒB; A� D n.
(3) If dŒB ^ C; A� .d ŒB _ C; A�I dŒB ! C; A�/ D n, then dŒB; A� D dŒC;

A� D n.
(4) If dŒB  C; A� D n, then dŒB� D dŒC � D nC 1.

So, the depth of a particular occurrence of B in A is the number of nested  ’s
between this particular occurrence of B and the whole formula A. Notice that
deg.A/ D ¹max dŒp; a� j p is a propositional variable occurring in Aº. That is to
say, the degree of A is equivalent to the depth of the propositional variable with the
highest depth in A.

Now, the depth relevance condition is defined as follows.

Definition 2.8 (Depth relevance condition, or drc) Let S be a propositional logic
with the following connectives: ,!, ^, _, and :. S has the deep relevant condi-
tion (or S is deep relevant) if in all theorems of S of the form A B there is at least
one propositional variable p such that dŒp; A� D dŒp; B�.
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Example 2.9 Consider the wff A: .p  q/ ! Œ.r  s/ ! .t  u/�.
Then, deg.A/ D 3; deg.p  q/ D 1; degŒ.r  s/ ! .t  u/� D 2;
dŒp  q; A� D dŒ.r  s/ ! .t  u/; A� D 1; dŒp; A� D dŒq; A� D dŒr  s;

A� D dŒt  u; A� D 2; dŒr; A� D dŒs; A� D dŒt; A� D dŒu; A� D 3.

Remark 2.10 Let S be a propositional logic. If any of the following is a theorem
of S and! is read as , then S does not have the drc:

(t6) .p ! q/! Œ.q ! r/! .p ! r/�,
(t7) .q ! r/! Œ.p ! q/! .p ! r/�,
(t8) Œp ^ .p ! q/�! q,
(t9) Œ.p ! p/! q�! q,
(t10) p ! Œ.p ! q/�! q�,
(t11) p ! .p ! p/,
(t12) Œ.p ! q/! p/�! p,
(t13) .p ! :p/! :p,
(t14) Œ.p ! q/ ^ :q�! :p,
(t15) Œ.p ! q/ ^ .p ! :q/�! :p.
So, notice that relevant logics such as ticket entailment, T, entailment, E, or rele-

vance, R, do not have the drc.

Remark 2.11 Consider the contraction rule
(t16) A! .A! B/) A! B .
Although antecedent and consequence of

(t17) Œp ! .p ! q/�! .p ! q/ (when! is read as )
share the underlined p at the same level, (t16) cannot be a rule of any logic including
BC if the drc is to be preserved because in BC plus (t16) the thesis (t8) is derivable
(BC is Routley and Meyer’s basic positive logic; see [11] or [14]).

3 Excursus: The Depth Relevance Condition and the Ackermann Property

The Ackermann property reads as follows.

Definition 3.1 (Ackermann property) A logic S has the Ackermann property (AP)
if (for any A, B , C ) A ! .B ! C / is unprovable in S if A does not contain an
implicative formula (see Definition 1.3).

The label “Ackermann property” is Anderson and Belnap’s. The AP is named after a
theorem proved by Ackermann stating that his systems … and …0 have the property
(see [1, Section 6]).

On the other hand, the “converse Ackermann property” reads as follows (see [2,
Section 8.12]; for results on the property, see [12] and references therein).

Definition 3.2 (Converse Ackermann property) A logic S has the converse Ack-
ermann property (CAP) if (for any A, B , C ) .A ! B/ ! C / is unprovable in S if
C does not contain an implicative formula (see Definition 1.3).

The following is proved.

Proposition 3.3 Let S be a logic with the drc. Then, S has the AP and the CAP.
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Proof (a) S has the AP. Let A ! .B ! C / be a wff where A does not contain
implicative formulas. Then, for any variable pi in A, dŒpi ; A� D 0; and for any
variable pi in B (or in C ), dŒpi ; B ! C � � 1 when! is read as . So, A and
B ! C do not share a propositional variable at the same depth. (b) S has the CAP.
The proof is similar.

Remark 3.4 The converse of Proposition 3.3 does not hold. Consider, for exam-
ple, the logic positive contractionless ticket entailment TWC. Note that TWC has
the AP and the CAP (see [12]), but it does not have the drc: (t6) and (t7) in Section 2
are theorems of TWC.

4 Weak Relevant Matrices

First, the notion of a wr-matrix is defined.

Definition 4.1 (Weak relevant matrices or wr-matrices) Let M be a logical matrix
in which aF 2 F and a1; : : : ; an; b1; : : : ; bm are elements of K. And let us designate
by K1 and K2 the subsets of K ¹a1; : : : ; anº and ¹b1; : : : ; bmº, respectively. The sets
K1 and K2 are disjoint, and the members of K1 as well as those in K2 are possibly
(but not necessarily) distinct from each other. Finally, the following conditions are
fulfilled:

(1) 8x8y 2 K1F^.x; y/ & F_.x; y/ & F!.x; y/ & F:.x/ 2 K1,
(2) 8x8y 2 K2F^.x; y/ & F_.x; y/ & F!.x; y/ & F:.x/ 2 K2,
(3) 8x 2 K18y 2 K2F!.x; y/ D aF .

Then it is said that M is a weak relevant matrix (wr-matrix for short).

Remark 4.2 In [13], wr-matrices are introduced by a simpler definition in which
K1 and K2 are singletons.

Then, the following is proved.

Theorem 4.3 Let M be a wr-matrix, and let S be a logic verified by M. Then, S
has the vsp.

Proof Assume the hypothesis of Theorem 4.3, and let A ! B be a wff in which
A ! B do not share propositional variables. Then, let vm be an assignment of
elements of K to the variables of A ! B such that vm.pn/ D ai for each vari-
able pn in A, and vm.pn/ D bl for each variable pn in B , where ai 2 K1 and
bl 2 K2. By conditions 1 and 2 in Definition 4.1, vm.A/ 2 K1 and vm.B/ 2 K2.
So, vm.A ! B/ D aF by condition 3 in Definition 4.1. Therefore, if A ! B is
a formula in which A and B do not share a propositional variable, A ! B is not a
theorem of S. Then Theorem 4.3 follows by contraposition.
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Example 4.4 Belnap’s matrix M0 is (in another notation) the following (see [3],
[2, Section 22.1.3]):

! 0 1 2 3 4 5 6 7 :

0 7 7 7 7 7 7 7 7 7

1 0 6 0 6 0 0 6 7 6

2 0 0 5 5 0 5 0 7 5

3 0 0 0 4 0 0 0 7 4

4 0 1 2 3 4 5 6 7 3

5 0 0 2 2 0 5 0 7 2

6 0 1 0 1 0 0 6 7 1

7 0 0 0 0 0 0 0 7 0

^ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 1 1

2 0 0 2 2 0 2 0 2

3 0 1 2 3 0 2 1 3

4 0 0 0 0 4 4 4 4

5 0 0 2 2 4 5 4 5

6 0 1 0 1 4 4 6 6

7 0 1 2 3 4 5 6 7

_ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 1 3 3 6 7 6 7

2 2 3 2 3 5 5 7 7

3 3 3 3 3 7 7 7 7

4 4 6 5 7 4 5 6 7

5 5 7 5 7 5 5 7 7

6 6 6 7 7 6 7 6 7

7 7 7 7 7 7 7 7 7

where

(1) K D ¹0; 1; 2; 3; 4; 5; 6; 7º,
(2) T D ¹4; 5; 6; 7º,
(3) F D ¹0; 1; 2; 3º,
(4) a1 D 1,
(5) a2 D 6,
(6) b1 D 2,
(7) b2 D 5,
(8) aF D 0.
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Example 4.5 Meyer’s crystal lattice CL is (with a little rephrasing) the following
(see [8, p. 95]):

! 0 1 2 3 4 5 :

0 5 5 5 5 5 5 5

1 0 4 0 0 0 5 4

2 0 2 2 0 0 5 2

3 0 3 0 3 0 5 3

4 0 1 2 3 4 5 1

5 0 0 0 0 0 5 0

^ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 1

2 0 2 2 4 4 2

3 0 3 4 3 4 3

4 0 4 4 4 4 4

5 0 1 2 3 4 5

_ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 1 1 1 5

2 2 1 2 1 2 5

3 3 1 1 3 3 5

4 4 1 2 3 4 5

5 5 5 5 5 5 5
where

(1) K D ¹0; 1; 2; 3; 4; 5º,
(2) T D ¹1; 2; 3; 4; 5º,
(3) F D ¹0º,
(4) a1 D 2,
(5) b1 D 3,
(6) aF D 0.

Remark 4.6 In Examples 4.4 and 4.5, K1 and K2 could alternatively be selected
as follows: (a) M0. a1 D 2, a2 D 5, b1 D 1, b2 D 6; (b) CL. a1 D 3, b1 D 2.

5 Wr-Model Structures and the drc

First, wr-model structures and valuations in wr-model structures are defined.

Definition 5.1 (Wr-model structures) Let M be a wr-matrix. A wr-model struc-
ture MM is the set ¹M0;M1;M2; : : : ;Mn; : : : ;M!º, where M0;M1;M2; : : : ;Mn;

: : : ;M! are all identical matrices to the wr-matrix M.

Definition 5.2 (Valuations and interpretations in a wr-model structure) A valu-
ation v in a wr-model structure MM consists of a valuation vj for all propositional
variables, for each wr-matrix Mj .0 � j � !/. Each vj assigns one of the ele-
ments of K to each propositional variable. Then, each valuation v is extended to
an interpretation I consisting of the interpretations Ij for all formulas, for all j

(0 � j � !), which are given as follows: for all propositional variables p and
formulas A, B ,

(i) Ij .p/ D vj .p/,
(ii) Ij .:A/ D :.Ij .A//,
(iii) Ij .A ^ B/ D Ij .A/ ^ Ij .B/,
(iv) Ij .A _ B/ D Ij .A/ _ Ij .B/,
(v) Ij .A! B/ D Ij .A/! Ij .B/,
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where (i)–(v) are calculated according to the wr-matrix M. In addition, formulas
of the form A  B are evaluated as follows (ak 2 T 0, where T 0 � T in M; see
Definition 4.1):
(vi.a) j D 0. I0.A B/ D ak ,
(vi.b) 0 < j < !. Ij .A B/ D Ij�1.A! B/,
(vi.c) j D !. I!.A B/ 2 T iff Ij .A! B/ 2 T for all j.0 � j � !/.

Then, validity is defined as follows.

Definition 5.3 (Validity in a wr-model structure) Let MM be a wr-model structure,
let B1; : : : ; Bn, A be a wff, and let S be a logic. A is valid in MM (�MM A) iff if
I!.A/ 2 T for all valuations v. The rule B1; : : : ; Bn ) A preserves MM-validity
iff I!.B1/ 2 T; : : : ; I!.Bn/ 2 T , then I!.A/ 2 T for all valuations v. Finally, MM
verifies S iff all axioms of S are MM-valid and all rules of S preserve MM-validity.

Remark 5.4 Recall that! represents the conditional and that represents the
deep relevant conditional (see Section 2). Actually,! is the conditional character-
ized by the!-function in the wr-matrix, and is the conditional defined from!
by clause (vi) in Definition 5.2.

Example 5.5 (see [5]) The wr-model structure MCL is the set ¹M0;M1;M2; : : : ;

Mn; : : : ;M!º, where M0;M1;M2; : : : ;Mn; : : : ;M! are all identical to CL (see Ex-
ample 4.5), valuations are defined with respect to the setK of CL, and (i)–(vi) are cal-
culated according to the CL-functions as defined in Example 4.5 (I0.A B/ D 2

for each A, B). Then, axioms A1–A10 are MCL-valid, and R1–R5 preserve MCL-
validity (see Section 1; see also [5]). Therefore, DR is a deep relevant logic: the
conditional! is actually a deep relevant conditional .

Now, following Brady (see [5, Theorem 1]), we show that any wr-model structure
MM has the drc in the sense that in all MM-valid formulas of the form A B , A and
B share a propositional variable at the same depth. Therefore, we will show that any
wr-matrix generates a class of logics with the drc. First, we have the following.

Lemma 5.6 LetMM be a wr-model structure, and let A B be a wff such that A

and B do not share a propositional variable at the same depth. Then, there is some k

for some interpretation I inMM such that for each subformula C of A, Ik.C / 2 K1,
and for each subformula C of B , Ik.C / 2 K2.

Proof Assume the hypothesis of Lemma 5.6. Then, for all propositional variables
p and for all natural numbers d , p does not occur at depth d in A or p does not occur
at depth d in B . Furthermore, suppose deg.A B/ D m. Then deg.A/ � m � 1,
deg.B/ � m�1, and either deg.A/ D m�1 or deg.B/ D m�1. On the other hand,
let C be a subformula of A or B . Then, dŒC; A� D m�1 (or dŒC; B� D m�1) is the
highest depth of C in A (or in B). Consider now a propositional variable p at depth
d in A (or in B). Then m � d � 1 is the measure of the distance of d to the highest
depth m � 1 in A (or in B). Now we set the following valuation v in MM according
to which all variables in A and B are evaluated. For each propositional variable p in
A B put (where ai and bl are, respectively, some fixed elements of K1 and K2):

(1) vm�d�1.p/ D ai for each depth d that p occurs in A;
(2) vm�d�1.p/ D bl for each depth d that p occurs in B;
(3) vi .p/ D xj for an arbitrary xj 2 K if i � m, or else i D m � d � 1 and p

does not occur at depth d in A or in B .
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Now, as no variable occurs at the same depth in A and B , the valuation v just
defined is a consistent assignment of elements of K to the variables of A  B .
Next, following Definition 5.2 and according to the particular wr-matrix on which
MM is based, v is extended to an interpretation I . And for this interpretation I , the
following are proved:

(4) For each subformula C of A, Im�d�1.C / 2 K1 for each depth d that occurs
in A.

(5) For each subformula C of B , Im�d�1.C / 2 K2 for each depth d that C

occurs in B .
The proofs of (4) and (5) are by induction on the length of C . We prove (4).

(The proof of (5) is similar.) Now, the cases in which C is a propositional variable,
a negation, a conjunction, a disjunction, or a formula of the form A ! B are im-
mediate by Definitions 4.1 and 5.2 given that M is a wr-matrix (see Definition 4.1).
So, let us prove the case in which C is of the form D  E. Suppose, then, that
dŒD  E; A� D d . By Definition 2.6, dŒD; A� D dŒE; A� D d C 1. By hy-
pothesis of induction, Im�.dC1/�1.D/ 2 K1 and Im�.dC1/�1.E/ 2 K1. That is,
Im�d�2.D ! E/ 2 K1 by condition 1 in Definition 4.1. Then, by clause (vi.b)
in Definition 5.2, Im�d�1.A  B/ 2 K1, as was to be proved. Therefore, the
interpretation I defined above is the required interpretation I in Lemma 5.6.

With the aid of Lemma 5.6, we shall prove that, in formulas of the form A  B

verified by a wr-model structure, A and B share a propositional variable at the same
depth.

Theorem 5.7 LetMM be a wr-model structure, and suppose �MM A B . Then,
A and B share at least one propositional variable at the same depth.

Proof Let A B be a wff such that A and B do not share a propositional variable
at the same depth. By Lemma 5.6, there is some k for interpretation I in MM such
that for every subformula C of A and D of B , Ik.C / 2 K1 and Ik.D/ 2 K2. As
A and B are subformulas of themselves, Ik.A/ 2 K1 and Ik.B/ 2 K2, whence
Ik.A! B/ D aF by condition (3) in Definition 4.1. So, Iw.A B/ … T for this
interpretation I by condition (vi) in Definition 5.2. That is, A  B is not valid in
MM. Now, Theorem 5.7 follows by contraposition.

The section is ended by exemplifying Lemma 5.6 and Theorem 5.7.

Example 5.8 Consider the wr-matrix CL defined in Example 4.5. This matrix
verifies the logic R and, therefore, the thesis
(t10) p ! Œ.p ! q/! q�

in Remark 2.10. Let us refer by C , A, and B to (t10), p, and .p ! q/ ! q,
respectively. Then deg.C / D 3, deg.A/ D 0, deg.B/ D 2, dŒp; B� D dŒ

1
q; B� D 2,

dŒ
2
q; B� D 1 (

1
q and

2
q are the first and second occurrence of q in B , respectively).

Next, it is shown that the wr-model structure MCL in Example 5.5 falsifies t10. We
set the following valuation v.m D 3/:

(1) vm�2�1.p/ D vm�2�1.q/ D 3;
(2) vm�1�1.q/ D 3;
(3) vm�0�1.p/ D 2.
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The assignment to p in (2) and to q in (3) above as well as the value of p and
q according to (vi) of Definition 5.2 (where m � 3) is, for example, 1. Then,
v is extended by Definition 5.2 to the corresponding interpretation I . Accord-
ing to CL and Definition 5.2, for this interpretation I , we have in succession
I0.p ! q/ D 3, I1.p q/ D 3, I1..p q/! q/ D 3, I2..p q/ q/ D 3,
I2.p ! Œ.p  q/ q/�/ D 0, I3.p  Œ.p  q/ q/�/ D 0. Therefore, (t10)
is, according to MCL, not valid when! is read as .

6 A wr-Matrix Verifying Logics Not Included in R-Mingle

Definition 6.1 Consider the matrix MDF6:1 D .K; T; F; f!; f^; f_; f:/, where
(1) K D ¹0; 1; 2; 3; 4; 5º,
(2) T D ¹1; 2; 3; 4; 5º,
(3) F D ¹0º,
(4) the functions f!, f^, f_, f: are defined as shown in the tables below:

! 0 1 2 3 4 5 :

0 1 1 2 3 4 5 5

1 0 1 2 3 4 5 4

2 0 0 2 0 4 5 2

3 0 0 0 3 4 5 3

4 0 0 0 0 4 5 1

5 0 0 0 0 0 5 0

^ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 1 1 1

2 0 1 2 1 2 2

3 0 1 1 3 3 3

4 0 1 2 3 4 4

5 0 1 2 3 4 5

_ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 2 3 4 5

2 2 2 2 4 4 5

3 3 3 4 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

(5) K1 D ¹2º,
(6) K2 D ¹3º,
(7) aF D 0.

Remark 6.2 The following is a Hasse diagram of MDF6:1.

Then, we have the following.
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Proposition 6.3 MDF6:1 is a wr-matrix.
Proof The proposition is proved by checking that the conditions in Definition 4.1
are fulfilled.

Proposition 6.4 Any logic verified by MDF6:1 has the vsp.
Proof This is proved by Theorem 4.3.

Now, in addition to Routley and Meyer’s BC (see [11] or [14]), MDF6:1 verifies,
among others, the following rules and theses:
(t18) Œ.A! A/! B�! B ,
(t19) ŒA! .A! B/�$ .A! B/,
(t20) .B ! A/! .A! A/,
(t21) A! Œ.B ! A/! A�,
(t22) Œ.A! B/! A�! A,
(t23) Œ.A! B/ ^ .B ! C /�! .A! C /,
(t24) .A! B/! Œ.A _ C /! .B _ C /�,
(t25) ::A$ A,
(t26) Œ.A! B/ ^ :B�! :A,
(t27) Œ.A! B/ ^ .A! :B/�! :A,
(t28) ` A! B )` :B ! :A,
(t29) ` A! B )` .A! :B/! :A.
We have the following.

Proposition 6.5 Let S be a logic axiomatized by adding to BC any selection of
(t18)–(t29). Then, S has the vsp.
Proof This is proved by Proposition 6.4.

Then, we note the following.
Remark 6.6 Theses (t20), (t21), (t22), and (t24) are not provable in RM3, a strong
extension of R-Mingle (see [4] on RM3). Notice, by the way, that (t22) is Peirce’s
law, the characteristic thesis of classical implicative logic.
Therefore, MDF6.1 characterizes a class of logics with the vsp well far off the spectrum
of standard relevant logics. In the following section, this matrix is used for defining
deep relevant logics in which (t20) and (t24) are valid.

7 A wr-Model Structure Built upon MDF6.1

According to Definition 5.1, we set the following.
Definition 7.1 (The MMDF6.1-model structure) The wr-model structure MMDF6.1 is
the set ¹M0;M1;M2; : : : ;Mn; : : : ;M!º where M0;M1;M2; : : : ;Mn; : : : ;M! are all
identical to MDF6.1. Then, interpretations on MMDF6.1 are defined according to MDF6.1
following clauses (i)–(vi) in Definition 5.2 with ak D 5. Finally, validity in MMDF6.1
is understood according to Definition 5.3.
Now, it is our aim to define deep relevant logics verified by the wr-model struc-
ture MMDF6.1. But in order to do this, we follow Brady by establishing a helpful
lemma. First, let us define, in addition to T , the following subsets of K in MMDF6.1:
T � D ¹5º, a D ¹2; 4; 5º, and a� D ¹3; 4; 5º. Furthermore, let us reformulate clause
(vi.c) in Definition 5.2 as follows.
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Remark 7.2 Reformulation of clause (vi.c) in Definition 5.2:

(vi.c) j D !:

(1) I!.A B/ 2 T iff Ij .A! B/ 2 T for all j.0 � j � !/;

(2) I!.A B/ 2 T � iff Ij .A! B/ 2 T � for all j.0 � j � !/;

(3) I!.A B/ 2 a iff Ij .A! B/ 2 a for all j.0 � j � !/;

(4) I!.A B/ 2 a� iff Ij .A! B/ 2 a� for all j.0 � j � !/:

Then the following lemma is proved.

Lemma 7.3 For all i (0 � i � !),
(i)

(a) Ii .:A/ 2 T , Ii .A/ … T �;

(b) Ii .:A/ 2 T � , Ii .A/ … T;

(c) Ii .:A/ 2 a, Ii .A/ … a�;

(d) Ii .:A/ 2 a� , Ii .A/ … a;

(ii)

(a) Ii .A ^ B/ 2 T , Ii .A/ 2 T & Ii .B/ 2 T;

(b) Ii .A ^ B/ 2 T � , Ii .A/ 2 T � & Ii .B/ 2 T �;

(c) Ii .A ^ B/ 2 a, Ii .A/ 2 a & Ii .B/ 2 a;

(d) Ii .A ^ B/ 2 a� , Ii .A/ 2 a� & Ii .B/ 2 a�;

(iii)

(a) Ii .A _ B/ 2 T , Ii .A/ 2 T or Ii .B/ 2 T;

(b) Ii .A _ B/ 2 T � , Ii .A/ 2 T � or Ii .B/ 2 T �;

(c) Ii .A _ B/ 2 a, Ii .A/ 2 a or Ii .B/ 2 a;

(d) Ii .A _ B/ 2 a� , Ii .A/ 2 a� or Ii .B/ 2 a�;

(iv)

(a) Ii .A! B/ 2 T , Ii .A/ 2 T ) Ii .B/ 2 T;

and Ii .A/ 2 T � ) Ii .B/ 2 T �;

and Ii .A/ 2 a) Ii .B/ 2 a;

and Ii .A/ 2 a� ) Ii .B/ 2 a�;

(b) Ii .A! B/ 2 T � , Ii .B/ 2 T �;

(c) Ii .A! B/ 2 a, Ii .B/ 2 T �; or
Ii .A/ … T � and Ii .B/ 2 a \ a�; or
Ii .A/ … a� and Ii .B/ 2 a and Ii .B/ … a�;

(d) Ii .A! B/ 2 a� , Ii .B/ 2 T �; or
Ii .A/ … T � and Ii .B/ 2 a \ a�; or
Ii .A/ … a and Ii .B/ 2 a� and Ii .B/ … a:
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Proof The lemma is proved by inspection of MDF6.1. Now, (i), (ii), and (iii) are
fairly obvious. Cases (iv.b), (iv.c), and (iv.d), as well as (iv.a) from left to right are
easy. So, let us show how (iv.a) from right to left can follow. Suppose then that for
any wff A, B and i (0 � i � !),

Ii .A/ 2 T ) Ii .B/ 2 T;

& Ii .A/ 2 T � ) Ii .B/ 2 T �;

& Ii .A/ 2 a) Ii .B/ 2 a;

& Ii .A/ 2 a� ) Ii .B/ 2 a�:

Then, we clearly have

(a) Ii .A/ … T or Ii .B/ 2 T �; or
(b) Ii .A/ … a & Ii .A/ … a� & Ii .B/ 2 T; or
(c) Ii .A/ … T � & Ii .B/ 2 a & Ii .B/ 2 a�; or
(d) Ii .A/ 2 a & Ii .A/ … a� & Ii .B/ 2 a & Ii .B/ … a�; or
(e) Ii .A/ … a & Ii .A/ 2 a� & Ii .B/ … a & Ii .B/ 2 a�:

Now it is easy to check that if any of a; b; c; d , or e is the case, then Ii .A !

B/ 2 T .

Then, leaning on Lemma 7.3, it is a simple (though tedious) task to prove the fol-
lowing.

Lemma 7.4 The following wff and rules of derivation are valid in the model struc-
tureMMDF6:1:

(a1) A A;

(a2) .A ^ B/ A=.A ^ B/ B;

(a3)
�
.A B/ ^ .A C /

�
 

�
A .B ^ C /

�
;

(a4) A .A _ B/=B  .A _ B/;

(a5)
�
.A C / ^ .B  C /

�
 

�
.A _ B/ C

�
;

(a6)
�
A ^ .B _ C /

�
 

�
.A ^ B/ _ .A ^ C /

�
;

(a7) .B  A/ .A A/;

(a8)
�
.A B/ ^ .B  C /

�
 .A C /;

(a9) .A B/ 
�
.A _ C / .B _ C /

�
;

(a10) A ::A;

(a11) ::A A;

(a12) :.A ^ :A/;

(a13) A _ :A;

(r1) A; A B ) B;

(r2) A; B ) A ^ B;

(r3) A B ) .B  C / .A C /;

(r4) .B  C /) .A B/ .A C /;

(r5) A B ) :B  :A;
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(r6) A B; A :B ) :A;

(r7) C _ A; C _ .A B/) C _ B;

(r8) C _ A) C _ :.A :A/;

(r9) C _ .A B/) C _ .:B  :A/;

(r10) E _ .A B/; E _ .C  D/) E _
�
.B  C /! .A D/

�
;

(r11) A B if A! B is verified by MDF6:1 and  does not appear in A

and B:

Proof We have the following:
� (a1), (a2), (a4), (a6), (a10), (a11), (a12), (a13), (r1), (r2), and (r11) are imme-
diate;
� (a3), (a5), (a7), (a8), (a9), (r3), (r4), (r7), and (r10) are proved similarly;
� (r5), (r6), (r8), and (r9) are proved in a similar way.

So, let us prove, for example, (a9), (r5), and (r10). We use Definition 5.2 (DF5.2),
Remark 7.2 (R7.2), and Lemma 7.3 (L7.3).

Now, notice that, according to Lemma 7.3, in order to show the validity in MMDF6.1
of a formula of the form A B it suffices to prove that for all valuations v, for all
j.0 � j � !/,

(1) Ij .A/ 2 T ) Ij .B/ 2 T ,
(2) Ij .A/ 2 T � ) Ij .B/ 2 T �,
(3) Ij .A/ 2 a) Ij .B/ 2 a,
(4) Ij .A/ 2 a� ) Ij .B/ 2 a�.

(a9) is valid in MMDF6.1

Case I I!.A B/ 2 T ) I! Œ.A _ C / .B _ C /� 2 T

We prove the subcases (Ia), (Ib), and (Ic) that follow:

(Ia) j D 0: I0.A B/ 2 T ) I0

�
.A _ C / .B _ C /

�
2 T:

As I0Œ.A_C / .B _C /� D 5 (see Definition 7.1), I0Œ.A_C / .B _C /� 2 T .

(Ib) 0 < j < !: Ij .A B/ 2 T ) Ij

�
.A _ C / .B _ C /

�
2 T:

Suppose
Ij .A B/ 2 T: (Hyp)

We have to prove Ij Œ.A _ C / .B _ C /� 2 T . That is,

(Ib1) Ij�1.A _ C / 2 T ) Ij�1.B _ C / 2 T;

& (Ib2) Ij�1.A _ C / 2 T � ) Ij�1.B _ C / 2 T �;

& (Ib3) Ij�1.A _ C / 2 a) Ij�1.B _ C / 2 a;

& (Ib4) Ij�1.A _ C / 2 a� ) Ij�1.B _ C / 2 a�;

according to DF5.2 and L7.3. By (Hyp) and DF5.2, Ij�1.A ! B/ 2 T . So, by
L7.3,
(Ib5) Ij�1.A/ 2 T ) Ij�1.B/ 2 T ,
(Ib6) Ij�1.A/ 2 T � ) Ij�1.B/ 2 T �,
(Ib7) Ij�1.A/ 2 a) Ij�1.B/ 2 a,
(Ib8) Ij�1.A/ 2 a� ) Ij�1.B/ 2 a�.
But (Ib1)–(Ib4) are immediate from (Ib5)–(Ib8).
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(Ic) j D !. I!.A B/ 2 T ) I! Œ.A _ C / .B _ C /� 2 T .
Suppose I!.A  B/ 2 T . By DF5.2, Ij .A ! B/ 2 T for all j.0 � j � !/.

Then, case (Ic) follows similarly as (Ib).
Case II I!.A B/ 2 T � ) I! Œ.A _ C / .B _ C /� 2 T �

Subcases (IIa) (j D 0) and (IIc) (j D !) are proved similarly as in case I. So, let
us prove (IIb).

(IIb) 0 < j < !: Ij .A B/ 2 T � ) Ij

�
.A _ C / .B _ C /

�
2 T �:

Suppose Ij .A  B/ 2 T �. By DF5.2 and R7.2, Ij�1.A ! B/ 2 T �, by
L7.3, Ij�1.B/ 2 T �, and so, Ij�1.B _ C / 2 T �. Consequently, Ij�1Œ.A _ C /!

.B _ C /� 2 T � by L7.3, and Ij Œ.A _ C / .B _ C /� 2 T � by DF5.2 and R7.2.
Case III I!.A B/ 2 a) I! Œ.A _ C / .B _ C /� 2 a

We prove (IIIb), with subcases (IIIa) and (IIIc) being proved as above.

(IIIb) 0 < j < !: Ij .A B/ 2 a) Ij

�
.A _ C / .B _ C /

�
2 a:

Suppose Ij .A B/ 2 a, that is, Ij�1.A! B/ 2 a. By DF5.2 and R7.2,
(IIIb1) Ij�1.B/ 2 T �, or
(IIIb2) Ij�1.A/ … T � & Ij�1.B/ 2 a \ a�, or
(IIIb3) Ij�1.A/ … a� & Ij�1.B/ 2 a & Ij�1.B/ … a�.

We have to prove Ij Œ.A _ C / .B _ C /� 2 a. That is,
(IIIb4) Ij�1.B _ C / 2 T �, or
(IIIb5) Ij�1.A _ C / … T � & Ij�1.B _ C / 2 a \ a�, or
(IIIb6) Ij�1.A _ C / … a� & Ij�1.B _ C / 2 a & Ij�1.B _ C / … a�.

We consider the three possible alternatives, (IIIb1)–(IIIb3).
1. (IIIb1). We have Ij�1.B/ 2 T �. Then (IIIb4) is immediate.
2. (IIIb2). We have Ij�1.A/ … T � & Ij�1.B/ 2 a \ a�. Suppose

Ij�1.C / 2 T �. Then, (IIIb4) is immediate. Suppose, on the other hand,
Ij�1.C / … T �. Then, Ij�1.A _ C / … T �, whence (IIIb5) follows by
Ij�1.B _ C / 2 a \ a� (Ij�1.B/ 2 a \ a�).

3. (IIIb3). We have Ij�1.A/ … a� & Ij�1.B/ 2 a & Ij�1.B/ … a�. Sup-
pose Ij�1.C / … a�. Then (IIIb6) is immediate. Suppose, on the other hand,
Ij�1.C / 2 a�. Then Ij�1.B _ C / 2 a \ a�. Now, if Ij�1.C / 2 T �,
then (IIIb4) follows. And if Ij�1.C / … T �, then Ij�1.A _ C / … T �

(Ij�1.A/ … a�), whence (IIIb5) follows.
Case IV Iw.A B/ 2 a� ) Iw Œ.A _ C / .B _ C /� 2 a�

The proof is similar to that of case (III).
With the proof of case (IV) ends the proof that (a9) is MMDF6.1-valid.
(r5) preserves MMDF6.1-validity
Suppose

I!.A B/ 2 T for all v: (Hyp)

Let v be an arbitrary valuation. We have to prove I!.:B  :A/ 2 T . By L7.3
it suffices to prove, for this valuation, cases I, II, and III below.
Case I j D 0. I0.:B  :A/ 2 T

This is immediate, as I0.:B  :A/ D 5.
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Case II 0 < j < !. Ij .:B  :A/ 2 T

By (Hyp), Ij .A B/ 2 T for all j in this v. So, by L7.3,
(II1) Ij�1.A/ 2 T ) Ij�1.B/ 2 T ,
(II2) Ij�1.A/ 2 T � ) Ij�1.B/ 2 T �,
(II3) Ij�1.A/ 2 a) Ij�1.B/ 2 a,
(II4) Ij�1.A/ 2 a� ) Ij�1.B/ 2 a�.
By L7.3,

(II5) Ij�1.:B/ 2 T ) Ij�1.:A/ 2 T ,
(II6) Ij�1.:B/ 2 T � ) Ij�1.:A/ 2 T �,
(II7) Ij�1.:B/ 2 a) Ij�1.:A/ 2 a,
(II8) Ij�1.:B/ 2 a� ) Ij�1.:A/ 2 a�,

whence Ij .:B  :A/ 2 T follows by L7.3, DF5.2, and R7.2.
Case III j D !. Ij .:B  :A/ 2 T .

The proof of this case is similar to that of case II (see DF5.2, R7.2).
(r10) preserves MMDF6.1-validity
Suppose that, for all v,

I!

�
E _ .A B/

�
2 T; Iw

�
E _ .C  D/

�
2 T: (Hyp 1)

Suppose further that, for arbitrary v,

I!.E/ … T: (Hyp 2)

We have to prove that Ij Œ.B  C / .A D/� 2 T for this valuation v. The
cases where j D 0 and j D ! are proved as in the preceding examples. So, let us
prove for all j (0 < j < !) in this v the following:

(I) Ij .B  C / 2 T ) Ij .A D/ 2 T ,
(II) Ij .B  C / 2 T � ) Ij .A D/ 2 T �,
(III) Ij .B  C / 2 a) Ij .A D/ 2 a,
(IV) Ij .B  C / 2 a� ) Ij .A D/ 2 a�.
As above, we use DF5.2, R7.2, and L7.3.
Now, by (Hyp 1) and (Hyp 2),

(h1) Ij�1.A/ 2 T ) Ij�1.B/ 2 T

& Ij�1.C / 2 T ) Ij�1.D/ 2 T;

(h2) Ij�1.A/ 2 T � ) Ij�1.B/ 2 T �

& Ij�1.C / 2 T � ) Ij�1.D/ 2 T �;

(h3) Ij�1.A/ 2 a) Ij�1.B/ 2 a

& Ij�1.C / 2 a) Ij�1.D/ 2 a;

(h4) Ij�1.A/ 2 a� ) Ij�1.B/ 2 a�

& Ij�1.C / 2 a� ) Ij�1.D/ 2 a�:

Next, we prove cases I–IV above.
Case I Ij .B  C / 2 T ) Ij .A D/ 2 T .

Suppose Ij .B  C / 2 T . Then,
(I1) Ij�1.B/ 2 T ) Ij�1.C / 2 T ,
(I2) Ij�1.B/ 2 T � ) Ij�1.C / 2 T �,
(I3) Ij�1.B/ 2 a) Ij�1.C / 2 a,
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(I4) Ij�1.B/ 2 a� ) Ij�1.C / 2 a�.
By (h1)–(h4) and (I1)–(I4), we have immediately
(I5) Ij�1.A/ 2 T ) Ij�1.D/ 2 T ,
(I6) Ij�1.A/ 2 T � ) Ij�1.D/ 2 T �,
(I7) Ij�1.A/ 2 a) Ij�1.D/ 2 a,
(I8) Ij�1.A/ 2 a� ) Ij�1.D/ 2 a�,

whence Ij�1.A! D/ 2 T , and so Ij .A D/ 2 T .
Case II Ij .B  C / 2 T � ) Ij .A D/ 2 T �.

Suppose Ij .B  C / 2 T �. Then, Ij�1.C / 2 T �. By h2, Ij�1.D/ 2 T �. So,
Ij�1.A! D/ 2 T �, and, finally, Ij .A D/ 2 T �.
Case III Ij .B  C / 2 a) Ij .A D/ 2 a.

Suppose Ij .B  C / 2 a. Then,
(III1) Ij�1.C / 2 T �, or
(III2) Ij�1.B/ … T � & Ij�1.C / 2 a \ a�, or
(III3) Ij�1.B/ … a� & Ij�1.C / 2 a & Ij�1.C / … a�.
We have to prove Ij .A D/ 2 T . That is,

(III4) Ij�1.D/ 2 T �, or
(III5) Ij�1.A/ … T � & Ij�1.D/ 2 a \ a�, or
(III6) Ij�1.A/ … a� & Ij�1.D/ 2 a & Ij�1.D/ … a�.
We consider each of III1, III2, and III3.
(III1) Ij�1.C / 2 T �:
Then, (III4) follows by (h2).
(III2) Ij�1.B/ … T � & Ij�1.C / 2 a \ a�:
By (h2), Ij�1.A/ … T �; by (h3) and (h4), Ij�1.D/ 2 a \ a�. That is, (III5) is

provable.
(III3) Ij�1.B/ … a� & Ij�1.C / 2 a & Ij�1.C / … a�:
By (h4), Ij�1.A/ … a�, and so, Ij�1.A/ … T �. By (h3), Ij�1.D/ 2 a. Now, if

Ij�1.D/ … a�, we have (III6). If Ij�1.D/ 2 a�, (III5) follows.
Case IV Ij .B  C / 2 a� ) Ij .A D/ 2 a�.

The proof is similar to that of case III.
With the proof that (r10) preserves MMDF6.1-validity, we consider Lemma 7.4

proved.

Finally, by using Lemma 7.4, we have the following.
Theorem 7.5 Let S be a logic formulated with any selection of (a1)–(a13) and
(r1)–(r11). Then, S has the drc.
Proof This proof is immediate by Lemma 7.4.

We end this section with the following remark.
Remark 7.6 Given that (A9) of DR is not valid in MMDF6:1 (it is not verified by
MMDF6:1), none of the logics in Theorem 7.5 includes DR. On the other hand, (a7),
(a9), and (r11) are not provable in DR. So, any logic in Theorem 7.5 formulated with
any of (a7), (a9), or (r11) is not included in DR. Furthermore, (a7) and (a9) are not
theorems of RM3, a strong extension of R-Mingle (see [4]), as pointed out above.
Therefore, logics in Theorem 7.5 formulated with (a7) and/or (a9) are deep relevant
logics not included in RM and, consequently, not included in relevant logic R.
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8 Concluding Remarks

As was pointed out in the introduction, the drc is motivated in [5] as a necessary
condition, stated in syntactic terms, for some paraconsistent logics rejecting the con-
traction law. But, not being a sufficient condition, the drc does not determine a unique
deep relevant logic, similarly as the vsp does not determine a sole relevant logic. As
we have seen, Brady’s strategy is to restrict with the drc the class of logics with the
vsp verified by Meyer’s crystal matrix CL. And concerning this strategy, two points
have to be noticed.

1. Brady chooses the logic DR (presumably an abbreviation for “depth rele-
vance”) as the preferred one among those definable from CL as indicated.
Brady’s choice is well motivated, as discussed below, but it has to be re-
marked that, given the insufficiency of the drc, the logic DR is not “maximal”
in the sense that it can be extended without it losing the drc. For example, the
axioms (t1), (t2), and (t4) of DT (see Section 1 above) can be added. (Axioms
(t3) and (t5) are not, however, acceptable. Proofs of these facts are left to the
reader.)

2. The matrix CL is axiomatized by adding to relevant logic R the following
axioms (see [8, p. 95]):

(CL1) :.A ^ B/!
�
.:A! A/ _ .A! B/

�
;

(CL2) A _ .A! B/:

Now, as any logic verified by CL has the vsp and, on the other hand, (CL1) and
(CL2) are acceptable in no deep relevant logic (proof is left to the reader), it is rea-
sonable to conclude that all deep relevant logics definable from CL are included in
relevant logic R.

Brady’s investigations on the topic have been pursued in [6], [7], and [9]. In [6],
he provides a hierarchical (Routley–Meyer) semantics for relevant logics between
Routley and Meyer’s basic logic B and DR. The idea is to translate the different
levels in the model structures discussed above into the Routley–Meyer semantics
(see [6]). And the author concludes: “We have motivated hierarchical semantics as a
semantical rendition of the Depth Relevance Condition and we are now in a position
to see the close relationship that exists between these two” (see [6, p. 373]). Now,
it has to be remarked that, if in [5] the interest in the drc is motivated because the
property is considered a foundation for paraconsistent logics without the contraction
law, in [7] the interest in the drc is justified by its own sake: as a fitter condition than
the vsp to characterize relevant logics. It also has to be noted that the hierarchical
Routley–Meyer semantics is adequate to some logics between B and DR but do not,
of course, determine a unique deep relevant logic. On the other hand, in [7], and
with much more detail in [9], a “meaning containment” semantics is defined. In
this semantics, entailments are characterized by the relation of meaning containment
rather than by that of meaning connection (as suggested by the vsp). This semantics is
considered as a foundation of the drc “as the various depths of! would correspond
to the various depths of containment sentence” (see [7, p. 172]).

In this context, it develops that the system DJd is the main logic. DJd , which is,
essentially, the result of deleting (A10) and (R4) from DR, is said to be the logic
determined by this semantics: “Thus, the entailment of DJd can reasonably be said
to satisfy the concept of meaning containment, expressed as a content semantics”
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(see [7, p. 171]). Consequently, it seems that it has to be concluded that DJd is
the logic adequate to the drc. Be that as it may, it is clear that, as Brady points
out, DJd has a number of convenient properties: it has a workable natural deduction
system, and it is decidable, gentzenizable, metacomplete; it has the drc and a related
hierarchical Routley–Meyer semantics and a simple consistent naive set theory (see
[7, Section 8]).

As we have seen, the aim of this paper has been to generalize Brady’s strategy
by showing how to define a class of deep relevant logics from each weak relevant
matrix. It has been shown that, given that there are weak relevant matrices verifying
logics with the vsp not included in R, there are deep relevant logics not included in R
(actually, in R-Mingle). On the other hand, it can reasonably be expected that weak
relevant matrices structurally different from those treated in this paper can be found.
But it has not been our purpose to propose any of the deep relevant logics definable
from MDF6.1 as an alternative to DR or DJd .

We do not know if any of these logics has properties comparable to those cham-
pioned by DJd . We do not know if any of them is decidable, gentzenizable, or has
a natural deduction system worthy of the name “natural”. Moreover, no logic with
(a7) or (a9) as an axiom is representable with a Routley–Meyer affixing-style seman-
tics (see [15]) because these axioms belong in the category “intractable principles”
discussed in [15]. Therefore, no deep relevant logic with any of the two axioms (and
other similar axioms) can be given a hierarchical Routley–Meyer semantics of the
type built up in [6] upon the standard affixing semantics. And, nevertheless, the log-
ics defined in this paper and others related to them and defined upon a, in a sense,
dual matrix to MDF6.1 are endowed with the following properties (see [10]).

1. They can be given a neighborhood ternary semantics of the type treated in
[8].

And, moreover,
2. They have a “containment semantics” of the sort defined by Brady in [7]

for DJd , this showing that the latter is not the only logic adequate to this
semantics.

Both characteristics show, we think, that these logics merit consideration.
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