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Consecutive Singular Cardinals and
the Continuum Function

Arthur W. Apter and Brent Cody

Abstract We show that from a supercompact cardinal �, there is a forcing ex-
tension V ŒG� that has a symmetric inner model N in which ZF C :AC holds,
� and �C are both singular, and the continuum function at � can be precisely
controlled, in the sense that the final model contains a sequence of distinct sub-
sets of � of length equal to any predetermined ordinal. We also show that the
above situation can be collapsed to obtain a model of ZF C :AC! in which ei-
ther (1) @1 and @2 are both singular and the continuum function at @1 can be
precisely controlled, or (2) @! and @!C1 are both singular and the continuum
function at @! can be precisely controlled. Additionally, we discuss a result in
which we separate the lengths of sequences of distinct subsets of consecutive
singular cardinals � and �C in a model of ZF. Some open questions concerning
the continuum function in models of ZF with consecutive singular cardinals are
posed.

1 Introduction

In this paper we will be motivated by the following question: Are there models of
Zermelo–Fraenkel (ZF) set theory with consecutive singular cardinals � and �C such
that “the generalized continuum hypothesis (GCH) fails at �” in the sense that there
is a sequence of distinct subsets of � of length greater than �C? Let us start by
considering some known models of ZF that have consecutive singular cardinals.

Gitik showed in [8] that from a proper class of strongly compact cardinals,
h�˛ j ˛ 2 ORDi, there is a model of ZFC:AC! in which all uncountable cardinals
are singular. Essentially he uses a certain type of generalized Prikry forcing that
simultaneously singularizes and collapses each �˛ , thereby resulting in a model in
which the class of uncountable well-ordered cardinals consists of the previously
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strongly compact �˛’s and their limits. In this model, every uncountable cardinal
is singular, and for each ˛ 2 ORD and for each limit ordinal �, all cardinals in the
open intervals .�˛; �˛C1/ and .supˇ<� �ˇ ; ��/ have been collapsed to have size �˛
and supˇ<� �ˇ , respectively. Since each �˛ is a strong limit cardinal in the ground
model, it follows that in Gitik’s final model there is no cardinal � that has a sequence
of distinct subsets of length greater than—or even equal to—�C. (Of course, triv-
ially, in any model of ZF, for any cardinal �, there is always a �-sequence of distinct
subsets of � given by the sequence of intervals hŒ˛; �/ j ˛ < �i. This also trivially
implies that, for any ˇ 2 .�; �C/, there is a ˇ-sequence of distinct subsets of � as
well.) For similar reasons, the models constructed in Gitik [9] and Apter, Dimitriou,
and Koepke [4] also will not have consecutive singular cardinals � and �C with a
sequence of distinct subsets of � of length even �C.

There has been a great deal of work, involving forcing over models of AD, in
which models are constructed having consecutive singular cardinals, as exemplified
by Apter [3]. However, in any model of AD, no cardinal � < ‚ has a sequence of
distinct subsets of length �C let alone of longer length (see Steel [17]). Thus, forcing
over a model of AD does not seem to yield, in any obvious way, a model containing
consecutive singular cardinals, � and �C, in which there is a sequence of distinct
subsets of � of length �C.

In this article, we will show that from a supercompact cardinal, there are models
of ZFC:AC that have consecutive singular cardinals, say, � and �C, such that there
is a sequence of distinct subsets of � of length equal to any predetermined ordinal.
Indeed, we will prove the following.

Theorem 1 Suppose that � is supercompact, GCH holds, and � is an ordinal.
Then there is a forcing extension V ŒG� that has a symmetric inner model N � V ŒG�
of ZFC:AC in which the following hold:

(1) � and �C are both singular with cf.�/N D ! and cf.�C/N < �;
(2) � is a strong limit cardinal that is a limit of inaccessible cardinals;
(3) there is a sequence of distinct subsets of � of length � .

Let us remark here that property (3) in Theorem 1 makes this result interesting, since
none of the previously known models with consecutive singular cardinals discussed
above satisfies it when � � �C. Since the definitions of “strong limit cardinal” and
“inaccessible cardinal” generally do not make sense in models of:AC, let us explain
why the assertion in Theorem 1 that (2) holds in N makes sense. It will be the case
that N and V have the same bounded subsets of �, and from this it follows that
the usual definitions of “� is a strong limit cardinal” and “ı < � is an inaccessible
cardinal” make sense in N .

Using the methods of Bull [6], Apter [1], and Apter and Henle [5], we also obtain
the following two results.

Theorem 2 Suppose that � is supercompact, GCH holds, and � is an ordinal.
Then there is a model of ZFC:AC! in which cf.@1/ D cf.@2/ D !, and there is a
sequence of distinct subsets of @1 of length � .

Theorem 3 Suppose that � is supercompact, GCH holds, and � is an ordinal.
Then there is a model of ZFC:AC! in which @! and @!C1 are both singular with
! � cf.@!C1/ < @! , and there is a sequence of distinct subsets of @! of length � .
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We note that in Theorem 2, @1 and @2 can be replaced with ı and ıC, respectively,
where ı is the successor of any ground-model regular cardinal less than �. Also, in
Theorem 3, we note that @! and @!C1 can be replaced by � and �C, respectively,
where � < � can be any reasonably defined singular limit cardinal of cofinality !.
We will return to these issues later.

Let us now give a brief outline of the rest of the paper. In Section 2, we include a
definition of the basic forcing notion we will use and outline its important properties.
In Section 3, we give a detailed proof of Theorem 1. In Section 4, we sketch the
proofs of Theorems 2 and 3. In Section 5, we discuss a result in which we separate
the lengths of distinct subsets of consecutive singular cardinals, and we also pose
some open questions.

2 Preliminaries

In this section, we will briefly discuss the various forcing notions used. If � is a
regular cardinal and � is an ordinal, Add.�; �/ denotes the standard partial order for
adding � Cohen subsets to �. If � > � is an inaccessible cardinal, Coll.�; <�/ is the
standard partial order for collapsing � to �C and all cardinals in the interval Œ�; �/
to �. For further details, we refer the reader to Jech [12]. For a given partial order P
and a condition p 2 P, we define P=p WD ¹q 2 P j q � pº. If ' is a statement in
the forcing language associated with P and p 2 P, we write p k ' if and only if p
decides '.

We will now review the definition and important features of supercompact Prikry
forcing and refer the reader to Gitik [11] or Apter [2] for details. Suppose that � is
�-supercompact and that U is a normal fine measure on P�� satisfying the Menas
partition property (see Menas [15] for a definition and a proof of the fact that if �
is 2�-supercompact, then P�� has a normal fine measure with this property). For
P;Q 2 P�� we say that P is strongly included in Q and write P �

�
Q if P � Q

and ot.P / < ot.Q \ �/. We define supercompact Prikry forcing P to be the set of
all ordered tuples of the form hP1; : : : ; Pn; Ai such that

(1) P1; : : : ; Pn is a finite ��-increasing sequence of elements of P��,
(2) A 2 U , and
(3) for everyQ 2 A, Pn �� Q.

Given hP1; : : : ; Pn; Ai; hQ1; : : : ;Qm; Bi 2 P we say that hP1; : : : ; Pn; Ai extends
hQ1; : : : ;Qm; Bi and write hP1; : : : ; Pn; Ai � hQ1; : : : ;Qm; Bi if and only if

(1) n � m,
(2) for each k � m, Pk D Qk ,
(3) A � B , and
(4) ¹PmC1; : : : ; Pnº � B .
Since any two conditions of the form hP1; : : : ; Pn; Ai and hP1; : : : ; Pn; Bi in P

are compatible, one may easily show that P is .�<�/C-c.c. Since U satisfies the
Menas partition property, it follows that forcing with P does not add new bounded
subsets to �. In the forcing extension by P, � has cofinality !, and if � > �, then
certain cardinals will be collapsed according to the following.

Lemma 4 Every  2 Œ�; �� of cofinality at least � (in V) changes its cofinality to
! in V ŒG�. Moreover, in V ŒG�, every cardinal in .�; �� is collapsed to have size �.



128 Apter and Cody

3 The Proof of Theorem 1

Now we will begin the proof of Theorem 1. We note that our proof amalgamates the
methods used in [5] with those of [2].

Proof of Theorem 1 Suppose that � is supercompact and that � is an ordinal in
some initial model V0 of ZFCCGCH. We will show that there is a forcing extension
of V0 that has a symmetric inner model N in which � and �C are both singular with
cf.�/N D ! and cf.�C/N < �, and there is a � -sequence of subsets of �. By
first forcing the supercompactness of � to be Laver indestructible, as in Laver [13],
and then forcing with Add.�; �/, we may assume without loss of generality that � is
supercompact and 2� D � in a forcing extension V of V0. Let � be a cardinal such
that � < � and cf.�/V < �. In V , let P be the supercompact Prikry forcing relative
to some normal fine measure U on P�� satisfying the Menas partition property. Let
G be V -generic for P, and let hPn j n < !i be the supercompact Prikry sequence
associated with G; that is, hPn j n < !i is the sequence of elements of P�� such
that for each n < !, there is an A 2 U with .P1; : : : ; Pn; A/ 2 G.

By Lemma 4, it follows that in V ŒG�, the cofinality of � is !, and every ordinal
in the interval .�; �� has size �. Furthermore, since the supercompact Prikry forcing
adds no new bounded subsets to �, it follows that � remains a cardinal in V ŒG�. We
will now define a symmetric inner model N � V ŒG� in which �C D �, and we will
argue that the conclusions of Theorem 1 hold in N .

In order to define N , we need to discuss a way of restricting the forcing
conditions in P. First note that, as in [2], for ı 2 Œ�; �� a regular cardinal,
U � ı WD U \ P.P�ı/ is a normal fine measure on P�ı satisfying the Menas
partition property. Let PU�ı denote the supercompact Prikry forcing associated with
U � ı. If p D hQ1; : : : ;Qn; Ai 2 P, we define p � ı WD hQ1 \ ı; : : : ;Qn \ ı;

A \ P�ıi and note that p 2 PU�ı . If A 2 P��, we define A � ı WD A \ P�ı.
The Mathias genericity criterion (see Mathias [14]) for supercompact Prikry forcing
yields that rı WD hPn \ ı j n < !i generates a V -generic filter for PU�ı . Indeed,
G � ı WD G \ PU�ı is the generic filter for PU�ı generated by rı . N is now
defined informally as the smallest model of ZF extending V which contains rı for
each regular cardinal ı 2 Œ�; �/ but not the full supercompact Prikry sequence
r WD hPn j n < !i.

We may define N more formally as follows. Let L be the forcing language as-
sociated with P, and let L1 � L be the ramified sublanguage containing symbols
Lv for each v 2 V , a unary predicate LV (interpreted as LV . Lv/ if and only if v 2 V ),
and symbols Prı for each regular cardinal ı 2 Œ�; �/. We define N inductively inside
V ŒG� as follows:

N0 D ;;

Nı D
[
˛<ı

N˛ for ı a limit ordinal;

N˛C1 D
®
x � N˛

ˇ̌
x can be defined over hN˛;2; cic2N˛

using a forcing term � 2 L1 of rank � ˛
¯
;
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and

N D
[

˛2ORD

N˛:

Standard arguments show that N ˆ ZF. As usual, each Lv for v 2 V may be
chosen so as to be invariant under any isomorphism ‰ W P=p ! P=q for p; q 2 P.
Further, terms � mentioning only Prı may be chosen so as to be invariant under any
isomorphism ‰ W P=p ! P=q which preserves the meaning of rı .

The following lemma provides the key to showing thatN has the desired features.

Lemma 5 If x 2 N is a set of ordinals, then for some regular cardinal ı 2 Œ�; �/,
x 2 V Œrı �.

Proof Let us note that the following proof of Lemma 5 blends ideas found in the
proofs of [2, Lemma 1.5] and [5, Lemma 2.1]. Let � be a term in L1 for x. Suppose
ˇ is an ordinal, p P;V � � ˇ, and p 2 G. Since � 2 L1, it follows that � mentions
finitely many terms of the form Prı . Without loss of generality, we may assume that �
mentions a single Prı . We will show that x 2 V Œrı �. Let

y WD
®
˛ < ˇ

ˇ̌
9q � p.q � ı 2 G � ı and q P;V ˛ 2 �/

¯
:

We will show that x D y. Since it is clear that y 2 V Œrı �, this will suffice. Sup-
pose ˛ 2 x, and choose p0 � p with p0 2 G such that p0 P;V ˛ 2 � . Since
p0 � ı 2 G � ı, we conclude that ˛ 2 y. Thus, x � y. Now suppose ˛ 2 y,
and let q � p with q � ı 2 G � ı and q P;V ˛ 2 � . There is a q0 2 G such
that q0 k ˛ 2 � . If q0  ˛ 2 � , then ˛ 2 x and we are done; thus we assume
that q0  ˛ … � . Write q D hQ1; : : : ;Ql ; Ai and q0 D hQ01; : : : ;Q0m; A0i, where
without loss of generality we assume that l < m. Since q0 � ı; q � ı 2 G � ı

and l < m, we know that Qi \ ı D Q0i \ ı for 1 � i � l . Furthermore, there is
some q� WD hQ0 \ ı; : : : ;Ql \ ı; R

�
lC1

; : : : ; R�m; A
�i 2 G � ı extending q � ı

with R�i D Q
0
i \ ı for l C 1 � i � m. (To find such a condition one could just take

a common extension of q0 � ı and q � ı in G � ı and then obtain the appropriate
stem by throwing unwanted points back into the measure one set.) Now let us argue
that there is a q00 � q in P such that q00 D hQ0; : : : ;Ql ; SlC1; : : : ; Sm; A

00i, and
for l C 1 � i � m we have Si \ ı D R�i D Q0i \ ı. Since q� �P�ı q � ı, it
follows by the definition of �P�ı that for l C 1 � i � m, R�i 2 A � ı D A \ P�ı,
which implies R�i D Si \ ı for some Si 2 A. Also by the definition of �P�ı ,
we have A� � A � ı, and since q� 2 P � ı, we have A� D B � ı for some
B 2 U . Now let A00 WD A0 \ A \ B , and notice that A00 � ı � A�. Indeed we have
q00 � ı �P�ı q

� and q00 �P q. We let q000 be the condition extending q0 defined by
q000 WD hQ01; : : : ;Q

0
m; A

00i.
Now we define an isomorphism from P=q00 to P=q000 that sends q00 to q000 and

fixes � . Let ‰ W P�� ! P�� be the permutation defined by ‰.Qi / D Q0i and
‰.Q0i / D Qi for 1 � i � l , by‰.Si / D Q

0
i and‰.Q

0
i / D Si for lC1 � i � m, and

by letting ‰ be equal to the identity function otherwise. This permutation induces
a map ‰ W P=p00 ! P=p000 defined by ‰.hP1; : : : ; Pn; C i/ D h‰.P1/; : : : ; ‰.Pn/;
‰00C i. Note that since ‰ fixes all but finitely many elements of P��, it follows that
‰00C 2 U . One may check that ‰ is an isomorphism, and it easily follows that
‰.q00/ D hQ01; : : : ;Q

0
m; ‰

00A00i D hQ01; : : : ;Q
0
m; A

00i D q000. Furthermore, since �
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mentions only Prı , since

hQ1 \ ı; : : : ;Ql \ ı; SlC1 \ ı; : : : ; Sm \ ıi D hQ
0
1 \ ı; : : : ;Q

0
m \ ıi;

and since any condition hQ1; : : : ;Ql ; SlC1; : : : ; Sm; SmC1; : : : ; Sk ;Di extending
q00 must have Si … ¹Q1; : : : ;Ql ; SlC1; : : : ; Sm;Q

0
1; : : : ;Q

0
mº for m C 1 � i � k,

it follows that ‰ does not affect the meaning of � . By extending ‰ to the rele-
vant P-terms, since q00  ˛ 2 � , we have ‰.q00/  ‰.˛/ 2 ‰.�/. This implies
‰.q00/ D q000  ˛ 2 � . This contradicts the fact that q000 � q0  ˛ … � .

Since V � N � V ŒG� and P does not add bounded subsets to �, it follows that N
and V have the same bounded subsets of �. Thus, in N , � is a limit of inaccessible
cardinals and hence is also a strong limit cardinal.

We will now use Lemma 5 to show that �, which was collapsed to have size � in
V ŒG�, is a cardinal in N and, furthermore, .�C/N D � and cf.�/N D cf.�/V .

Let us argue that if  � � is a cardinal in V , then  remains a cardinal in N .
Suppose, for a contradiction, that  is not a cardinal in N . Then there is a bijection
from some ˛ <  to  which is coded by a set of ordinals in N . By Lemma 5,
there is a regular cardinal ı 2 .�; �/ such that the code and hence the bijection are in
V ŒG � ı�. This implies that  is not a cardinal in V ŒG � ı�. We will obtain a contra-
diction by using the chain condition of PU�ı to show that  is a cardinal in V ŒG � ı�.
Indeed, we will show that even though GCH may fail at � in V , the supercompact
Prikry forcing PU�ı is ıC-c.c. in V . It follows from our remarks in Section 2 that
PU�ı is .ı<�/C-c.c. in V . Since GCH holds in V0 we have .ı<�/V0 D ı, and since
Add.�; �/ preserves cardinals and adds no sequences of ordinals of length less than
�, we conclude that .ı<�/V D .ı<�/V0 D ı. This shows that PU�ı is ıC-c.c. in V ,
and thus  is a cardinal in V ŒG � ı�, a contradiction.

For each regular cardinal ı 2 .�; �/, we have V ŒG � ı� � N , and this implies that
cfN .�/ D ! and that every ordinal in .�; �/ which is a cardinal in V is collapsed
to have size � in N . Thus, we have .�C/N D �. Furthermore, since N and V
agree on bounded subsets of �, we see that cfN .�/ D cfV .�/ < �. This shows that
cfN ..�C/N / D cfV .�/ < �, and this implies that N satisfies :AC. Since V � N ,
and since .2� D �/V , it follows that there is a � -sequence of distinct subsets of �
in N .

This completes the proof of Theorem 1.

Let us emphasize: The fact that GCH can potentially fail at � in V , depending on
the size of � , together with the cardinal preservation to N , is the feature of our
construction that sets the results of this paper apart from those previously discussed
in the literature.

4 The Proofs of Theorems 2 and 3

In this section, we sketch the proofs of Theorems 2 and 3. We begin with Theorem 2.

Proof of Theorem 2 Suppose that the model N is such that cf.�/N D !,
cf.�C/N < �, and that there is, in N , a sequence of distinct subsets of � of
length � . We will now argue that in a symmetric inner model M of a forcing
extension of N , we have cf.@1/ D cf.@2/ D !, and there is a sequence of distinct
subsets of @1 of length � .
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Working in N , let h�n j n < !i be a sequence of inaccessible cardinals less than
� which is cofinal in �. Let P WD Coll.!;<�/, and let G be N -generic for P. Let
Pn WD Coll.!;<�n/. Standard arguments show that Gn WD G \ Pn is N -generic for
Pn (see [2, proof of Theorem 2]).

As in the proof of Theorem 1, we let M be the least model of ZF extending N
containing each Gn but not G. More formally, let L2 be the ramified sublanguage
of the forcing language associated with P containing terms Lx for each x 2 N , a
unary predicate LN for N , and canonical terms PGn for each Gn. We now define M
inductively inside NŒG� as follows:

M0 D ;;

Mı D

[
˛<ı

M˛ for ı a limit ordinal;

M˛C1 D
®
x �M˛

ˇ̌
x can be defined over hM˛;2; cic2M˛

using a forcing term � 2 L2 of rank � ˛
¯
;

and

M D
[

˛2ORD

M˛:

As before, standard arguments show that M ˆ ZF. Since M contains Gn for
each n, it follows that cardinals in Œ!; �/ are collapsed to have size !, and hence
@M1 � �. However, standard arguments (see [6, Lemmas 6.2 and 5.3]) also show that
if x 2 M is a set of ordinals, then x 2 NŒGn� for some n < !. Since Coll.!;<�n/
is canonically well orderable in N with order type �n, the usual proofs show that
cardinals and cofinalities greater than or equal to � are preserved to NŒGn�. Since
� D @M1 , cf.@1/M D cf.@2/M D !. It therefore follows thatM ˆ :AC! . Thus,
M is the desired model.

We remark here that the above proof may be easily adapted to collapse � and �C to
ı and ıC, respectively, where ı is the successor of a regular cardinal, say, ı D �C.
The main difference between the above proof of Theorem 2 and the proof in this
more general setting is that the restricted version of the collapse forcing, call it
P0n WD Coll.�;<�n/, is no longer canonically well orderable. However, since N
and V have the same bounded subsets of �, and V � N , it follows that P0n can be
well ordered in both V and N with order type less than �. In this way, we obtain
a model M of ZF C :AC in which cf.ı/ D cf.ıC/ D ! and in which there is a
sequence of distinct subsets of ı of length � .

Below we present a sketch of our proof of Theorem 3. As in the above proof
sketch of Theorem 2, we will argue that in a symmetric inner modelM of a forcing
extension of N , we have ! � cf.@!C1/ < @! , and there is a sequence of distinct
subsets of @! of length � .

Proof of Theorem 3 Let N be constructed so that cf.�/N D !, cf.�C/N < �,
and there is a sequence of distinct subsets of � of length � in N . Let h�i j i < !i

be a sequence of inaccessible cardinals cofinal in �. Let P0 WD Coll.!;<�0/ and
Pi WD Coll.�i�1; <�i / for i 2 Œ1; !/. Let P WD

Q
i<! Pi , where the product has finite

support. For each n < !, we may factor P as P Š P�n�Pn, where P�n WD
Q
i2Œ0;n� Pi

and Pn WD
Q
i2ŒnC1;!/ Pi . Let G Š G�n �Gn be N -generic for P. As in [2, proof of
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Theorem 2], each G�n is N -generic for P�n. As before, we letM be the least model of
ZF extendingN containing eachG�n but not hG�n j n < !i. More formally, let L3 be
the ramified sublanguage of the forcing language associated with P containing terms
Lx for each x 2 N , a unary predicate LN for N , and canonical terms PG�n for each G�n .
We now defineM inductively inside NŒG� as follows:

M0 D ;;

Mı D

[
˛<ı

M˛ for ı a limit ordinal;

M˛C1 D
®
x �M˛

ˇ̌
x can be defined over hM˛;2; cic2M˛

using a forcing term � 2 L3 of rank � ˛
¯
;

and

M D
[

˛2ORD

M˛:

Since G�n 2 M for each n < !, it follows that in M , @! � �, and hence
@!C1 � .�C/N . To show that � D @! and .�C/N D @!C1 in M , we will use
the following lemma.

Lemma 6 If x is a set of ordinals inM , then x 2 NŒG�n � for some n < !.

For a proof of Lemma 6, one may consult [2, Lemma 2.1].
We now argue as in our sketch of the proof of Theorem 2. Since N and V contain

the same bounded subsets of �, and V � N , P�n can be well ordered in both V andN
with order type less than �. Therefore, as before, the usual proofs show that cardinals
and cofinalities greater than or equal to � are preserved. Furthermore,M ˆ :AC!
since hG�n j n < !i …M . It follows thatM is thus once again the desired model.

We remark that, as in [2, Theorem 2], in the model M constructed in the above
proof of Theorem 3, @! is a strong limit cardinal. Also, as we mentioned earlier, by
changing the cardinals to which each �i is collapsed, it is possible to collapse � to
@!C! , @!2 , and so on.

5 An Additional Result and Some Open Questions

In the above results, from GCH and a supercompact cardinal � we obtain models of
ZF with consecutive singular cardinals, � and �C, in which there is a sequence of
distinct subsets of � with any predetermined length, and hence there is a sequence of
distinct subsets of �C with this same length. This suggests the following question.

Question 1 Suppose that �1 and �2 are arbitrary ordinals. Are there models of
ZF with consecutive singular cardinals, � and �C, in which there are sequences of
distinct subsets of � and �C having lengths �1 and �2, respectively?

To avoid trivialities, we also require in Question 1 that there be no sequence of sub-
sets of � of length �2.

Let us remark that in Gitik’s model in which all uncountable cardinals are singular
(see [8]), for every pair of cardinals � and �C, there is a sequence of distinct subsets
of � of length �1 and a sequence of distinct subsets of �C of length �2, where �1 and
�2 are ordinals satisfying � < �1 < �C < �2 < �CC. In this sense, Question 1
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is partially answered by Gitik’s model, for some particular �1 and �2. However,
neither Gitik’s model nor our previous theorems address Question 1 if we require,
for example, that �1 D �C and �2 � �CC. The following theorem provides more
information toward an answer to Question 1, for the case in which � < �1 < �C and
�2 � �

C.

Theorem 7 Suppose that GCH holds, � < � are such that � is 2�-supercompact,
and � has cofinality ! with ¹˛ < � j o.˛/ � ˛Cnº cofinal in � for every n < !.
Then there is a forcing extension V ŒG� with a symmetric inner model N � V ŒG� of
ZF in which

(1) cf.�/ D cf.�C/ D !,
(2) there is no �C-sequence of distinct subsets of �, and
(3) there is a sequence of distinct subsets of �C of length �C17.

Let us remark that the hypotheses of Theorem 7 follow from GCH and the existence
of � < ı such that � is ı-supercompact and ı is ıC-supercompact. We also note
that by Gitik [10], in Theorem 7(3) above, one can replace 17 with ı C 1 for any
ı < @1. In addition, note that the hypotheses of Theorem 7 imply that � is a strong
limit cardinal, since it is a limit of inaccessible cardinals.

Proof of Theorem 7 In [10], Gitik shows that under these hypotheses on �, if
ı < @1, then there is a forcing notion, call it P, that preserves cardinals, adds no
new bounded subsets to �, and forces 2� D �CıC1. It will suffice for us to take
ı D 16 so that we achieve (3).

Let V0 satisfy the hypotheses of Theorem 7. Let G � P be V0-generic,
and let V WD V0ŒG�. Then it follows by Gitik’s result that there is an injection
f W �C17 ! P.�/ in V . Since � is 2�-supercompact in V0, we may let U 2 V0
denote a normal fine measure on .P��/V0 satisfying the Menas partition property.
Since P does not add bounded subsets to �, it follows that � remains a strong limit
cardinal in V D V0ŒG�, and � remains  -supercompact in V for each cardinal  < �.
Indeed, if we let U �  WD U \P.P�/ for each regular cardinal  < �, then U � 
is a normal fine measure on P� in V satisfying the Menas partition property.

In V , let hn j n < !i be a sequence of regular cardinals cofinal in �, and let
QU�n denote the supercompact Prikry forcing over P�.n/ defined using U � n.
Even though U will not be a normal measure on P�� in V , we can use it in the
definition of supercompact Prikry forcing over P��. Call this forcing Q. Let H
be V -generic for Q, and let rn be the supercompact Prikry sequence for QU�n

obtained fromH as in the proof of Theorem 1. Let N be the smallest inner model of
V ŒH� that contains rn for each n < ! but does not contain H . More formally, let
L4 be the ramified sublanguage of the forcing language associated withQ containing
terms Lv for each v 2 V , a unary predicate LV for V , and canonical terms Prn for each
rn . We now define N inductively inside V ŒH� as follows:

N0 D ;;

Nı D
[
˛<ı

N˛ for ı a limit ordinal;

N˛C1 D
®
x � N˛

ˇ̌
x can be defined over hN˛;2; cic2N˛

using a forcing term � 2 L4 of rank � ˛
¯
;
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and

N D
[

˛2ORD

N˛:

Lemma 8 If x 2 N is a set of ordinals, then there is an n < ! such that
x 2 V Œrn � D V0ŒG�Œrn �.

The proof of Lemma 8 is the same as that of Lemma 5 above. Using Lemma 8, it
is straightforward to verify that the conclusions of Theorem 7 hold in N . Just as
in the above proof of Theorem 1, it follows from Lemma 8 that .�C/N D � and
cf.�/N D cf.�C/N D !, which implies that (1) holds in N . Furthermore, since
the injection f is in V0ŒG� D V � N , we conclude that (3) holds in N . It remains
to show that (2) holds in N . Working in N , suppose that Ex D hx˛ j ˛ < �Ci

is a sequence of distinct subsets of �. Then by Lemma 8, Ex 2 V Œrn � for some
n < !. This is impossible, since � D .�C/N remains a strong limit cardinal in
V Œrn � because jQU�n j < �.

The results in this paper suggest the question as to whether one can prove an Easton
theorem-like result, but for models of ZF with consecutive singular cardinals. Let us
state two seemingly very difficult related open questions.

Question 2 From large cardinals, is there a model of ZF in which every cardinal is
singular and in which for every cardinal �, there is a sequence of �C distinct subsets
of �?

Question 3 From large cardinals, is there a model of ZF in which every cardinal
is singular and in which GCH fails everywhere in the sense that for every cardinal �,
there is a sequence of �CC distinct subsets of �?

Addressing Question 1, one would also like to obtain models of ZF with consecutive
singular cardinals, say, � and �C, where �C has uncountable cofinality, �1 < �2 are
cardinals, and �2 � �C3. Notice that Gitik’s methods for violating GCH at ground-
model singular cardinals do not seem to work for singular cardinals of uncountable
cofinality. This suggests the following alternative strategy. Let � < � be the ap-
propriate large cardinals. Using standard techniques, blow up the size of the power
set of � while preserving “sufficiently many” of the large cardinal properties of �
and �. This will allow us to change the cofinality of � to some uncountable cardinal
and to change the cofinality of �, while simultaneously collapsing all cardinals in the
interval .�; �/ to �. However, the standard forcings for changing to uncountable co-
finality at �, for example, Radin or Magidor forcing, will introduce Prikry sequences
to unboundedly many cardinals in the interval .�; �/ (see [11]). By Cummings, Fore-
man, and Magidor [7, Theorem 11.1(1)], this will introduce nonreflecting stationary
subsets of ordinals of cofinality ! to unboundedly many regular cardinals ı in the
interval .�; �/. By Solovay, Reinhardt, and Kanamori [16, Theorem 4.8] and the
succeeding remarks, no cardinal below � is strongly compact up to �. Thus one can-
not use the standard forcings for changing the cofinality of � while simultaneously
collapsing cardinals in the interval .�; �/ to �. This suggests that one would like
some forcing notion that changes the cofinality of � > � to an uncountable cardi-
nal, and also preserves enough of the original large cardinal properties of � to allow
these collapses to occur. As pointed out by the referee of this paper, by the work of
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Woodin [18] on inner models for supercompact cardinals, it appears as though this
is impossible.
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