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The Computational Content of Arithmetical Proofs

Stefan Hetzl

Abstract  For any extension 7" of /X having a cut-elimination property ex-
tending that of 7/ X1, the number of different proofs that can be obtained by cut
elimination from a single 7' -proof cannot be bound by a function which is prov-
ably total in 7.

1 Introduction

The notion of computational content of a proof is pervasive in proof theory. It can,
for example, be found in the characterization of the provably total functions of a the-
ory (see Kreisel [14]), in consistency proofs like Godel’s Dialectica interpretation [9]
and Girard’s system F [8] as well as in more recent applications in other mathemat-
ical areas (see Kohlenbach [12]) or in proof complexity (see Krajicek [13]). In this
article we will concentrate on theories of classical first-order arithmetic. There are
many different methods for extracting computations from arithmetical proofs; some
of them like Gentzen’s [7] cut elimination, the g-substitution method of Ackermann
[1], or term calculi such as Parigot [16] work directly in a classical system. Oth-
ers like the Dialectica interpretation (see [9]) or realizability (see Kleene [11]) with
Friedman’s A-translation (see [5]) typically require a translation to an intuitionistic
system first (see Avigad [2] for a recent survey). Many of these methods extract a
(program that implements a) function from a proof.

The possibility of extracting different programs from one and the same proof is
well known (see Ratiu and Trifonov [17] or Baaz et al. [4] for recent case studies and
Urban and Bierman [18] for an interpretation of classical logic as nondeterministic
computation). It is not clear however how far this noncanonicity goes. In Baaz
and Hetzl [3] it has been shown that the number of (significantly different) cut-free
proofs obtainable by cut elimination in pure first-order logic can grow as fast the
hyperexponential function 2, (where 29 = 1 and 2;,; = 22 ) while the length of
the original proof is polynomial in . This function is exactly the growth rate of cut
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elimination. In this paper we show an analogous result for arithmetical theories. To
that aim we define the notion of computational theory—essentially—by the ability
of computing witnesses from proofs of existential statements. We then show that for
any computational theory 7" extending / ¥, the number of different cut-free proofs
obtainable by cut elimination from a single T -proof cannot be bound by a function
in the size of the proof which is provably total in 7.

2 Computational Theories

In this paper we will rely on several results of [3]. Let LK denote the sequent cal-
culus (for first-order classical logic without equality) used there with the additional
restriction that in the quantifier inferences

I - A, A[x\f] and Alx\t],T = A
I > A, 3xA " VxA, T - A !

the term ¢ contains only such variables that appear free in the conclusion sequent of
the inference. A proof not fulfilling this condition can easily be transformed into one
that does by replacing the violating variables by a constant symbol. This condition
has the technically convenient consequence that cut-free proofs of X;-sentences are
variable free. We will work in the language of arithmetic L = {0, S, +, *x, =, <}.
For n € N we write i1 for the term S”(0). When writing down concrete proofs we
often omit structural inferences.

Definition 2.1 Let Seq denote the set of sequents in L; a k-ary inference rule is
a subset of Seqk +1 A sequent calculus presentation of an arithmetical theory T is

a set of inference rules R s.t. T = A iff the sequent — A is provable in the calculus
LK + R.

QO will denote the presentation of the theory of minimal arithmetic obtained from
extending LK by the unary inference rules defined by

F. I - A
I'—>A

for every sentence F in reflexivity, symmetry, transitivity, and compatibility of equal-
ity w.r.t. L as well as the universal closures of the axioms (Q1)-(Q8) in Hjek and
Pudlék [10, Definition 1.1].

Definition 2.2 Let R be a sequent calculus presentation of an arithmetical theory.
An R-reduction rule is a set C € I1 x II where II is the set of (LK + R)-proofs
and (7, 7') € C implies that the end-sequent of 7’ equals that of 7. For a set €
of reduction rules write —¢ for its reflexive, transitive, and compatible (w.r.t. the
inference rules LK + R) closure. A normal form of € is a proof = s.t. 1 =S’
implies 7 = 7.

A pair (R, €) is called computational theory if

(i) for every proof 7 in LK + R of a 1 -sentence there is a cut-free Q-proof 7’

with 7 =7/, and
(ii) cut-free Q-proofs are normal forms.

A computational theory thus allows us to compute a witness for a X1 -sentence from
a given proof (by obtaining a cut-free Q -proof from € and then evaluating the matrix
of the X ;-sentence for all witnesses of the existential quantifier present in that proof ).
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This extends to proofs of IT,-sentences in the straightforward way by applying the
31 -procedure to instances of the IT,-proof.

1%, will denote the computational theory whose inference rules extend those of
Q defined above by the unary inference rule

F(a).,T = A, F(S(a))
FO).T > A.F( ™

for F being a (not necessarily prenex) X;-formula. The reduction rules of /X,
consist of

(i) the local reduction rules of pure first-order logic as listed in [3, Appendix A]
(which are those of Gentzen [6] adapted to the version of LK used here),
(ii) the permutation of cut upwards over any of the newly introduced rules F of
Q or ind of I ¥ provided the cut formula is not active in that inference, and
(iii) the reduction of

()
F(a),I' > A, F(S(x)) |
FO.T > A F@ ™
to
([ \O]) (m[e\SO)])
F(0).T — A, F(5(0)) F(S(0).T — A, F(5(5(0)))
F(0).T — A, F(S(5(0)) eut
: (w(n, 1))
F(0),T — A, F(71) F(1) — F(t) ut

F(0).T —> A, F(1)

where 7 is any proof, ¢ is a variable-free term whose value is 7, and w(7, t)
denotes the straightforward proof of F (i) — F(¢)in Q.

Definition 2.3  Let (R, €) be a computational theory; another computational the-
ory (R’,€") is called computational extension of (R, €)if R C R and€ C €.

These notions are very general as we do not require decidability either of the infer-
ence rules or of the reduction rules. Even the set of true sentences qualifies as com-
putational theory in the above sense by adding all true sentences as axioms (nullary
inference rules) and relying on the ¥;-completeness of Q for defining the reduction
rules.

3 Translation to Arithmetic

From now on, and for the rest of this paper, let T = (R, €) be a computational
extension of / 3, and let X be any first-order language, disjoint from the language
L of arithmetic, and containing at least one constant and one function symbol. The
work of [3] has been carried out in the language L U {d,2} U ¥ where d is a unary
function symbol whose intended interpretation is the depth of a X-term and 2 is
a unary function symbol whose intended interpretation is the exponential function
with base 2. The function symbol 2 will not be used here, so it is enough to treat
the language L U {d} U X. We will now briefly describe how to translate formulas,
proofs, and reduction sequences from L U {d} U X to L.
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Using standard coding techniques (see, e.g., [10]), we arithmetize ¥-terms and
write #¢ for the natural number representing the X-term ¢. We obtain X;-formulas
defining the set of X-terms, the depth of a ¥-term, and the relation of one term
being at the ith position of another term which allows us to translate any atom in
L UZXU{d}toaformulain L. If 7 is an LK-proof and ¢ a substitution replacing
each k-ary atom by a formula with k free variables, then 7o is an LK-proof too.
Furthermore, the reduction rules of first-order logic have the property that 7 —¢ 7’
implies 70 —€ /0. Therefore this translation of formulas extends to a translation
of proofs and of reduction sequences.

Let A denote the translation of the (finite) set of axioms of [3] to L. The axioms
containing d and symbols of X are

d(c)=0
for every constant symbol ¢ in X and

T} = Vx Vy ---Vy,(d(yl) <xD-:Dd(yj-1) =xDd(y;)=x
Dd(yj+1) <xD--2d(y) <xDd(f(y1.....yr) = S(x))

for every function symbol f of arity r in ¥ and every j € {1,...,r}. Along the
lines of [10] it is easy to check that the translations of these axioms are provable in
I1%,. All other axioms of [3] that are used here are L-sentences, and a quick check
shows that they are also provable in / ¥ ;. This will later allow us to obtain a T'-proof
of F from a T-proof of A — F by appending a cut on /\ 44 4.

4 Nonconfluence

The central idea for the construction of a proof with many normal forms is to modify
a proof of the existence of a large number such that

(i) it proves the existence of a deep X-term instead, and
(ii) it does so in a way that permits reduction to any 3-term of that depth.

Denote with E(u) the translation of Ix d(x) = wu to arithmetic, with L(u) the
translation of Ix d(x) < u and with F(u) the formula L(u) A E(u). The central
construction will be an induction on F using nonconfluent constructors of X-terms
for the induction base and step. We use F' here in order to allow for reduction to any
term of the desired depth which necessitates the <-part of the induction hypothesis.
The slightly simpler proof using induction on E instead would allow reduction to
any term of the desired depth all of whose branches are of equal depth.

Let 79 be the translation of the proof of A — F(0) defined in [3, Section 5.2].
As shown there, this proof possesses for any constant symbol of ¥ and for both
of the existential quantifiers in L(0) and E(0), respectively, a normal form having
this constant symbol as witness of that quantifier. This property carries over to the
present setting as described in Section 3. Let t/(u) be the translation of the proof
of A, F(u) — F(s(u)) defined in [3, Section 5.3]. This proof has the analogous
property for function symbols; that is, it allows the reduction to any top-level symbol
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as witness. Let ¥ (u) be

(rs(»))
(7o) A, F(y) > F(s(y)) .

Ao FO) AFO0) S Fuw ™M Euw > Ew
A — F(u) cut F(u) — E(u) E
A — E(u) cut

which is a proof in 1 X as F is a ¥;-formula.

Lemma 4.1 Letn € N, and let t be any variable-free L-term with value n. Then
for every S-term s of depth n there is a proof Vs s.t. Y (t) —C Vg and the only
witness of the existential quantifier in E(t) in the end-sequent of Vs is an L-term
with value #s.

Proof By reduction of induction and shifting the cut on F(0) upwards using the
reduction rules of pure logic we obtain ¥ () —¢

(7o) (75(0))
A — F(0) A, F(0) > F(S(0))
A= F(S(0)
: ()

A = F(ii) F@) —»F@)  E0)—~E@)

A F(1) Y FO S ED "

cut

A= E(1)

which is a proof whose form is slightly simpler than that of an F-chain from [3].
Therefore the proof of Lemma 10 from [3] readily adapts to this situation; in brief,
use a bottom-up reduction of the (i) making the right choices for obtaining s at
each level and duplicating the proof of the assumption, thereby transforming the
linear structure of the above proof to the tree structure of s. Finish the construction
of s by appropriate reduction of the copies of 7¢, and finally, reduce the two cuts at
the bottom observing that they do not change the witness. O

Theorem 4.2 Let g : N — N be a function provably total in T, and let G(x, y)
be its definition. Then there is a T -proof x(u) of 3y (G(u, y) A E(y)) s.t. for every
n € N and every X-term s of depth g(n) there is a normal form ys of y(n) s.t. every
witness r of the existential quantifier in some E(t) where t is an L-term with value
g(n) has the value #s.

Before proving this theorem, a remark on its formulation is appropriate: a cut-free Q-
proof of 3y (G(n, y)A E(y)) must contain some term ¢ with value g(n) as instance of
dy, and hence it also contains E(¢). However, it might also contain other (irrelevant)
instances of dy with the same or other numerical values. In principle, it would be
possible to rule those out by imposing an (intuitionistic) restriction on €. As this
option would render the reduction relation somewhat artificial, we have opted for the
more natural definition (and the more cumbersome theorem).

Proof Let & be any T-proof of — Vx 3y G(x, y); let
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) 3y G, y) > 3y Gu, y)
— Vx3yG(x,y) Vx3IyG(x,y) = Iy Gu,y) !
E(u) = ~ 3y Gu.y) ot
v (B)

Gu.p) > Gu.p) A— EPB)
A.G.p) > Gu.p)AEPB) "

Yo(u) = A3y Glu,y) — 3y (G y) AEQ)
and
() =
(E(u)) (xo(u))
—>3yGu,y) A3y Gu,y) —> 3y (Gu,y) A E(y)) cut
(m) A — 3y (G(u, y) A E(y)) N
— Ases A Ases A= 3y (G, y) A E(p)) c;t

— 3y (G(u,y) A E(y))

As T is a computational extension of I X1, there is a cut-free Q-proof &’ of — Iy
G(it, y) with £(71) —C £ having terms 1, . . . , f as witnesses of 3y. Using reduction
rules from pure logic we obtain a proof £* with y(i7) —C £* from & by successively
replacing
(i)
i — A;,G(n, 1)
I - A, 3y G,y) ~F

by
(i) (W)
I — Ai, G(ﬁ,l‘,’) A — E(li)
AT — A, G, ;) NE(t) L
AT = A3y (G, y) AE(y)

fori € {1,...,k}. For all ¢; with value g(n) we apply Lemma 4.1 to obtain a cut-
free y; with ¥ (t;) —€ ¥; having an L-term with value #s as the only witness. For
all #; whose value is not g(n) we reduce to an arbitrary cut-free proof. Finally, the
reduction of the cut on A 4.4 A does not change the witnesses and finishes with
a cut-free Q-proof because variable freeness of the #; ensures that we can reduce
the inductions coming from 7. This cut-free Q-proof is ys and has the desired
property. O

Corollary 4.3 The number of normal forms of a proof in a computational ex-
tension T of 1 X1 cannot be bound by a function in the size of the proof which is
provably total in T .

5 Conclusion

It should be emphasized that apart from the theory-specific part (which is arbitrary)
the above reduction sequences consist exclusively of the natural standard reductions
of a sequent calculus for 73%,. Furthermore, the proofs with cut are completely
symmetric w.r.t. their normal forms in the sense that there is no reason for preferring
one normal form over another.



The Computational Content of Arithmetical Proofs 295

The central technical insight is that the nondeterminism of classical logic can be
isolated in a manner that permits the cut-elimination process to distribute it through-
out a large proof it generates. Consequently, an analogous result should be expected
for every calculus containing even the slightest nondeterminism.

The contribution of this work to the discussion of the computational content of
classical logic is a new demonstration that, in a strikingly strong sense, the computa-
tional content of an arithmetical proof is not a function. As useful as it is, from both
a theoretical and a practical point of view, to extract a function from a proof, such ex-
traction methods in general fall short of doing justice to the notion of computational
content, as they cannot satisfy the unambiguity suggested by the term content.

The above results and remarks refer to formal proofs. As pointed out, for exam-
ple, in [2] and Kreisel [15] there is another, more fundamental, reason for the am-
biguity of the computational content of a mathematical proof, which is that a given
mathematical proof allows many different formalizations which in turn may induce
different computations.
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