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More on d-Logics of Subspaces of the
Rational Numbers

Guram Bezhanishvili and Joel Lucero-Bryan

Abstract We prove that each countable rooted K4-frame is a d-morphic image
of a subspace of the space Q of rational numbers. From this we derive that each
modal logic over K4 axiomatizable by variable-free formulas is the d-logic of
a subspace of Q. It follows that subspaces of Q give rise to continuum many
d-logics over K4, continuum many of which are neither finitely axiomatizable
nor decidable. In addition, we exhibit several families of modal logics finitely
axiomatizable by variable-free formulas over K4 that d-define interesting classes
of topological spaces. Each of these logics has the finite model property and
is decidable. Finally, we introduce quasi-scattered and semi-scattered spaces as
generalizations of scattered spaces, develop their basic properties, axiomatize
their corresponding modal logics, and show that they also arise as the d-logics of
some subspaces of Q.

1 Introduction

The topological semantics for modal logic was developed in the pioneering work
of McKinsey and Tarski [22], where they suggested two interpretations of modal
diamond Þ, one as topological closure and another as topological derivative. In
order to distinguish between these two semantics, we refer to interpreting Þ as
closure as the c-semantics and to interpreting Þ as derivative as the d-semantics.
Consequently, in c-semantics we will talk about c-definability, c-soundness, and
c-completeness, while in d-semantics we will talk about d-definability, d-soundness,
and d-completeness.

McKinsey and Tarski [22] showed that one of the best-known modal logics S4
c-defines the class of all topological spaces, and that S4 is the c-logic of any dense-
in-itself separable metrizable space. On the other hand, Esakia [15] showed that
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wK4 D K C ÞÞp ! .p _ Þp/ d-defines the class of all topological spaces and
that K4 D K CÞÞp ! Þp d-defines the class of all Td -spaces. He also showed
that wK4 is the d-logic of all topological spaces and that K4 is the d-logic of all
Td -spaces.

Since the closure of a topological space is expressible by means of the de-
rivative, namely, A D A [ d.A/, it follows that d-semantics is more expres-
sive than c-semantics. In fact, d-semantics is strictly more expressive than
c-semantics. Indeed, it follows from the McKinsey–Tarski theorem that the
properties of being dense-in-itself, Td , and T0 are not c-definable. On the
other hand, dense-in-itself topological spaces are d-defined by Þ> (see [22]),
Td -spaces are d-defined by ÞÞp ! Þp (see [15]), and T0-spaces are d-defined by
p ^Þ.q ^Þp/! Þp _Þ.q ^Þq/ (see Bezhanishvili, Esakia, and Gabelaia [6]).

In [23] Shehtman utilized the technique developed by McKinsey and Tarski
to show that K4D D K4 C Þ> is the d-logic of any zero-dimensional dense-
in-itself separable metrizable space. It follows that K4D is the d-logic of the
space Q of rational numbers. An alternative purely geometric proof of this re-
sult can be found in Lucero-Bryan [21], where it is also shown that each of K4,
GL D K C�.�p ! p/ ! �p, and GLn D GLC�n? can be obtained as the
d-logic of some subspace of Q. It was asked in [21] what other modal logics can be
obtained as the d-logics of subspaces of Q. In this paper we show that modal logics
over K4 axiomatizable by variable-free formulas and their intersections arise as the
d-logics of subspaces of Q. It follows that subspaces of Q give rise to continuum
many d-logics over K4, continuum many of which are neither finitely axiomatizable
nor decidable.

The paper is organized as follows. In Section 2 we recall the basics of Kripke
semantics and d-semantics for extensions of K4. In Section 3 we generalize the
geometric construction of [21] and show that each countable rooted K4-frame is a
d-morphic image of a subspace of Q. From this we derive that modal logics over
K4 axiomatizable by variable-free formulas and their intersections are the d-logics
of subspaces ofQ. It follows that there are continuum many d-logics over K4 arising
from subspaces ofQ, continuummany of which are neither finitely axiomatizable nor
decidable. In Section 4 we exhibit several families of modal logics finitely axiomatiz-
able by variable-free formulas over K4 that d-define interesting classes of topological
spaces. Each of these logics has the finite model property (FMP) and is decidable.
In Section 5 we discuss three generalizations of scattered spaces, thus arriving at the
concepts of weakly scattered, quasi-scattered, and semi-scattered spaces. This leads
to three more extensions of K4, each being a sublogic of GL. We call the first one
weak GL and denote it by wGL, the second one quasi-GL and denote it by qGL,
and the third one semi-GL and denote it by sGL. The logic wGL first appeared in
Esakia [16] (see also Bezhanishvili, Esakia, and Gabelaia [5]) under the name K4G.
The logics qGL and sGL appear to be new. We show that each of wGL, qGL, and
sGL has the FMP, is decidable, and arises as the d-logic of a subspace of Q.

2 Preliminaries

2.1 Kripke semantics We assume the reader’s familiarity with Kripke semantics for
modal logic. The proofs of the facts mentioned in this section can be found in Cha-
grov and Zakharyaschev [12]. We recall that a K4-frame is a pair F D .W;R/,
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where W is a nonempty set and R is a transitive binary relation on W . Let RC de-
note the reflexive closure of R; that is, RC D R [ ¹.w;w/ W w 2 W º. Then RC is
reflexive and transitive, and so FC D .W;RC/ is an S4-frame.

Let F D .W;R/ be a K4-frame. We recall that F is rooted if there exists r 2 W ,
called a root of W , such that rRw for each w 2 W � ¹rº. Let w 2 W . Then w is
reflexive if wRw and w is irreflexive otherwise. We let

C.w/ D ¹wº [ ¹v 2 W W wRv and vRwº

denote the cluster generated by w. We call C � W a cluster if C D C.w/ for
some w 2 W . We also call a cluster C proper if it consists of more than one point,
simple if it consists of a single reflexive point, and degenerate if it consists of a single
irreflexive point. SinceR is transitive, each proper cluster consists of reflexive points.

Let A � W . We call w 2 A a maximal point of A if wRv and v 2 A imply vRw.
Let max.A/ denote the set of maximal points of A. Let also rmax.A/ denote the set
of reflexive maximal points of A, and let imax.A/ D max.A/� rmax.A/ denote the
set of irreflexive maximal points of A.

Definition 2.1 Let F D .W;R/ be a K4-frame. DefineRn recursively as follows:

wR0v iff w D v;

wRnC1v iff 9u 2 W with wRnu and uRv;
iff 9u 2 W with wRu and uRnv:

For A � W , let R�n.A/ D ¹w 2 W W 9v 2 A with wRnvº.

We recall that a K4-frame F D .W;R/ is serial if for each w 2 W there ex-
ists v 2 W with wRv. It is well known that F is serial iff F ˆ Þ>, and so
K4D D K4 C Þ> is the modal logic of serial K4-frames. In fact, K4D is the
modal logic of finite serial K4-frames, and a finite K4-frame F D .W;R/ is serial
iff max.W / D rmax.W / (equivalently, imax.W / D ¿).

We also recall that a K4-frame F D .W;R/ is dually well founded if
imax.A/ ¤ ¿ for each nonempty subset A of W , and that a K4-frame F is
dually well founded iff F ˆ gl, where

gl D �.�p ! p/! �p:

Clearly a finite K4-frame is dually well founded iff it is irreflexive. In fact, the modal
logic of all dually well-founded K4-frames is the same as the modal logic of all finite
irreflexive K4-frames, and is the well-known Gödel–Löb logic

GL D KC gl D K4C gl:

Let F D .W;R/ be a K4-frame. We call A � W a chain if for each w; v 2 A we
have wRv or vRw or w D v. We call w 2 A a root of the chain A if wRv for each
v 2 A � ¹wº. For u; v 2 W , we say that u is properly below v and write u ERv if
uRv and vR�u. We also say that the chain A is of length n if A contains at least one
element from each cluster C.wi / for some w1 ER � � � ERwn in F and A �

Sn
iD1 C.wi /.

The depth of w 2 W is n if there is a chain with root w of length n and no other
chain with root w is of greater length. Finally, we say that the depth of F is n if there
is w 2 W of depth n and for each v 2 W , the depth of v is at most n.



322 Bezhanishvili and Lucero-Bryan

For a formula ', let �C' D ' ^ �'. Then ÞC' D ' _ Þ'. We also let
�0' D ' and �nC1' D ��n'. It is well known that GLn D GL C �n? is the
modal logic of finite irreflexive K4-frames of depth � n, and that GL D

T
! GLn.

2.2 Topological semantics We assume the reader’s familiarity with the basics of
topological spaces. The proofs of the facts mentioned in this section can be found in
Engelking [13]. Let X be a topological space. For A � X , let A denote the closure
of A, and let d.A/ denote the derivative (the set of limit points) of A. We recall that

x 2 A iff U \ A ¤ ¿ for each open neighborhood U of x
and that

x 2 d.A/ iff U \ .A � ¹xº/ ¤ ¿ for each open neighborhood U of x:
Moreover, the interior of A is defined as int.A/ D X �X � A, and the coderivative
of A is defined as t .A/ D X � d.X � A/. Then

x 2 int.A/ iff U � A for some open neighborhood U of x;
and

x 2 t .A/ iff .U � ¹xº/ � A for some open neighborhood U of x:
We recall that x 2 X is an isolated point of X if ¹xº is an open subset of

X . Let iso.X/ denote the set of isolated points of X . Then it is well known that
iso.X/ D X � d.X/.

We call X dense-in-itself if iso.X/ D ¿, scattered if each nonempty subspace
of X has an isolated point, and Td if each point is an intersection of a closed and an
open subset of X (i.e., each point of X is locally closed). It is well known that X is
dense-in-itself iff d.X/ D X , that X is scattered iff d.A/ � d.A � d.A// for each
A � X , and that X is Td iff dd.A/ � d.A/ for each A � X .

For A � X and an ordinal ˛, we define d˛.A/ recursively as follows:
(1) d0.A/ D A,
(2) d˛C1.A/ D d.d˛.A//,
(3) d˛.A/ D

T
ˇ<˛ d

ˇ .A/, for ˛ a limit ordinal.
We call X n-scattered if dn.X/ D ¿.

Interpreting modal diamond as the derivative of a topological space, we obtain a
semantics of modal logic, which we call the d-semantics. Consequently, we will talk
about d-definability, d-soundness, and d-completeness, meaning definability, sound-
ness, and completeness in d-semantics. We will also talk about the d-logic of a class
K of topological spaces, meaning the set of all formulas valid under d-semantics in
each member of K.

It is well known that K4 is the d-logic of Td -spaces, K4D is the d-logic of dense-
in-itself Td -spaces, GL is the d-logic of scattered spaces, and GLn is the d-logic of
n-scattered spaces. In fact, viewing the rational numbers Q and each ordinal as a
topological space in the interval topology, K4D is the d-logic ofQ, GL is the d-logic
of !! , and GLn is the d-logic of !n (see, e.g., van Benthem and Bezhanishvili [3,
Section 3.1] and Bezhanishvili and Morandi [10, Theorem 3.5]).

One of the key tools in establishing these types of results is the concept of
d-morphism. Let X be a topological space. We recall that A � X is dense-in-itself
if A � d.A/ and that A is discrete if A \ d.A/ D ¿. Also let F D .W;R/ be a
K4-frame. We recall that U � W is an upset of F if w 2 U and wRv imply that
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v 2 U . It is well known that the set of upsets of F forms a topology �R on W ,
called the Alexandroff topology. Now let X be a Td -space, and let F D .W;R/ be
a K4-frame. We recall (see Bezhanishvili, Esakia, and Gabelaia [4, Definition 2.6])
that f is a d-morphism if it satisfies the following four conditions:

(1) f W X ! .W; �R/ is continuous; that is, f �1.U / is open in X for each
U 2 �R;

(2) f W X ! .W; �R/ is open; that is, U open in X implies f .U / 2 �R;
(3) f is r-dense; that is, f �1.w/ is dense-in-itself for each reflexive w 2 W ;
(4) f is i-discrete; that is, f �1.w/ is discrete for each irreflexive w 2 W .

It is well known (see [4, Corollary 2.9]) that if f W X ! W is an onto d-morphism
and F refutes ', then so does X . Having this result under our belt, it is easy to
establish the d-completeness results mentioned above. For example, to show that
K4D is the d-logic of Q, observe that Q is a dense-in-itself Td -space. Therefore,
Q ˆ K4D. On the other hand, if K4D 6` ', then it is well known (see, e.g., Gabbay
[17, Theorem 7]) that there is a valuation into the infinite binary tree T refuting '.
By [21, Lemma 3.14], there exists an onto d-morphism f W Q! T . Thus, Q 6ˆ ',
and so K4D is the d-logic of Q. The other d-completeness results for K4, GL, and
GLn can be proved in a similar fashion (see, e.g., [21, Section 4]).

3 Main Results

In this section we generalize the geometric construction of [21] and prove that each
countable rooted K4-frame is a d-morphic image of a subspace of Q. From this we
derive that modal logics over K4 axiomatizable by variable-free formulas and their
intersections are the d-logics of subspaces ofQ. It follows that there exist continuum
many d-logics arising from subspaces of Q, continuum many of which are neither
finitely axiomatizable nor decidable.

We start by recalling the geometric construction of [21, Section 3], which provides
a homeomorphic copy of Q in the lower half-plane. Let C denote the set of infinite
closed bounded intervals of the real numbers R. Let L D R� .�1; 0� be the closed
lower half-plane in R2, and let L0 D R � .�1; 0/. Let i W R ! L be given by
i.x/ D .x; 0/. Clearly i is 1–1 and L D L0 [ i.R/. Let � W L ! R be the
projection �.x; y/ D x. For each I 2 C , let 4I be the right isosceles triangle in L
whose hypotenuse coincides with i.I / (see Figure 1).

There is a bijective correspondence between C and L0 given by associating with
I the only vertex of4I in L0. More formally, define ˛ W L0 ! C and ˇ W C ! L0
by

˛.x; y/ D Œx C y; x � y� and ˇ.Œa; b�/ D
�aC b

2
;
a � b

2

�
:

Then it is easy to check that ˛ and ˇ are well defined and that ˇ D ˛�1.
Let † denote the set of finite strings over the nonzero integers. Clearly † is

countable. We inject † into L0 as follows. Let ƒ denote the empty string. Also,
for a string � D z1z2 � � � zk and z 2 Z � ¹0º, let �:z denote the string z1z2 � � � zkz.
Define h W † ! L0 recursively by setting h.ƒ/ D .0;�1/. For the recursive step,
suppose that h.�/ D .x; y/ D p 2 L0. Let ˛.p/ D I . Then I D Œx C y; x � y�,
and x is the midpoint of I . For n 2 ! � ¹0º, let

Ip�n D
h
x C

y

2n�1
; x C

y

2n

i
and Ipn D

h
x �

y

2n
; x �

y

2n�1

i
:
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This leads to the following dissection of I D ˛.h.�//:
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We set h.�:z/ D ˇ.Ipz / D ˇ.I h.�/z /. Figure 3 captures the recursive step.
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Define < on † by
� < � iff �

�
h.�/

�
< �

�
h.�/

�
in R:
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By [21, Lemma 3.5],< is a dense strict linear ordering on†which has no endpoints.
By Cantor’s theorem (see, e.g., Kuratowski and Mostowski [20, p. 217, Theorem 2]),
.†;</ is order-isomorphic toQwith the usual arithmetic order. Let � be the interval
topology on .†;</. Then .†; �/ is homeomorphic to Q. As a result, we obtain a
“nice” copy of Q inside L0.

Lemma 3.1 (Main Lemma) Let F D .W;R/ be a countable rooted K4-frame.
Then F is a d-morphic image of a subspace of Q.

Proof It is sufficient to show that F is a d-morphic image of a subspace of
†. We will define a partial function f W † ! W so that, upon restricting f
to those strings for which f is defined, we obtain an onto d-morphism. This
will provide a d-morphism from a subspace X of † onto F. For �; � 2 †, let
.�; �/ D ¹� 2 † W � < � < �º. By [21, Lemma 3.11],®

.�: � n; �:n/ W n 2 ! � ¹0º
¯

forms a local basis for each � 2 †. Let S denote the “initial segment” of relation on
†. By [21, Lemma 3.12], for each � 2 †, the set S.�/ is clopen in .†; �/.

Let r be a root of F. We set f .ƒ/ D r . For the recursive step, suppose that
f .�/ D w for � 2 †. If R.w/ D ¿, then f is not defined on S.�/ � ¹�º. If
R.w/ ¤ ¿, we let gw W ! � ¹0º ! R.w/ be any sequence such that .gw/�1.v/ is
infinite for each v 2 R.w/. For n 2 ! � ¹0º, set f .�:n/ D f .�: � n/ D gw.n/. Let
X D ¹� 2 † W f .�/ is definedº. Clearly X � †, and we equip X with the subspace
topology. We claim that the function f W X ! W is an onto d-morphism. That f
is well defined follows from the construction. We show that f is onto. Let w 2 W .
If w D r , then f .ƒ/ D r . If w ¤ r , then as r is a root of F, we have w 2 R.r/.
Therefore, w D gr .n/ for some n 2 ! � ¹0º. Thus, f .n/ D f .ƒ:n/ D gr .n/ D w.
Consequently, f is onto.

Recall that RC denotes the reflexive closure of R. To see that f is continuous, it
is sufficient to show that

f �1
�
RC.w/

�
D

[
wRCf .�/

S.�/ \X:

The �-inclusion is clear. For the other inclusion, we proceed by induction on
� 2 S.�/ \ X . Suppose that � 2 S.�/ \ X for some � 2 † with wRCf .�/. If
� D �, then obviously wRCf .�/, which establishes the base case. If not, then we
show that wRCf .�/ implies wRCf .�:z/. We have

f .�:z/ D f .�:jzj/ D gf .�/.jzj/ 2 R
�
f .�/

�
;

which gives wRCf .�/Rf .�:z/. As R is transitive, we have wRCf .�:z/. By induc-
tion, this gives � 2 S.�/\X implies wRCf .�/, and the �-inclusion follows. Now,
since each S.�/ is clopen in .†; �/, it follows that f �1.RC.w// is open in X .

To see that f is open, we show that f ..�: � n; �:n/ \ X/ D RC.f .�// for
any n 2 ! � ¹0º and � 2 X . By definition of f , we have that f .�/Rf .�:z/.
As both S and R are transitive, it follows that f .S.�/ \ X/ � RC.f .�//. Since
.�: � n; �:n/ \ X � S.�/ \ X , we have f ..�: � n; �:n/ \ X/ � RC.f .�//.
For the other inclusion, we first note that f .�/ 2 f ..�: � n; �:n/ \ X/. Let
w 2 R.f .�//. Then there is m > n such that gf .�/.m/ D w. There-
fore, �:m 2 .�: � n; �:n/. As R.f .�// ¤ ¿, we have �:m 2 X . Thus,
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w D gf .�/.m/ D f .�:m/ 2 f ..�: � n; �:n/ \ X/, which shows that the other
inclusion holds, and so the equality follows.

Let w 2 W , and consider � 2 f �1.w/. If w is reflexive, then w 2 R.w/. Con-
sider the basic open set .�:�n; �:n/ about � . There ism > n such that gw.m/ D w.
Therefore, �:m 2 Œ.�:�n; �:n/�¹�º�\X and f .�:m/ D gf .�/.m/ D gw.m/ D w.
Thus, �:m 2 f �1.w/, showing that f is r-dense. Now assume that w is irreflex-
ive. If w is maximal, we have S.�/ \ X D ¹�º, showing that � is an isolated
point of X . Suppose that w is not maximal. Let � 2 .S.�/ � ¹�º/ \ X . Then
� 2 S.�:z/ for some nonzero integer z. Therefore, f .�:z/RCf .�/. If f .�:z/Rf .�/,
the transitivity of R gives f .�/Rf .�/. If f .�:z/ D f .�/, we have f .�/Rf .�/.
In both cases we have f .�/ 2 R.f .�//. Therefore, f .�/ ¤ f .�/. This means
that .S.�/ \ X/ \ f �1.w/ D ¹�º. It follows that f is i-discrete. Consequently,
f W X ! W is an onto d-morphism.

In order to prove the Main Theorem of the paper, along with the Main Lemma, we
also require the following lemma, which partially answers a question posed in [21,
Section 6].

Lemma 3.2 LetX be a Td -space, letF D .W;R/ be aK4-frame, let f W X ! W

be an onto d-morphism, and let ' be a variable-free formula. For all x 2 X , we have
x ˆ ' iff f .x/ ˆ '. Consequently, if X 6ˆ ', then F 6ˆ '.

Proof First we show that for all x 2 X , we have x ˆ ' iff f .x/ ˆ '. The proof
is by induction on the complexity of '. That the base case holds is easy to see since
' D > or ' D ?, and > is true and ? is false at every point of any model. Next
suppose that for all y 2 X , we have y ˆ  iff f .y/ ˆ  for a variable-free formula
 of lesser complexity than '. Let x 2 X . We have three cases to consider.

Case 1: ' D  _�, where both  and � are variable-free. Then x ˆ ' iff x ˆ  
or x ˆ �. By the inductive hypothesis, this happens iff f .x/ ˆ  or f .x/ ˆ �,
which happens iff f .x/ ˆ '.

Case 2: ' D : , where  is variable-free. Then x ˆ ' iff x 6ˆ  . By
the (contrapositive of the) inductive hypothesis, this happens iff f .x/ 6ˆ  , which
happens iff f .x/ ˆ '.

Case 3: ' D Þ , where  is variable-free. First suppose that x ˆ '. Let
U D f �1.RC.f .x///. Since f is a d-morphism, U is an open neighborhood
of x. Therefore, there exists y 2 U � ¹xº such that y ˆ  . By the inductive
hypothesis, f .y/ ˆ  . Clearly f .y/ 2 RC.f .x//. If f .x/ is reflexive, then
RC.f .x// D R.f .x//, so f .y/ 2 R.f .x//, and so f .x/ ˆ '. On the other
hand, if f .x/ is irreflexive, then as f is i-discrete, there is an open neighborhood
V of x such that V \ f �1.f .x// D ¹xº. Therefore, x 2 U \ V , and so there
exists y 2 .U \ V / � ¹xº such that y ˆ  . The inductive hypothesis then gives
f .y/ ˆ  . Since y 2 U \ V , we have f .y/ 2 RC.f .x// � ¹f .x/º D R.f .x//.
Thus, f .x/ ˆ '. Consequently, x ˆ ' implies f .x/ ˆ '.

Next suppose that x 6ˆ '. Then there is an open neighborhood U of x such that
y 6ˆ  for each y 2 U � ¹xº. By the inductive hypothesis, f .y/ 6ˆ  for each
y 2 U � ¹xº. Since f is a d-morphism, f .U / is an upset of F containing f .x/.
Therefore, f .U � ¹xº/ � R.f .x// � ¹f .x/º. Let w 2 R.f .x//. If w ¤ f .x/,
we have w D f .y/ for some y 2 U � ¹xº. Thus, w 6ˆ  . On the other hand,
if w D f .x/, then f .x/ is reflexive. As f is r-dense, there is y 2 U � ¹xº with



More on d-Logics of Subspaces of the Rational Numbers 327

f .y/ D f .x/. Therefore, w D f .y/ 6ˆ  . Thus, f .x/ 6ˆ '. Consequently, x 6ˆ '

implies that f .x/ 6ˆ ', which completes the proof by induction.
Finally, if X 6ˆ ', then there exists x 2 X such that x 6ˆ '. By the above,

f .x/ 6ˆ '. Thus, F 6ˆ '.

Theorem 3.3 (Main Theorem)

(1) Each modal logic over K4 axiomatizable by variable-free formulas is the d-
logic of a subspace of Q.

(2) An arbitrary intersection of modal logics over K4 axiomatizable by variable-
free formulas is the d-logic of a subspace of Q.

Proof (1) Let L D K4 C ¹'i W i 2 I º, where each 'i is variable-free. Since
the standard translation (see, e.g., Blackburn, de Rijke, and Venema [11, Section
2.4]) of a variable-free formula produces a first-order condition on frames, L is com-
plete with respect to a �-elementary class of Kripke frames. Therefore, by Gab-
bay and Shehtman [18, Proposition 5.4], L is complete with respect to a class of
countable (rooted) Kripke frames. Let ¹ n W n 2 !º be an enumeration of all
nontheorems of L. For each  n, there is a countable rooted L-frame Fn refuting
 n. By the Main Lemma, there are a subspace Xn of Q and an onto d-morphism
f W Xn ! Fn. Therefore, Xn 6ˆ  . Also, by Lemma 3.2, Xn ˆ ¹'i W i 2 I º
(because Fn ˆ ¹'i W i 2 I º). Let X be the disjoint union of ¹Xn W n 2 !º. Then
L is the d-logic of X . Clearly X is a subspace of a countable disjoint union of Q,
which is homeomorphic to Q. Thus, X is homeomorphic to a subspace of Q.

(2) Let ¹Li W i 2 I º be a family of modal logics over K4 axiomatizable by
variable-free formulas. Let L D

T
i2I Li , and let ¹'n W n 2 !º be an enumeration

of nontheorems of L. For each n 2 ! there is in 2 I such that 'n … Lin . By (1),
for each n 2 !, there is a subspace Xn of Q whose d-logic is Lin . Take X to be the
disjoint union of ¹Xn W n 2 !º. Then X is homeomorphic to a subspace of Q, and
the d-logic of X is L.

Corollary 3.4

(1) Subspaces of Q give rise to continuum many d-logics over K4.
(2) There exist continuum many d-logics of subspaces of Q that are not finitely

axiomatizable.
(3) There exist continuum many d-logics of subspaces of Q that are not decid-

able.
(4) There exist d-logics of subspaces of Q that do not have the FMP.

Proof As follows from Gencer and de Jongh [19, Section 3], there exist continuum
many modal logics over K4 axiomatizable by variable-free formulas. Therefore,
(1) follows from the Main Theorem. Since there are only countably many finitely
axiomatizable (resp., decidable) modal logics, (2) and (3) follow from (1). Finally,
by [12, Theorem 6.12], there is a modal logic over K4 axiomatizable by variable-free
formulas which does not have the FMP. Thus, (4) follows from the Main Theorem.

In fact, there also exist continuum many d-logics of subspaces of Q that do not have
the FMP (see [8]).
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4 The Logics K4�n; K4�n; K4„n; K4†n, and K4‚n

In this section we consider five families of modal logics over K4 axiomatized by
variable-free formulas, and show that they d-define interesting classes of topological
spaces.

Consider the following five families of formulas:
(1) 
n D �n?,
(2) ın D �nÞ>,
(3) �n D Þn�? ! Þ:ÞC�?,
(4) �n D 
nC1 ! 
n,
(5) �n D ınC1 ! ın.

Definition 4.1 We let
(1) K4�n D K4C 
n,
(2) K4�n D K4C ın,
(3) K4„n D K4C �n,
(4) K4†n D K4C �n,
(5) K4‚n D K4C �n.

Clearly 
0 D ?, and so K4�0 is the inconsistent logic. Moreover, since each of 
n
.n ¤ 0/; ın; �n; �n, and �n is variable-free, it follows from [12, Section 5.3] that each
of K4�n .n ¤ 0/, K4�n, K4„n, K4†n, and K4‚n has the FMP with respect to
its Kripke semantics. Consequently, each of these modal logics is decidable.

Let F D .W;R/ be a K4-frame. We call A � W serial if A � R�1.A/. Note
that if A D ¿, then A is serial.

Definition 4.2 Let F D .W;R/ be a finite K4-frame.
(1) We call F n-deep if R�n.W / D ¿.
(2) We call F n-top-deep if R�n.imaxW / D ¿.
(3) We call F n-semi-top-deep if R�n.imaxW / � R�1.rmaxW /.
(4) We call F n-serial if R�n.W / is serial.
(5) We call F n-top-serial if R�n.imaxW / is serial.

Remark 4.3 We clearly have the following.
(1) F is n-deep iff R is irreflexive and the depth of F is � n.
(2) F is n-top-deep iff .RC/�1.imaxW / is n-deep.
(3) F is n-semi-top-deep iff .RC/�1.imaxW / �R�1.rmaxW / is n-deep.
(4) F is n-serial iff maxR�n.W / D rmaxR�n.W /.
(5) F is n-top-serial iff maxR�n.imaxW / D rmaxR�n.imaxW /.

Lemma 4.4 Let F D .W;R/ be a finite K4-frame. Then
(1) F ˆ 
n iff F is n-deep;
(2) F ˆ ın iff F is n-top-deep;
(3) F ˆ �n iff F is n-semi-top-deep;
(4) F ˆ �n iff F is n-serial;
(5) F ˆ �n iff F is n-top-serial.

Proof Let � be a valuation into W .
(1) We have

�.
n/ D �.�n?/ D �.:Þn>/ D W �R�n.W /:
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Therefore, F ˆ 
n iff W �R�n.W / D W iff R�n.W / D ¿ iff F is n-deep.
(2) Since �.�?/ D �.:Þ>/ D W �R�1.W / D imax.W /, we have

�.ın/ D �.�nÞ>/ D �.�n:�?/ D �.:Þn�?/ D W �R�n.imaxW /:

Therefore, F ˆ ın iff W � R�n.imaxW / D W iff R�n.imaxW / D ¿ iff F is
n-top-deep.

(3) Since �.Þn�?/ D R�n.imaxW / and �.ÞC�?/ D .RC/�1.imaxW /, it is
obvious that F ˆ �n iff R�n.imaxW / � R�1.W � .RC/�1.imaxW //. We show
that R�1.W � .RC/�1.imaxW // D R�1.rmaxW /. Since .RC/�1.imaxW / \
rmaxW D ¿, we have rmaxW � W � .RC/�1.imaxW /, and so R�1.rmaxW / �
R�1.W � .RC/�1.imaxW //.

For the other inclusion, let w 2 R�1.W � .RC/�1.imaxW //. Then there exists
v … .RC/�1.imaxW / such that wRv. As F is finite, there exists u 2 maxW such
that vRu. Since R is transitive, we have wRu. Also, as RC.v/ \ imaxW D ¿,
we must have u 2 rmaxW . Therefore, w 2 R�1.rmaxW /, showing that
R�1.W � .RC/�1.imaxW // � R�1.rmaxW /. As the desired equality holds,
it follows that F ˆ �n iff R�n.imaxW / � R�1.rmaxW /, and hence F ˆ �n iff F
is n-semi-top-deep.

(4) We have

�.�n/ D �.�nC1? ! �n?/ D �.:ÞnC1> ! :Þn>/

D .W �R�n�1W /! .W �R�nW /:

Therefore, F ˆ �n iffW �R�n�1.W / � W �R�n.W / iff R�n.W / � R�n�1.W /.
Thus, F ˆ �n iff R�n.W / is serial, and so F ˆ �n iff F is n-serial.

(5) Since �.�?/ D imax.W /, we have

�.�n/ D �.�nC1Þ> ! �nÞ>/

D �.�nC1:�? ! �n:�?/

D �.:ÞnC1�? ! :Þn�?/

D .W �R�n�1 imaxW /! .W �R�n imaxW /:

Therefore, F ˆ �n iff W � R�n�1.imaxW / � W � R�n.imaxW / iff
R�n.imaxW / � R�n�1.imaxW /. Thus, F ˆ �n iff R�n.imaxW / is serial,
and so F ˆ �n iff F is n-top-serial.

In the next theorem we establish the containment relationships between the five fam-
ilies of logics we have introduced. It is captured by Figure 4. The full picture can
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Figure 5

be found at the end of Section 5. Note that the arrows only indicate the inclusion
relation, and so one should be careful when examining meets and joins in Figure 4.
For example, K4‚n _K4„n � K4�n and K4†n � K4‚n ^K4„n.

Theorem 4.5

(1) K4�n .n ¤ 0/ is the modal logic of finite n-deep K4-frames; K4�n is the
modal logic of finite n-top-deep K4-frames; K4„n is the modal logic of finite
n-semi-top-deep K4-frames; K4‚n is the modal logic of finite n-top-serial
K4-frames; and K4†n is the modal logic of finite n-serial K4-frames.

(2) K4�n D GLn and
T
! K4�n D

T
! GLn D GL.

(3) K4�0 D K4D, K4�n � K4�n for each n ¤ 0, and K4�nCm and K4�n

are not comparable for m > 0.
(4) K4„0 D K4D, K4†n � K4„n � K4�n, and K4„n is not comparable

with either K4�nCm, K4�nCm, or K4‚m for n;m > 0.
(5) K4†0 D K4‚0 D K4D, K4†n � K4‚n � K4�n for each n > 0, and

K4�nCm and K4†n are not comparable for m > 0. As a result, neither
K4�nCm and K4†n, K4„nCm and K4†n, nor K4‚nCm and K4†n are
comparable for n;m > 0.

(6) K4 D
T
! K4†n D

T
! K4‚n.

Proof (1) Since each of the logics has the FMP, the result follows from Defini-
tion 4.2 and Lemma 4.4.

(2) As both K4�n and GLn are the modal logics of finite n-deep K4-frames,
it follows that GLn D K4�n. Since GL D

T
! GLn, we have

T
! K4�n DT

! GLn D GL.
(3) Since ı0 D Þ>, it is clear that K4�0 D K4D. We show that K4�n � K4�n.

Let F ˆ 
n. Then R�n.W / D ¿. As R�n.imaxW / � R�n.W /, it follows
that R�n.imaxW / D ¿. Therefore, F ˆ ın, and so each n-deep frame is n-top-
deep. Since K4�n is the modal logic of n-top-deep frames and K4�n is the modal
logic of n-deep frames, the containment follows. To see that the containment is
strict, consider the frame Hn shown in Figure 5. As usual, bullets denote irreflexive
points and circles denote reflexive points. Clearly Hn is n-top-deep, but not n-deep.
Therefore, Hn ˆ ın, but Hn 6ˆ 
n, so K4�n 6` 
n, and so the containment is strict.
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To see that K4�nCm and K4�n are not comparable for m > 0, consider
the frames FnCm�1 and Hn shown in Figure 5. Clearly the frame FnCm�1 is a
K4�nCm-frame that is not a K4�n-frame. It is also clear that Hn is a K4�n-frame
that is not a K4�nC1-frame. (In fact, Hn is .n � 1/-serial.) Thus, K4�nCm and
K4�n are incomparable.

(4) We start by showing that K4„0 D K4D. Let F D .W;R/ be a finite
K4-frame. By Lemma 4.4(3), F ˆ �0 iff R�0.imaxW / � R�1.rmaxW /
iff imaxW � R�1.rmaxW / iff imaxW D ¿ iff F is serial. Therefore,
K4„0 D K4D.

Second, we show that K4†n � K4„n for n > 0. Let F D .W;R/ be a
K4„n-frame, and let w 2 R�n.W /. Then wRnv for some v 2 W . If v … imaxW ,
then v 2 W � imaxW D R�1.W /. Therefore, vRu for some u 2 W . Thus,
wRnC1u, and so w 2 R�n�1.W /. On the other hand, if v 2 imaxW , then
w 2 R�n.imaxW / � R�1.rmaxW /. Therefore, wRu for some u 2 rmaxW .
As u 2 rmaxW , we have that u is reflexive, and so uRnu. Thus, wRnC1u,
and so w 2 R�n�1.W /. In either case we obtain R�n.W / � R�n�1.W /, so
F is n-serial, and so F is a K4†n-frame. Consequently, K4†n � K4„n. To
see that the containment is strict, consider the frame Gn in Figure 5. Clearly
Gn is n-serial, and R�n.imaxW / D ¹w0º 6� ¿ D R�1.rmaxW /. Thus,
Gn is a K4†n-frame which is not a K4„n-frame, and so the containment is
strict.

Third, we show that K4„n � K4�n for n > 0. Let F D .W;R/ be a
K4�n-frame. Then R�n.imaxW / D ¿ � R�1.rmaxW /. Therefore, F is a
K4„n-frame, and so K4„n � K4�n. That the inclusion is strict can be seen by
considering the frame HnC1 in Figure 5, which is clearly not n-top-deep, but it is
n-semi-top-deep, because

R�n.imaxW / D ¹w1º � ¹w1; w0º D R�1.rmaxW /:

Next we show that K4„n is not comparable with either K4�nCm or K4�nCm for
n;m > 0. The frame K2 in Figure 5 is n-semi-top-deep, but it is not .nC m/-top-
deep. Therefore, K4�nCm 6� K4„n, and so K4�nCm 6� K4„n. Also, the frame
FnCm�1 is .nCm/-deep, but it is not n-semi-top-deep. Thus, K4„n 6� K4�nCm,
and so K4„n 6� K4�nCm. Consequently, K4„n is not comparable with either
K4�nCm or K4�nCm for n;m > 0.

Last, we show that K4„n is not comparable with K4‚m for n;m > 0. Since G1

in Figure 5 is not n-semi-top-deep, but is m-top-serial, we have K4„n 6� K4‚m.
To show that K4‚m 6� K4„n, we consider n � m and n < m separately.
If n � m, then the frame HnC1 in Figure 5 is a K4„n-frame which is not a
K4‚m-frame. If n < m, then the frame Ln;mC1 in Figure 5 is a K4„n-frame which
is not a K4‚m-frame because w1 2 R�m.imaxW /, but w1 … R�m�1.imaxW /.
Consequently, K4‚m 6� K4„n, and so K4„n and K4‚m are incomparable for
n;m > 0.

(5) First, we show that K4†0 D K4D. For a K4-frame F, we have

F ˆ �0 iff F ˆ 
1 ! 
0 iff F ˆ �? ! ? iff F ˆ :�?
iff F ˆ Þ:? iff F ˆ Þ>:

Thus, a finite K4-frame F is 0-serial iff it is serial, and so K4†0 D K4D.
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Second, we show that K4‚0 D K4D. For a finite K4-frame F D .W;R/, we
have

F ˆ �0 iff F ˆ ı1 ! ı0 iff F ˆ �Þ> ! Þ> iff F ˆ �? ! Þ�?

iff imaxW � R�1.imaxW / iff imaxW D ¿ iff F is serial
iff F ˆ Þ>:

Therefore, F is 0-top-serial iff it is serial, and so K4‚0 D K4D.
Third, we show that K4†n � K4‚n. Let F D .W;R/ be a finite K4-frame.

If F ˆ �n, then F is n-top-serial, and so R�n.imaxW / � R�n�1.imaxW /.
Therefore,

R�n.W / D R�n
�
R�1.W / [ imaxW

�
D R�n

�
R�1.W /

�
[R�n.imaxW /

� R�n�1.W / [R�n�1.imaxW /

D R�n�1.W /:

Thus, F is n-serial, and so F ˆ �n. This shows that each finite K4‚n-frame
is a K4†n-frame, and the containment follows. For n > 0, we show that the
containment is strict. The frame HnC1 is n-serial, but it is not n-top-serial as
R�n.imaxW / D ¹w1º, while R�n�1.imaxW / D ¿. Therefore, HnC1 ˆ �n, but
HnC1 6ˆ �n, so K4†n 6` �n, and so the containment is strict.

Fourth, we show that K4‚n � K4�n. Let F D .W;R/ be a finite K4-frame.
If F ˆ ın, then R�n.imaxW / D ¿ � R�n�1.imaxW /, showing that F ˆ �n.
Therefore, each finite n-top-deep frame is n-top-serial, and so K4‚n � K4�n.
We show that the containment is strict. Consider the frame Gn shown in Figure 5.
Obviously Gn is n-top-serial because R�n.W / D ¹w0º D R�n�1.W /, but it is not
n-top-deep. Thus, K4‚n � K4�n.

Next we show that K4�nCm and K4†n are not comparable for m > 0. Since
the frame Gn in Figure 5 is a K4†n-frame, but is not a K4�mCn-frame, we have
K4�mCn 6� K4†n. The frame FnCm�1 in Figure 5 is .n C m/-deep, but it is not
n-serial. Thus, K4†n 6� K4�nCm.

It follows that K4†n is properly contained in K4„n, K4‚n, K4�n, and K4�n
for each n > 0, but neither K4�nCm, K4�nCm, K4„nCm, nor K4‚nCm is
comparable with K4†n for m > 0.

(6) Obviously K4 � K4‚n for each n 2 !. Let K4 6` '. As K4 has the
FMP with respect to its Kripke semantics, there is a finite rooted K4-frame F re-
futing '. Let n be the depth of F. EitherR�n.imaxW / D ¿ orR�n.imaxW / ¤ ¿.
If R�n.imaxW / D ¿, then F is n-top-deep and hence n-top-serial. If
R�n.imaxW / ¤ ¿, then as F has depth n, R�n.imaxW / contains a nonde-
generate cluster of F. Therefore, R�n�1.imaxW / D R�n.imaxW /, and so F
is again n-top-serial. Thus, in either case F is a K4‚n-frame refuting ', and so
K4‚n 6` '. We conclude that

T
n2! K4‚n 6` '. Consequently, K4 D

T
! K4‚n.

Now observe that K4 �
T
! K4†n �

T
! K4‚n D K4.

Definition 4.6 Let X be a Td -space.
(1) We call X n-scattered if dn.X/ D ¿.
(2) We call X n-quasi-scattered if dn.isoX/ D ¿.
(3) We call X n-semi-scattered if dn.isoX/ � d.X � isoX/.
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(4) We call X n-dense-in-itself if dn.X/ is dense-in-itself.
(5) We call X n-strongly-dense-in-itself if dn.isoX/ is dense-in-itself.

Lemma 4.7 Let X be a Td -space. Then
(1) X ˆ 
n iff X is n-scattered;
(2) X ˆ ın iff X is n-quasi-scattered;
(3) X ˆ �n iff X is n-semi-scattered;
(4) X ˆ �n iff X is n-dense-in-itself;
(5) X ˆ �n iff X is n-strongly-dense-in-itself.

Proof Let � be a valuation into X .
(1) We have

�.
n/ D �.�n?/ D �.:Þn>/ D X � dn.X/:

Therefore, X ˆ 
n iff X � dn.X/ D X iff dn.X/ D ¿ iff X is n-scattered.
(2) Since �.�?/ D �.:Þ>/ D X � d.X/ D iso.X/, we have

�.ın/ D �.�nÞ>/ D �.�n:�?/ D �.:Þn�?/ D X � dn.isoX/:

Therefore, X ˆ ın iff X � dn.isoX/ D X iff dn.isoX/ D ¿ iff X is n-quasi-
scattered.

(3) Since �.�?/ D isoX , �.Þn�?/ D dn.isoX/, and �.ÞC�?/ D isoX , we
have X ˆ �n iff dn.isoX/ � d.X � isoX/ iff X is n-semi-scattered.

(4) We have

�.�n/ D �.�nC1? ! �n?/ D �.:ÞnC1> ! :Þn>/

D .X � dnC1X/! .X � dnX/:

Therefore, X ˆ �n iff X � dnC1.X/ � X � dn.X/ iff dn.X/ � dnC1.X/. Thus,
X ˆ �n iff dn.X/ is dense-in-itself, and so X ˆ �n iff X is n-dense-in-itself.

(5) Since �.�?/ D iso.X/, we have

�.�n/ D �.�nC1Þ> ! �nÞ>/

D �.�nC1:�? ! �n:�?/

D �.:ÞnC1�? ! :Þn�?/

D
�
X � dnC1.isoX/

�
!
�
X � dn.isoX/

�
:

Therefore, X ˆ �n iff X � dnC1.isoX/ � X � dn.isoX/ iff dn.isoX/ �
dnC1.isoX/. Thus, X ˆ �n iff dn.isoX/ is dense-in-itself, and so X ˆ �n iff X is
n-strongly-dense-in-itself.

Theorem 4.8

(1) K4�n (n ¤ 0) d-defines and is the d-logic of the class of n-scattered spaces.
In fact, K4�n (n ¤ 0) is the d-logic of an n-scattered subspace of Q.

(2) K4�n d-defines and is the d-logic of the class of n-quasi-scattered spaces. In
fact, K4�n is the d-logic of an n-quasi-scattered subspace of Q.

(3) K4„n d-defines and is the d-logic of the class of n-semi-scattered spaces. In
fact, K4„n is the d-logic of an n-semi-scattered subspace of Q.

(4) K4†n d-defines and is the d-logic of the class of n-dense-in-itself spaces. In
fact, K4†n is the d-logic of an n-dense-in-itself subspace of Q.
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(5) K4‚n d-defines and is the d-logic of the class of n-strongly-dense-in-itself
spaces. In fact, K4‚n is the d-logic of an n-strongly-dense-in-itself subspace
of Q.

Proof The proof follows from the Main Theorem and Lemma 4.7.

5 The Logics wGL, qGL, and sGL

In this final section we provide three natural generalizations of the concept of scat-
tered space. The first leads to the concept of weakly scattered space, the second to
the concept of quasi-scattered space, and the third to the concept of semi-scattered
space. These three classes of spaces give rise to the modal logics weak-GL (denoted
wGL), quasi-GL (denoted qGL), and semi-GL (denoted sGL). The logic wGL has
already appeared in the literature under the name K4G (see [16]; see also [5]). The
logics qGL and sGL appear to be new.

We show that wGL d-defines the class of weakly scattered spaces, qGL d-
defines the class of quasi-scattered spaces, and sGL d-defines the class of semi-
scattered spaces. We also show that each of wGL, qGL, and sGL has the
FMP with respect to its Kripke semantics and is decidable. In addition, we
show that each of these three logics arises as the d-logic of a subspace of Q,
that GL D wGL _ qGL D wGL _ sGL, that qGL D

T
! K4�n, and that

sGL D
T
! K4„n. Here and below _ denotes the join in the lattice of normal

extensions of K4.

5.1 wGL Let X be a topological space. We recall that A � X is dense in X if
A D X . If X is scattered, then for each nonempty subspace Y of X , the set iso.Y /
of isolated points of Y is nonempty. But in fact iso.Y / is dense in Y . In particular,
iso.X/ is dense in X .

Definition 5.1 We call a Td -space X weakly scattered if iso.X/ is dense in X .

Clearly each scattered space is weakly scattered. An example of a weakly scattered
space which is not scattered is the Stone–Čech compactification ˇ.!/ of !. Indeed,
iso.ˇ.!// D ! is dense in ˇ.!/, but !� D ˇ.!/ � ! is a nonempty dense-in-itself
subspace of ˇ.!/.

Definition 5.2 Let wgl D ÞC�?, and let wGL D K4 C wgl. We call wGL
weak-GL.

We recall that K4G D K4C .:�? ! :�:�?/. If we read � as “it is provable
in a theory T ,” then :�? ! :�:�? reads as “if T is consistent, then T can-
not prove its own consistency,” thus providing the modal version of Gödel’s second
incompleteness theorem (see [16]).

Lemma 5.3 K4G D wGL.

Proof We have

K4 ` ÞC�? $ �?_Þ�? $ ::�?_Þ�? $ :�? ! Þ�?
$ :�? ! :�:�?:

Therefore, K4G D K4C .:�? ! :�:�?/ D K4CÞC�? D wGL.
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Theorem 5.4

(1) wGL has the FMP with respect to its Kripke semantics and hence is decid-
able.

(2) For each finite K4-frame F D .W;R/, we have F ˆ wgl iff maxW D

imaxW .
(3) For each Td -space X , we have X ˆ wgl iff X is weakly scattered.
(4) wGL d-defines the class of weakly scattered spaces.
(5) wGL is the d-logic of weakly scattered spaces. In fact, wGL is the d-logic of

a weakly scattered subspace of Q.
(6) wGL � GL. In particular, wGL 6` gl.
(7) wGL _K4†n D wGL _K4‚n.
(8) wGL _K4�n D K4�n.

Proof (1) As wGL is an extension of K4 by a variable-free formula, by [12, Sec-
tion 5.3], wGL has the FMP with respect to its Kripke semantics (see also [5, Propo-
sition 2.1.4]). As wGL is finitely axiomatizable and has the FMP, it is decidable.

(2) Let F D .W;R/ be a finite K4-frame. Recall that RC denotes the reflexive
closure of R. For each valuation � into F, we have

�.wgl/ D �.ÞC�?/ D .RC/�1.W �R�1W / D .RC/�1.imaxW /:
Therefore, F ˆ wgl iffF ˆ ÞC�? iff �.ÞC�?/ D W iff .RC/�1.imaxW / D W
iff rmaxW D ¿ iff maxW D imaxW (see also [5, Section 2]).

(3) Let X be a Td -space. For each valuation � into X , we have

�.wgl/ D �.ÞC�?/ D X � d.X/ D iso.X/:

Therefore, X ˆ wgl iff X ˆ ÞC�? iff �.ÞC�?/ D X iff iso.X/ D X iff X is
weakly scattered.

(4) This is an immediate consequence of (3).
(5) Apply (4) and the Main Theorem.
(6) Clearly the class of finite wGL-frames contains the class of finite GL-frames.

Since both logics have the FMP with respect to their Kripke semantics, it follows that
wGL � GL. A simple example of a finite wGL-frame which is not a GL-frame is
the frame G1 shown in Figure 5. Therefore, wGL 6` gl, and so wGL � GL.

(7) Since K4†n � K4‚n, we have wGL_K4†n � wGL_K4‚n. For the con-
verse inclusion, first we show that wGL ` Þ> $ Þ�?. Since wGL ` ÞC�?,
we have wGL ` Þ> $ ÞÞC�?, so wGL ` Þ> $ Þ.�? _ Þ�?/, and
so wGL ` Þ> $ .Þ�? _ Þ2�?/. As wGL ` Þ2' ! Þ', we obtain
wGL ` Þ> $ Þ�?. Next we show that wGL _ K4†n ` �n. We clearly
have K4 ` �n $ .Þn�? ! ÞnC1�?/ and K4 ` �n $ .Þn> ! ÞnC1>/.
Now wGL ` Þn�? $ Þn�1Þ�? $ Þn�1Þ> $ Þn>. Since wGL_K4†n `

Þn> ! ÞnC1>, we have wGL _ K4†n ` Þn�? ! ÞnC1�?. There-
fore, wGL _ K4†n ` �n, and so wGL _ K4‚n � wGL _ K4†n. Thus,
wGL _K4†n D wGL _K4‚n.

(8) We clearly have wGL;K4�n � K4�n. Therefore, wGL _ K4�n � K4�n.
We show that wGL _ K4�n ` 
n. We have K4 ` 
n $ :Þn> and K4 ` ın $
:Þn�?. Since wGL ` Þn> $ Þn�?, we have wGL ` :Þn�? $ :Þn>.
As wGL _ K4�n ` :Þn�?, it follows that wGL _ K4�n ` :Þn>. Therefore,
wGL_K4�n ` 
n, and so K4�n � wGL_K4�n. Thus, wGL_K4�n D K4�n.
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5.2 qGL and sGL Let X be a scattered space. Then iso.X/ D X , and so iso.X/ is
a scattered space. But in general iso.X/ is a proper subspace of X . In fact, often
iso.X/ is even empty. So it may happen that iso.X/ is scattered without X being
scattered. Similarly, int.iso.X// is scattered whenever iso.X/ is scattered, but it may
happen that int.iso.X// is scattered without iso.X/ being scattered.

Definition 5.5 Let X be a Td -space.
(1) We call X quasi-scattered if iso.X/ is a scattered space.
(2) We call X semi-scattered if int.iso.X// is a scattered space.

Clearly each quasi-scattered space is semi-scattered, but the converse may not be true
in general. For the next lemma, we recall that if Y is a subspace of X and A � Y ,
then dY .A/ D d.A/ \ Y . In particular, if Y is closed in X , then dY .A/ D d.A/.

Lemma 5.6 Let X be a Td -space.
(1) The following conditions are equivalent.

(a) X is quasi-scattered.
(b) Each nonempty subspace of iso.X/ contains an isolated point.
(c) There is an ordinal ˛ such that d˛.iso.X// D ¿.
(d) d.A \ iso.X// � d

�
.A \ iso.X// � d.A \ iso.X//

�
for each A � X .

(2) The following conditions are equivalent.
(a) X is semi-scattered.
(b) Each nonempty subspace of int.iso.X// contains an isolated point.
(c) There is an ordinal ˛ such that d˛

�
int.iso.X//

�
\ int.iso.X// D ¿.

(d) We have d
�
A \ int.iso.X//

�
\ int.iso.X// � d

�
.A \ int.iso.X///

� d.A \ int.iso.X///
�
for each A � X .

Proof It follows from Definition 5.5 and [10, Proposition 2.2] that for both
(1) and (2) the first three conditions (a), (b), and (c) are equivalent. To see that
(1.a)”(1.d), recall from Esakia [14] (see also Bezhanishvili, Mines, and Morandi
[9, Theorem 2.11]) that iso.X/ is scattered iff d.B/ � d.B � d.B// for each
B � iso.X/, which is clearly equivalent to

d
�
A \ iso.X/

�
� d

�
.A \ iso.X// � d.A \ iso.X//

�
for each A � X . To see that (2.a)”(2.d), in the proof of (1.a)”(1.d), replace
iso.X/ by int.iso.X//, replace d by dint.iso.X//, and observe that

dint.iso.X//
�
A \ int.iso.X//

�
� dint.iso.X//

�
.A \ int.iso.X///

� dint.iso.X//.A \ int.iso.X///
�

iff

d
�
A \ int.iso.X//

�
\ int.iso.X// � d

�
.A \ int.iso.X/// � d.A \ int.iso.X///

�
:

Definition 5.7 Let

qgl D �
�
�.p _�CÞ>/! .p _�CÞ>/

�
! �.p _�CÞ>/;



More on d-Logics of Subspaces of the Rational Numbers 337

and let
sgl D �

�
�.p _ÞC�CÞ>/! .p _ÞC�CÞ>/

�
! �.p _ÞC�CÞ>/ _ÞC�CÞ>:

Note that qgl is obtained from gl by substituting p _ �CÞ> for p. Therefore,
gl ` qgl. Also, substituting p _ ÞC�CÞ> for p, we obtain
gl ` �.�.p _ÞC�CÞ>/ ! .p _ÞC�CÞ>// ! �.p _ÞC�CÞ>/ ` sgl.
On the other hand, as we will see shortly, qgl 6` gl and sgl 6` qgl.

Lemma 5.8 Let X be a Td -space.
(1) X is quasi-scattered iff X ˆ qgl.
(2) X is semi-scattered iff X ˆ sgl.

Proof (1) Observe that by substituting:p for p in qgl, we obtain that qgl is equiv-
alent to

Þ.p ^ÞC�?/! Þ
�
.p ^ÞC�?/ ^ :Þ.p ^ÞC�?/

�
:

Now as �.ÞC�?/ D iso.X/, we obtain
X ˆ qgl iff X ˆ Þ.p ^ÞC�?/! Þ

�
.p ^ÞC�?/ ^ :Þ.p ^ÞC�?/

�
iff d

�
A \ iso.X/

�
� d

�
.A \ iso.X// � d.A \ iso.X//

�
for each A � X

iff X is a quasi-scattered space:
(2) Similarly, by substituting :p for p in sgl, we obtain that sgl is equivalent to

Þ.p^�CÞC�?/^�CÞC�? ! Þ
�
.p^�CÞC�?/^:Þ.p^�CÞC�?/

�
:

Now as �.�CÞC�?/ D int.iso.X//, we obtain
X ˆ sgl iff X ˆ Þ.p ^�CÞC�?/ ^�CÞC�?

! Þ
�
.p ^�CÞC�?/ ^ :Þ.p ^�CÞC�?/

�
iff d

�
A \ int.iso.X//

�
\ int

�
iso.X/

�
� d

�
.A \ int.iso.X///

� d.A \ int.iso.X///
�
for each A � X

iff X is a semi-scattered space:

Definition 5.9

(1) Let qGL D K4C qgl. We call qGL quasi-GL.
(2) Let sGL D K4C sgl. We call sGL semi-GL.

As an immediate consequence of Lemma 5.8, we obtain the following.

Corollary 5.10

(1) qGL d-defines the class of quasi-scattered spaces.
(2) sGL d-defines the class of semi-scattered spaces.

Next we characterize Kripke frames for qGL and sGL.

Lemma 5.11 Let F D .W;R/ be a K4-frame.
(1) F ˆ qgl iff .RC/�1.imaxW / is dually well founded.
(2) F ˆ sgl iff .RC/�1.imaxW / �R�1.rmaxW / is dually well founded.
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Proof Let � be a valuation into F.
(1) We have �.ÞC�?/ D .RC/�1.imaxW /. Therefore,

F ˆ qgl iff F ˆ Þ.p ^ÞC�?/! Þ
�
.p ^ÞC�?/ ^ :Þ.p ^ÞC�?/

�
iff .RC/�1.imaxW / ˆ Þp ! Þ.p ^ :Þp/

iff .RC/�1.imaxW / ˆ gl
iff .RC/�1.imaxW / is dually well founded:

(2) We have �.�CÞC�?/ D W � .RC/�1.W � .RC/�1.imaxW //. Observe
that

w 2 W � .RC/�1
�
W � .RC/�1.imaxW /

�
iff RC.w/ � .RC/�1.imaxW /
iff w 2 .RC/�1.imaxW / �R�1.rmaxW /:

Therefore, W � .RC/�1.W � .RC/�1.imaxW // D .RC/�1.imaxW / �
R�1.rmaxW /, and so �.�CÞC�?/ D .RC/�1.imaxW / �R�1.rmaxW /. Thus,

F ˆ sgl iff F ˆ Þ.p ^�CÞC�?/ ^�CÞC�?

! Þ
�
.p ^�CÞC�?/ ^ :Þ.p ^�CÞC�?/

�
iff .RC/�1.imaxW / �R�1.rmaxW / ˆ Þp ! Þ.p ^ :Þp/

iff .RC/�1.imaxW / �R�1.rmaxW / ˆ gl
iff .RC/�1.imaxW / �R�1.rmaxW / is dually well founded:

Corollary 5.12 Let F D .W;R/ be a finite K4-frame.
(1) F ˆ qgl iff .RC/�1.imaxW / is irreflexive.
(2) F ˆ sgl iff .RC/�1.imaxW / �R�1.rmaxW / is irreflexive.

Our next goal is to show that both qGL and sGL have the FMP with respect to their
Kripke semantics. For this it is sufficient to show that both qGL and sGL are cofinal
subframe logics and then apply [12, Theorem 11.20]. Let F D .W;R/ be a K4-
frame. For a nonempty subset S of W , let RS be the restriction of R to S . Then
S D .S;RS / is also a K4-frame, called a subframe of F (see [12, pp. 28, 65]); if
in addition R.S/ � .RC/�1.S/, then S is called a cofinal subframe of F (see [12,
p. 292]). As follows from [12, Theorem 11.21], a logicL over K4 is a subframe logic
iff it is complete with respect to a class of K4-frames closed under subframes, and
L is a cofinal subframe logic iff it is complete with respect to a class of K4-frames
closed under cofinal subframes. It is a relatively easy consequence of Lemma 5.11
that the classes of all qGL-frames and of all sGL-frames are closed under cofinal
subframes. However, proving that both qGL and sGL are complete is more of a
challenge. This forces us to work with descriptive K4-frames instead.

Let X be a topological space. We recall that a subset U of X is clopen if U is
closed and open, that X is zero-dimensional if clopen subsets of X form a basis, and
thatX is a Stone space ifX is a zero-dimensional compact Hausdorff space. We also
recall that a pair X D .X;R/ is a descriptive K4-frame if X is a Stone space, .X;R/
is a K4-frame, R.x/ is closed for each x 2 X , andR�1.U / is clopen for each clopen
U of X (for an equivalent definition of descriptive frames that does not use topology
see [12, Chapter 8]).
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Let X D .X;R/ be a descriptive K4-frame. As follows from Abashidze [1, Sec-
tion 4] (see also Beklemishev, Bezhanishvili, and Icard [2, Section 2.2]), X ˆ gl iff
maxU D imaxU for each clopen U of X .
Lemma 5.13 Let X D .X;R/ be a descriptive K4-frame.

(1) X ˆ qgl iff maxU D imaxU for each clopen U of the subspace
.RC/�1.imaxX/.

(2) X ˆ sgl iff maxU D imaxU for each clopen U of the subspace
.RC/�1.imaxX/ �R�1.rmaxX/.

Proof (1) We have X ˆ qgl iff .RC/�1.imaxX/ ˆ gl iff maxU D imaxU for
each clopen U of the subspace .RC/�1.imaxX/.

(2) We have X ˆ sgl iff .RC/�1.imaxX/ � R�1.rmaxX/ ˆ gl iff maxU D
imaxU for each clopen U of the subspace .RC/�1.imaxX/ �R�1.rmaxX/.

Let X D .X;R/ be a descriptive K4-frame, and let S be a nonempty clopen subset
of X . Then S is a Stone space in the subspace topology. Let RS be the restriction
of R to S . It is well known that S D .S;RS / is also a descriptive K4-frame. We
call S D .S;RS / a subframe of X. Also, we call S a cofinal subframe of X if
R.S/ � .RC/�1.S/.
Lemma 5.14 Let X D .X;R/ be a descriptive K4-frame, and let S D .S; SR/ be
a cofinal subframe of X. Then imaxS � imaxX .
Proof Let x 2 imax.S/. We recall that for each x 2 X , either x 2 imax.X/ or
there exists y 2 max.X/ such that xRy. Suppose that x … imax.X/. Then there
exists y 2 max.X/ such that xRy. Since S is cofinal and y 2 R.S/, there is z 2 S
such that yRCz. Therefore, xRyRz or xRy D z. As R is transitive, in either case
we have xRz. Thus, x … imax.S/, a contradiction. Consequently, x 2 imax.X/,
and so imax.S/ � imax.X/.

Lemma 5.15

(1) A cofinal subframe of a descriptive qGL-frame is also a descriptive qGL-
frame.

(2) A cofinal subframe of a descriptive sGL-frame is also a descriptive sGL-
frame.

Proof (1) Suppose that X D .X;R/ is a descriptive qGL-frame and that
S D .S;RS / is a cofinal subframe of X. Let U be a clopen subset of
.RC/�1.imaxS/. By Lemma 5.14, imax.S/ � imax.X/, and so U �

.RC/�1.imaxX/. Since X is a descriptive qGL-frame, by Lemma 5.13(1),
maxU D imaxU . Therefore, S is a descriptive qGL-frame.

(2) Suppose that X D .X;R/ is a descriptive sGL-frame and that S D .S;RS /

is a cofinal subframe of X. Let U be a clopen subset of ..RC/�1.imaxS/ �
R�1.rmaxS// \ S . We show that ..RC/�1.imaxS/ � R�1.rmaxS// \ S �
.RC/�1.imaxX/�R�1.rmaxX/. Let x 2 ..RC/�1.imaxS/�R�1.rmaxS//\S .
Since S is a cofinal subframe of X , we have RC.x/ � .RC/�1.imaxS/. There-
fore, by Lemma 5.14, RC.x/ � .RC/�1.imaxX/. Thus, x 2 .RC/�1.imaxX/ �
R�1.rmaxX/, and so ..RC/�1.imaxS/�R�1.rmaxS//\S � .RC/�1.imaxX/�
R�1.rmaxX/. Consequently, U � .RC/�1.imaxX/ � R�1.rmaxX/. As X is a
descriptive sGL-frame, by Lemma 5.13(2), maxU D imaxU . It follows that S is a
descriptive sGL-frame.
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Theorem 5.16

(1) qGL is a cofinal subframe logic over K4. Consequently, qGL has the FMP
with respect to its Kripke semantics, and is decidable.

(2) sGL is a cofinal subframe logic. Consequently, sGL has the FMP with re-
spect to its Kripke semantics, and is decidable.

Proof It follows from the characterization of subframe and cofinal subframe logics
(see Wolter [25, Sections 2.2, 2.3]; see also Wolter [24, Section 3]) and the duality
between modal algebras and descriptive frames that a modal logic L is a subframe
logic iff the class of descriptive frames of L is closed under subframes and that L
is a cofinal subframe logic iff the class of descriptive frames of L is closed under
cofinal subframes. Therefore, by Lemma 5.15, both qGL and sGL are cofinal sub-
frame logics over K4. That both qGL and sGL have the FMP with respect to their
Kripke semantics now follows from [12, Theorem 11.20] (for a different proof see
Bezhanishvili, Ghilardi, and Jibladze [7]). As a result, since both qGL and sGL are
finitely axiomatizable, both qGL and sGL are decidable.

On the other hand, we show that neither qGL nor sGL is a subframe logic. Let
F D .W;R/ be the K4-frame shown in Figure 6, where w0 and w2 are reflexive
points and w1 is an irreflexive point. It is easy to see that F is both a qGL-frame and
an sGL-frame. Let S D ¹w0; w1º. Then S D .S;RS / is a subframe of F which is
neither a qGL-frame nor an sGL-frame. Consequently, neither qGL nor sGL is a
subframe logic. This is in contrast with GL, which is well known to be a subframe
logic. (Note that wGL is also a cofinal subframe logic that is not a subframe logic.)

ıw0

w1

w2

�

ı

6

6

F

Figure 6

Theorem 5.17

(1) K4 � sGL � qGL � GL.
(2) qGL D

T
! K4�n and sGL D

T
! K4„n.

(3) qGL is the d-logic of quasi-scattered spaces. In fact, qGL is the d-logic of a
quasi-scattered subspace of Q.

(4) sGL is the d-logic of semi-scattered spaces. In fact, sGL is the d-logic of a
semi-scattered subspace of Q.

(5) Neither qGL nor sGL is comparable with either wGL, K4†n, or K4‚n for
n > 0. Also, GL is not comparable with either K4†n or K4‚n for n > 0.

(6) GL D wGL _ sGL D wGL _ qGL.
(7) K4�n D qGL _K4‚n.
(8) wGL _ K4„n D wGL _ K4�n D K4�n, sGL _ K4†n D K4„n, and

qGL _K4†n D qGL _K4„n.
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Proof (1) Obviously K4 � sGL. The frame G1 in Figure 5 is a K4-frame which is
not an sGL-frame. Therefore, the containment is strict. Let F D .W;R/ be a finite
qGL-frame. Then .RC/�1.imaxW / is irreflexive. Thus, .RC/�1.imaxW / �
R�1.rmaxW / is also irreflexive. Consequently, F is a sGL-frame, and so
sGL � qGL. The containment is strict because the frame K2 in Figure 5 is an
sGL-frame which is not a qGL-frame. Clearly each finite GL-frame is a qGL-
frame. Therefore, qGL � GL. The containment is strict because any finite reflexive
K4-frame is a qGL-frame which is not a GL-frame.

(2) First we show that qGL D
T
! K4�n. For each n 2 !, it is obvious that a

finite K4�n-frame is a qGL-frame. Consequently, qGL �
T
! K4�n. Conversely,

if qGL 6` ', then by Theorem 5.16(1), there exists a finite qGL-frame F refut-
ing '. Clearly F is n-top-deep for some n 2 !. Therefore, K4�n 6` ', and so
qGL D

T
! K4�n.

Next we show that sGL D
T
! K4„n. Let F D .W;R/ be a finite K4„n-frame.

Then R�n.imaxW / � R�1.rmaxW /. If .RC/�1.imaxW / � R�1.rmaxW / is not
irreflexive, then there exists w 2 .RC/�1.imaxW /�R�1.rmaxW / such that wRw.
Since w 2 .RC/�1.imaxW / and wRw, we have w 2 R�n.imaxW /. But then
w 2 R�1.rmaxW /, a contradiction. Therefore, .RC/�1.imaxW / � R�1.rmaxW /
is irreflexive, and so F ˆ sgl. Consequently, sGL � K4„n for each n � 0,
and so sGL �

T
! K4„n. For the converse, suppose that sGL 6` '. By

Theorem 5.16(2), there exists a finite sGL-frame F D .W;R/ refuting '. As
.RC/�1.imaxW / � R�1.rmaxW / is irreflexive, there is n 2 ! such that
R�n.imaxW / � R�1.rmaxW /. Thus, F is a K4„n-frame, and so K4„n 6` '.
Consequently, sGL D

T
! K4„n.

(3) Apply Lemma 5.8(1), (2), and part (2) of the Main Theorem.
(4) Apply Lemma 5.8(2), (2), and part (2) of the Main Theorem.
(5) The frame G1 in Figure 5 refutes sgl, but validates wgl, �n, and �n for

n > 0. Therefore, sGL 6� wGL;K4†n;K4‚n for n > 0. Consequently,
qGL 6� wGL;K4†n;K4‚n and GL 6� K4†n;K4‚n for n > 0. The frame H2
in Figure 5 is a qGL-frame which is not a wGL-frame. Therefore, wGL 6� qGL,
and so wGL 6� sGL. The frame Fn in Figure 5 is a GL-frame which is not n-
serial. It follows that K4†n 6� GL. Thus, we also have K4†n 6� qGL; sGL and
K4‚n 6� GL;qGL; sGL. Consequently, neither qGL nor sGL is comparable with
either wGL, K4†n, or K4‚n for n > 0. Also, GL is not comparable with either
K4†n or K4‚n for n > 0.

(6) Since wGL � GL and sGL � qGL � GL, it follows that wGL _ sGL �
wGL _ qGL � GL. Conversely, as wGL ` ÞC�?, we also have wGL `
�CÞC�?. Therefore, since

sGL `Þ .p ^�CÞC�?/ ^�CÞC�?
! Þ

�
.p ^�CÞC�?/ ^ :Þ.p ^�CÞC�?/

�
;

we have
wGL _ sGL ` Þp ! Þ.p ^ :Þp/:

Thus, wGL _ sGL ` gl, so GL � wGL _ sGL, and so GL D wGL _ sGL D
wGL _ qGL.

(7) Since qGL;K4‚n � K4�n, it follows that qGL _ K4‚n � K4�n.
Conversely, we show that qGL _ K4‚n ` ın. First note that �n is equivalent
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to Þn�? ! ÞnC1�?, and if qGL ` p ! ÞC�?, then qGL ` Þp !
Þ.p ^ :Þp/. Next, as K4 ` Þn�? ! ÞC�?, we have

qGL ` Þ.Þn�?/! Þ
�
Þn�?^ :Þ.Þn�?/

�
:

Therefore,
qGL ` ÞnC1�? ! Þ.Þn�?^ :ÞnC1�?/:

Since K4‚n ` Þn�? ! ÞnC1�?, we obtain
qGL _K4‚n ` ÞnC1�? ! Þ.ÞnC1�?^ :ÞnC1�?/

` ÞnC1�? ! Þ?:
As K4 ` Þ? ! ?, we have

qGL _K4‚n ` ÞnC1�? ! ?

` :ÞnC1�?

` �nC1Þ>
` ınC1:

But K4‚n ` ınC1 ! ın. Therefore, qGL _ K4‚n ` ın. Thus, K4�n �

qGL _K4‚n, and so K4�n D qGL _K4‚n.
(8) First we show that wGL _ K4„n D wGL _ K4�n D K4�n. Since

K4„n � K4�n, we have wGL _ K4„n � wGL _ K4�n. Conversely, let
F D .W;R/ be a finite n-semi-top-deep wGL-frame. Then R�n.imaxW / �
R�1.rmaxW / D R�1.¿/ D ¿. Therefore, F is a K4�n-frame. Thus,
wGL _ K4�n � wGL _ K4„n, and so the equality holds. Now apply Theo-
rem 5.4(8), by which wGL _K4�n D K4�n.

Next we show that sGL _ K4†n D K4„n. Clearly sGL _ K4†n � K4„n

since both sGL and K4†n are contained in K4„n. Suppose that F D .W;R/ is a
finite n-serial sGL-frame. Let w 2 R�n.imaxW /. Then w 2 .RC/�1.imaxW /.
If w … R�1.rmaxW /, then w 2 .RC/�1.imaxW / � R�1.rmaxW /. There-
fore, R�n.imaxW / \ ..RC/�1.imaxW / � R�1.rmaxW // ¤ ¿. On the other
hand, as .RC/�1.imaxW / � R�1.rmaxW / is irreflexive and F is n-serial, we
have R�n.imaxW / \ ..RC/�1.imaxW / � R�1.rmaxW // D ¿. The obtained
contradiction proves that w 2 R�1.rmaxW /, and so F ˆ �n. It follows that
K4„n � sGL _K4†n; hence the equality.

Lastly, qGL _ K4„n D qGL _ .sGL _ K4†n/ D .qGL _ sGL/ _ K4†n D

qGL _K4†n.
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Figure 7

We conclude with Figure 7 depicting the inclusion relationships between the log-
ics introduced in Sections 4 and 5. Each logic of the form K4� is labeled by
� for readability purposes. Also, the arrows indicate only the inclusion relation,
and as such, one should be careful when examining meets and joins in Figure 7.
For example, K4‚n _ K4„n ¤ K4�n and K4‚n ^ K4„n ¤ K4†n, while
wGL _ sGL D wGL _ qGL D GL.
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