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Provability and Interpretability Logics
with Restricted Realizations

Thomas F. Icard and Joost J. Joosten

Abstract The provability logic of a theory T is the set of modal formulas,
which under any arithmetical realization are provable in T . We slightly modify
this notion by requiring the arithmetical realizations to come from a specified
set � . We make an analogous modification for interpretability logics. We first
study provability logics with restricted realizations and show that for various nat-
ural candidates of T and restriction set � , the result is the logic of linear frames.
However, for the theory Primitive Recursive Arithmetic (PRA), we define a frag-
ment that gives rise to a more interesting provability logic by capitalizing on the
well-studied relationship between PRA and I˙1. We then study interpretability
logics, obtaining upper bounds for IL(PRA), whose characterization remains a
major open question in interpretability logic. Again this upper bound is closely
related to linear frames. The technique is also applied to yield the nontrivial
result that IL.PRA/ � ILM.

1 Introduction

The cornerstone result of provability logic is Solovay’s Arithmetical Completeness
Theorem, which provides an exact modal characterization of the standard provabil-
ity predicate in arithmetic. One of the most outstanding problems in the area is to
provide an alternative proof of this theorem, both to shed light on Solovay’s original
proof and to provide ideas for how to obtain completeness theorems for fragments of
arithmetic too weak for Solovay’s proof method to work.

This paper deals with restricted cases of Solovay’s Theorem where alternative
proof methods are available. One underlying motivation for the current work is to
make progress toward an alternative completeness proof (see Section 7). However,
the method of provability logics with restricted realizations, which we introduce
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here, merits interest in its own right, as we shall explain shortly. Let us first briefly
restate Solovay’s Theorem and the necessary background on provability logic.

1.1 Provability logics The propositional modal logic GL, known as Gödel-Löb
Logic, captures exactly the behavior of the standard provability predicate in arith-
metic. For a given theory T (e.g., Peano Arithmetic), formulas �A are interpreted
as, “A is provable in T ”. It is obtained by extending the basic modal logic K with a
schematic formalization of Löb’s Theorem (L in the following definition).

Definition 1.1 GL is given by all Boolean tautologies, in addition to all instances
of the following schemata:

K W �.A! B/! .�A! �B/I
L W �.�A! A/! �A:

The logic is closed under modus ponens and necessitation, and modal schema 4 is
derivable: �A! ��A.

GL enjoys modal completeness with respect to a simple class of frames, in particu-
lar, the class of finite, irreflexive, and transitive frames, which we henceforth refer to
as GL-frames. The logic is linked to formalized provability via arithmetical realiza-
tions. An arithmetical realization is a function � that maps propositional variables
to sentences in the language of (a given) arithmetic, sending ? to 0 D 1. A realiza-
tion � can be extended uniformly so that we can interpret an arbitrary modal formula
as an arithmetical formula by stipulating

.A! B/� D A� ! B�

.�A/� D BewT .pA�q/:
Here p�q is a function that maps a formula ' to its code p'q and BewT .�/ is a pred-
icate in the language of T formalizing provability in T , so that T ` ' just in case
N � BewT .p'q/.

We define PL(T ), the provability logic of a theory T , as follows:

PL(T ) WD fA j 8 � T ` A�g:

Since Löb [27] it is known that GL is sound for a large class of theories T ; that is,
GL � PL(T). The reverse inclusion is Solovay’s completeness result.

Theorem 1.2 (Solovay’s Theorem) PL(T ) = GL for a wide range of theories T .

For soundness, that is, that GL � PL.T /, the theory can be as weak as I�0 C˝1 or
Buss’s S1

2 (see [8] and [12]). Arithmetical completeness, that is, that PL.T / �GL,
is known to hold for any sound1theory extending I�0 C exp (see [13]).

Solovay proved that whenever GL ° A, there is a realization � so that PA ° A�.
An outline of the proof runs as follows. First, a modal countermodel M in the form of
a rooted tree is taken that witnesses GL° A. Next, a new root is added. A primitive
recursive function f on the model is then defined in terms of its own provable limit
behavior. This definition is made using an arithmetical fixed point. The function f
starts in the newly added root and f .x/ remains where it is unless x is a proof that
the function does not have the node y (which is accessible from x) as a limit, in
which case the function jumps to y. If T is a sound theory, the function must stay
where it started, in the newly added root. The realization � is defined as a disjunction
of the limit-statements �y of the function f , where �y says “y is the limit of f ”.
More specifically p� WD

W
M;y
p �y .
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1.2 Restricted realizations This ingenious proof thus gives us the concrete realiza-
tion �. However, the arithmetical content of this realization � is not exactly trans-
parent.2 A natural question to ask is whether we can find translations with clearer
arithmetical and proof theoretic content. And conversely, given a set of arithmeti-
cal sentences with understood arithmetical content, what modal logic results from
restricting realizations to this particular set? These questions motivate the following
definition. We shall write � 2 R� to mean that the realization � takes on all its
values within the set of sentences � .

Definition 1.3 PL� .T / WD fA W 8� 2 R� ; T ` A�g.

Notice that PL� .T / need not even be closed under substitution. From the definition
the following lemma is evident.

Lemma 1.4 If � � �, then PL�.T / � PL� .T /.

Clearly, by taking � to be the set of all arithmetical sentences we get PL� .T / D
PL.T /. For a large class of theories, however, we can improve this to the following
theorem.

Theorem 1.5 For all those theories T for which Solovay’s Theorem 1.2 can be
proved using the original proof we have that

PLB.˙1/.T / � PL.T /:
Here, B.˙1/ denotes the class of Boolean combinations of ˙1 sentences.

Proof By close inspection of the proof of Solovay’s theorem, we see that all substi-
tutions are disjunctions of limit statements. It is clear that for elementary functions h,
the statement “h has a limit” can be expressed as a ˙2 sentence. However, as Visser
has pointed out to us, the statement “h has limit i” which is actually all that is needed
in Solovay’s proof, can be expressed as B.˙1/:

Œ9x h.x/ D i � ^ Œ8y; z ..y � z ^ hy D i/! h.z/ D i/� :

Disjunctions of these sentences will of course remain in B.˙1/.

Lemma 1.4 can be used to establish upper bounds for a provability logic in cases
where full provability logic is unknown. For example, it is a longstanding open
question what the provability logic is of bounded arithmetics such as S1

2.3

1.3 Applications and plan of the paper One can thus use � to study the provability
logic of T . On the other hand, we shall see that PL� .T / can also be used to char-
acterize the fragment � . For example, in Theorem 2.1 below we consider the closed
fragment B of provability logic, which consists of Boolean combinations of iterated
(in)consistency statements. This fragment is given as follows:

B WD ? j B ! B j �B:

We shall see that the modal formulas valid under all realizations from this fragment
are exactly the formulas valid on all finite strict linear orders. This can be said to pro-
vide yet further evidence that reflection principles, and likewise, iterated consistency
statements, are inherently linearly ordered.

Moreover, this fact also gives us information on what kind of arithmetical fixed
point constructions are needed in the proof of Theorem 1.2. By the modal Fixed Point
Theorem, independently due to de Jongh and Sambin (see [30], de Jongh actually
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never published his proof), we know that certain applications of the arithmetical
fixed point theorem can be dispensed with. More precisely, if we have a formula
A.x/ where x only occurs directly under the scope of some BewT predicate, then
applying the fixed point to this formula does not give us more expressive power.
That is, if we can prove B $ A.pBq/ then B is actually provably equivalent to a
formula in the language of provability logic. Thus, these sorts of applications of the
arithmetical fixed point theorem only yield formulas in B and so, pace Theorem 3.2,
cannot suffice for a proof of Solovay’s completeness result, Theorem 1.2.4

In Section 4 we shall consider a fragment D which contains infinitely many
copies of B for increasingly strong provability predicates. It turns out that even for
this richer fragment we do not move beyond linear frames (Theorem 4.5). However,
in Section 5 we shall see that there is a natural fragment for PRA whose associ-
ated provability logic lies strictly in between the logic of linear frames and GL. In
Section 8 we shall see how restricted realizations can also be profitably applied to
interpretability logics.

2 Fragments and Logics

In this section we show that certain conditions on a given fragment translate to a
semantic characterization of the corresponding restricted provability logics. First,
some preliminaries on basic frame semantics for provability logics.

Recall that a frame F for GL is an ordered pair hW;Ri, where W is a set of
points and R � W � W is a finite, irreflexive, and transitive relation. Given a set
Prop of propositional variables, a model M based on F is a triple hW;R; V i, where
V W Prop ! }.W / is a valuation function assigning to each variable the set of
the points where it is true. We shall also write V for the straightforward extension
of V to arbitrary modal formulas. We then write hW;R; V i; w � A, just in case
w 2 V.A/. We write hW;R; V i � A if A 2 V.w/ for all w 2 W . Overloading
notation, we also write hW;Ri � A, if hW;R; V i � A for all V . We say A is valid
in the model and in the frame, respectively.

When dealing with fragments, however, arbitrary variables will not be present. All
of the fragments we shall consider in this paper will extend the fragment B defined
above, by adding constants �1; �2; �3; : : : , with some clear arithmetical content. As
these constants will be fixed, and as we would like to characterize the sentences in
this fragment modally, we shall add constants s1; s2; s3; : : : , to our modal language,
and correspondingly extend the definition of a realization to ensure that .si /� D �i .
In fact, given this convention, we will be able to define our fragments in a single lan-
guage and throughout treat each constant simultaneously as a constant in the modal
language and as a specified arithmetical formula, disambiguating whenever the dis-
tinction is not clear from context. In other words, we will usually not distinguish
between A and A�.

On the other hand, as far as the relational semantics is concerned, the constants
s1; s2; s3; : : : are simply treated as variables. Therefore, the above notation is ex-
tended in the obvious way to this setting.

Suppose we would like to obtain a modal characterization of PLF .T /. Under
certain circumstances, it suffices to know how F is characterized according to T . To
be precise, if we have a model M based on a frame F such that for each A 2 F , the
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following condition holds,
T ` A , M � A; (1)

then, as is shown in Theorem 2.1 below, PLF .T / D L.F/. Here, L.F/ is the set
of formulas in the basic modal language (with propositional variables) valid on the
frame F .

There are two side conditions to our theorem. One of them involves image-
finiteness. We call a model image-finite if fy W xRyg is finite for each x. We shall
denote the set fy W xRyg [ fxg by x ". Our theorem thus reads as follows.

Theorem 2.1 Suppose that (1) holds for a model M based on frame F . Suppose,
moreover, that M is image-finite and that each point x 2M is uniquely definable by
a formula Dx 2 F . Then we have that PLF .T / D L.F/.

Proof In the light of (1) it suffices to prove that

8� 2 F ; M � B� , F � B:

( Consider some arbitrary � 2 F and define V�.p/ WD fi W M; i � p�g. By
induction on A we see that for each i 2 F

hF ; V�i; i 
 A , M; i 
 AŒp=p��

and we are done.

) Given some i 2 F and some arbitrary valuation V we define � by

p� WD
_

x2V.p/\i"

Dx :

As the frame is image-finite, the disjunction is finite. By an induction5 on C we
see again that

hF ; V i; i � C , M; i � C �:
As i was arbitrary, it is clear that F � C .

As we shall see below, in many occasions we will actually have something stronger
than (1). In particular, we shall often have, apart from the frame, an auxiliary modal
logic L for which this equivalence holds:

T ` A , L ` A , M � A:

This logic L will facilitate our calculations considerably.

3 The Closed Fragment

With Theorem 2.1 we can calculate our first provability logic with restricted realiza-
tions. Recall the definition of the closed fragment B in Subsection 1.3.

Definition 3.1 GL.3 is the logic GL together with the linearity axiom,

�.�A! B/ _�.�CB ! A/:

Here and below,�CA is short for A ^�A.

Theorem 3.2 PLB(T )= GL.3 for a large class6 of theories T .
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Proof It is well known that the truth of a closed formula at a particular point in a
model depends solely on the rank of that point. Here, the rank of a point x is defined
as the supremum of lengths of paths leading from x to a leaf. See, for example,
Chapter 7 from [11].

Thus, the linear frame h!;>i is universal for B in the sense that if a formula
A 2 B is false at some point in some frame, then it is actually false at some point in
h!;>i. Thus, by Theorem 1.2, we have T ` A , h!;>i � A.

Furthermore, it is known that the logic of the frame h!;>i is axiomatized by
GL.3. (See, for example, Chapter 13 of [11].) Thus, h!;>i � A , GL.3 ` A and
Condition 1 is satisfied for any model based on h!;>i.

Note that h!;>i is image-finite and that the point n is defined byÞn>^�nC1?.
Thus, by Theorem 2.1 we have our result.

4 Substitutions from the Closed Fragment of GLP

Japaridze’s Logic GLP [21] describes all of the universally valid schemata for re-
flection principles of restricted logical complexity in arithmetic. It is formulated in a
language with infinitely many modalities, where Œn�A is read arithmetically as,

A is provable from T along with all true ˘n sentences.
Arithmetical completeness with respect to this interpretation was proven in [20] for
sound theories containing only a modest amount of arithmetic.

Definition 4.1 GLP is given by the following axiom schemata,
(i) all Boolean tautologies,

(ii) Œn�.Œn�A! A/! Œn�A, for all n,
(iii) Œm�A! Œn�A, for m � n,
(iii) hmiA! Œn�hmiA, for m < n,

in addition to the rules of modus ponens and necessitation for each Œn�.

While GLP does not admit of any frame semantics, various other models have been
given (see, e.g., [4] and [2]). In particular, Ignatiev [20] has defined a universal frame
for the closed fragment of GLP, denoted GLP0, which will be of use.7

Define D to be the fragment given by the following infinite grammar:

D WD ? j D ! D j Œ0�D j Œ1�D j Œ2�D j : : :

GLP0 is simply GLP restricted to the fragment D , with no variables.
We can describe Ignatiev’s universal frame for GLP0 as follows. Let ˝ consist

of the set of !-sequences of ordinals .˛0; ˛1; ˛2; : : : /, where each ˛i < �0. Recall
�0 is the least fixed point of the equation !˛ D ˛. If the Cantor Normal Form of ˛
is !�n C � � � C !�1 , then let e.˛/ WD �1 and set e.0/ D 0.

Definition 4.2 Ignatiev’s universal frame is defined as U WD hU; fRngn<!i with

U WD fĘ 2 ˝ W 8i < !; ˛iC1 � e.˛i /gI

ĘRn Ě W, .8m < n; ˛m D ˇm & ˛n > ˇn/:

Notice that each point in U can be seen as a finite, strictly decreasing sequence
of ordinals less than �0, as each sequence ends in an infinite tail of zeros. For a
visualization of the frame, see Figure 1.

A point of the form .˛; e.˛/; e.e.˛//; : : : /, where ˛iC1 D e.˛i / for all i , is called
a root point and is denoted by b̨ when ˛ is the first coordinate. Thus every coordinate
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Figure 1 The universal model for GLP0
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of b̨ is uniquely determined by ˛. The following lemma is then obvious, given the
definition of U.

Lemma 4.3 If b̨ and b̌ are root points, then either b̨R0b̌, b̌R0b̨, or b̨D b̌.

In addition to the more routine soundness, the following strong completeness theo-
rem has also been proven using several different methods in the works cited above.

Theorem 4.4 If GLP0 ° A, then there is a root point b̨ 2 U such that U;b̨² A.

With these results we can now show that even with this much richer fragment the
resulting provability logic is exactly the same as for the fragment with only the single
�-operator (cf. Theorem 3.2).

Theorem 4.5 PLD (PRA) = GL.3.

Proof By Theorem 3.2, by Lemma 1.4, and by observing that � is just Œ0�, it is
clear that PLD.PRA/ � GL.3. For the other inclusion, we must show, under the
arithmetical interpretation,

PRA ` �.�A! B/ _�.�CB ! A/;

for any A;B 2 D . However, this follows by arithmetical completeness and by the
universality of Ignatiev’s frame.

For suppose U; Ę � Þ.�A^:B/^Þ.�CB^:A/, for some Ę. By Theorem 4.4
there are root points b̌ and b
 such that U; b̌ � �A ^ :B , and U;b
 � �CB ^ :A.
By Lemma 4.3, either b̌R0b
 , b
R0b̌, or b̌Db
 . All three lead to contradiction.

5 Nonlinear GL-Frames

Theorems 3.2 and 4.5 suggest that it may not be straightforward to define a fragment
whose associated restricted provability logic is anything other than GL.3 or just GL.
In this section we fill in this gap by giving sufficient conditions on constants, so
that we obtain logics of nonlinear GL-frames. We will be working with generic
fragments Fn, with some finite number n of constants:

Fn WD s1 j s2 j : : : j sn j ? j Fn ! Fn j �Fn :

As before, we will be viewing formulas in Fn simultaneously as arithmetical formu-
las, where each si is a specified formula in the language of arithmetic and � is the
standard provability predicate, and as modal formulas, where each si is interpreted
as a constant and� is a normal modal operator.

5.1 Fragments, logics, and models Let Esi stand for the sentenceV
j2J sjC1 ^

V
k2K :skC1;

where J is the set of places in the binary expansion for i with value 1, and K is the
complement of J in f0; : : : ; i � 1g. Then we define the following class of logics.

Definition 5.1 The logic FGLn is formulated in the language Fn and thus con-
tains no propositional variables. The axioms and rules are specified by the axioms
and rules of GL together with the list of the 2n many axioms below, one axiom for
each Boolean combination of the si . The B in these axioms stands for any formula
that is a Boolean combination of formulas of the form �˛?, where ˛ < ! C 1 and
�!? WD >.
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�. Es0 ! B/! �B;
:::

�. Es2n�1 ! B/! �B .

These logics FGLn come with an associated model, based on the following frames.

Definition 5.2 The frame Gn WDhGn; Rni, whereGn WDfhm; ii W m 2 !; i <2ng,
and hm; iiRnhp; j i just in case p < m.

The associated model defined on this frame is given via the binary expansion, where
Jj is given as above, relative to j .

Definition 5.3 G�n is the triple hGn; Rn; Vni, where Vn.sj / D fhm; ii W i 2 Jj g.

For a visualization of G�1 , see Figure 2.

Figure 2 The model G�1

Theorem 5.4 For all formulas A 2 Fn, FGLn ` A, if and only if G�n � A.

Sketch of Proof The full proof for the case of F1 is established in [24]. Here we
give a sketch for the general case. Soundness is routine. For completeness, we use
the following two lemmas.

Lemma 5.5 Each A 2 Fn is equivalent in FGLn to a Boolean combination of
formulas of the form s1,. . . , sn, or �˛?. In particular, FGLn ` �A $ �˛? for
some ˛ < ! C 1.

Lemma 5.6 If FGLn ` �A, then FGLn ` A.

These lemmas are straightforwardly proven by manipulation of modal normal forms.
Completeness is then clear. If FGLn ° A, then by Lemma 5.6, FGLn ² �A, and
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by Lemma 5.5, FGLn ` �A $ �˛?, for some ˛ < ! (in particular, ˛ ¤ !).
By soundness, for any point hm; ii 2 Gn we know G�n; hm; ii � �A $ �˛?.
Certainly G�n; h˛; 0i ² �˛?, so G�n; h˛; 0i ² �A. That, in turn, means for some
hˇ; j i with ˇ < ˛, we have G�n; hˇ; j i � :A. So A is falsified on G�n.

5.2 Conditions for completeness Suppose we have a given theory T and some frag-
ment Fn, and we would like a characterization of PLFn

.T /. In Section 2 we showed
that if condition (1) holds for some logic L and model M, then Theorem 2.1 will
follow. Recall Condition (1):

T ` A , L ` A , M � A:
To show (1) holds for this case, one merely needs to show arithmetical soundness
and completeness of L for T . However, given Lemmas 5.5 and 5.6, arithmetical
completeness of L depends only on arithmetical soundness of L.

To see this, suppose FGLn ² A. Then by Lemma 5.5, FGLn ² �A.
Since FGLn � �A $ �˛?, for ˛ ¤ !, as long as we have soundness of L,
T ` �A $ �˛?, under the arithmetical interpretation. Now, if moreover T is a
sound theory in the sense that it does not prove any false statements we get T ° �A,
from which it follows T ° A.

Consequently, the following is a corollary of Theorem 2.1 and Theorem 5.4. Note
that both image finiteness and definability of the states in the model G�n are evident.

Corollary 5.7 PLFn
.T / D L.Gn/ whenever ŒFGLn ` A ) T ` A:�

In Section 6, we shall see that each of these frames Gn has a simple axiomatization.
First we exhibit a suitable constant for the case of F1.

5.3 A Constant for I˙1. Recall I˙1 is the theory Q ([33]) along with induction over
˙1 formulas. This theory is finitely axiomatizable, so let � stand for the sentence
axiomatizing it. We then define the fragment Q as a special case of F1:

Q WD � j ? j Q! Q j �Q:
Our theory T will be Primitive Recursive Arithmetic (PRA), essentially just Q with
function symbols for all of the primitive recursive functions and induction over �0
formulas. The relationship between I˙1 and PRA is well studied and understood
([28], [29], [3]). By Corollary 5.7, we need to show that FGLn is sound with respect
to PRA. It is already well known that PL(PRA) = GL, so certainly all the axioms and
rules of GL are sound. We need only observe the following also hold:

(i) PRA ` �.� ! B/! �B ,
(ii) PRA ` �.:� ! B/! �B .

In fact, item (i) is a direct consequence of what is known as Parson’s Theorem
(named after Charles Parsons, but discovered independently by Grigori Mints and
Gaisi Takeuti), which says that I˙1 is ˘2-conservative over PRA. In [3] it is shown
that this theorem is in fact formalizable in PRA, which gives us (i).

Theorem 5.8 (Parson’s Theorem) PRA ` 8˘2B .�.� ! B/! �B/.

So this certainly holds for B.˙1/ formulas consisting of Boolean combinations of
formulas of the form �˛?. As for (ii), it is shown in [24] that the negation of
the sentence axiomatizing I˙1 is ˘3-conservative over PRA. That is, we have the
following lemma.
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Lemma 5.9 PRA ` 8˘3B .�.:� ! B/! �B/.

Thus, we can state the following corollary.

Corollary 5.10 PLQ.PRA/ D L.G1/.

While the logic GL.3 of the linear frame G0 is well known, that of G1 is not. There-
fore, in the following section we provide a simple axiomatization. Our work can then
be generalized to arbitrary Gn.

6 The Logic of G1

6.1 The modal logic GL.4 and its corresponding class of frames We define GL.4
to be the normal modal logic obtained by adding to GL the following two axiom
schemata:

Q1. �.�A! .B _ C// _�.�CB ! .A _ C// _�.�CC ! .A _ B//;
Q2. Þ.ÞA ^�B/! �.ÞA _ B/.

GL.4 in fact defines a natural class of frames. We define C to be the class satisfying
the following properties:

C1. Finite, irreflexive, and transitive;
C2. Nontriple branching: .xRy & xRz & xRw/)

.wRy _ yRw _ zRw _ wRz _ yRz _ zRy _ w D y _ z D y _ w D z/I

C3. Strongly confluent: .xRy & xRz & yRw/) .zRw _ wRz _ yRz/.

Theorem 6.1 GL.4 is sound and complete with respect to C .

Soundness is proven as usual by induction on complexity of proofs. As for complete-
ness, we shall appeal to the canonical model of GL.4 (see Definition 4.18 of [10]). In
particular, we use the finite filtration method to transform the canonical model into a
model in the class C .

Recall the canonical model M of GL.4 is the triple, hW GL:4; RGL:4; V GL:4i with
(i) W GL:4 is the set of maximal GL.4-consistent sets;

(ii) for �;� 2 W GL:4, define �RGL:4� if for all ' 2 � we haveÞ' 2 � ;
(iii) V.p/ D f� W p 2 � g, for propositional variables p.

First, we make some key observations about this model, the verifications of which
are straightforward.

Lemma 6.2 C2 holds on M.

Lemma 6.3 C3 holds on M.

In fact, these follow by the fact that axiom Q1 is canonical for property C2, as is
axiom Q2 for C3 (see [10], Definition 4.31). Thus, it remains to show that we can
transform the underlying frame of M into a finite partial order, while preserving
validity of formulas.

Proof of Theorem 6.1 Suppose that GL.4 ° A, for some formula A. We would
like to find a maximal consistent set � such that .�A ^ :A/ 2 � , so that � is an
“irreflexive” point in the canonical model.

By the fact that A is not a theorem, we are guaranteed of some � 2 W GL:4 such
that A … �. If �A 2 �, then set � WD �. Otherwise, since :�A 2 �, by the
contrapositive form of Löb’s Theorem Þ.�A ^ :A/ 2 �. Thus by the so-called
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Existence Lemma ([10], Lemma 4.20) for normal modal logics, � is RGL:4-related
to some ˙ for which .�A ^ :A/ 2 ˙ . In that case, set � WD ˙ .

Either way we have some � with .�A ^ :A/ 2 � . Notice also, if �C is a sub-
formula ofA, and�C … � , then by the same argument there is some “irreflexive”�
such that �RGL:4� and that .�C ^ :C/ 2 �. Moreover, by Lemma 6.2, there are
at most two distinct such �.

With these observations in place, our filtrated model M0 D hW;R; V i will be
defined as a submodel of M:

(i) W WD f� g [ f� W �RGL:4�, and there is �C subsentence of A such that
.�C ^ :C/ 2 � and :�C 2 � g;

(ii) R is just RGL:4 restricted to points in W ;
(iii) V.p/ WD V GL:4.p/ \W .

The model M0 satisfies C2, C3, and transitivity simply because M does. It is clearly
finite. And irreflexivity, as hinted above, follows from the fact that each point in W
was chosen to contain some formulas �C and :C , ensuring the point is not related
to itself. It follows M0 is in C .

The standard “Truth Lemma” is then proven by induction.

Lemma 6.4 If � 2 W and B is a subsentence of A, then B 2 � if and only if
M0; � � B .

Concluding the proof, since A … � , we have that M0; � ² A.

6.2 The class C and the frame G1 We must now show that GL.4 is the logic of the
frame G1. Recall a p-morphism from F D hW;Ri to F 0 D hW 0; R0i is a function
f W W ! W 0 such that xRy implies f .x/R0f .y/; and if f .x/R0y0 then there is
some y 2 W such that f .y/ D y0 and xRy. The following theorem is standard.8

Theorem 6.5 If there is a p-morphism from F to F 0, then the existence of a val-
uation V 0 and point w0 2 W 0 such that hF 0; V 0i; w0 ² A, ensures the existence of a
valuation V and point w 2 W such that hF ; V i; w ² A.

To demonstrate that GL.4 is the logic of G1, we use the following proposition.

Proposition 6.6 For any frame F 2 C and any point x in F , there is some point
hm; ii in G1 such that there exists a p-morphism from the subframe generated by
hm; ii to the subframe generated by x.

In other words, falsifiability is reflected by p-morphisms, which gives us the follow-
ing corollary of Proposition 6.6 and improvement upon Corollary 5.10.

Corollary 6.7 PLQ(PRA) = GL.4.

It remains only to verify Proposition 6.6.

Proof Sketch of Proposition 6.6 The proof proceeds by induction on the number
of points in a frame in C . The basic case is obvious. Supposing we have a frame
with one point, say x, then consider the subframe generated by h0; 0i, and the p-
morphism mapping h0; 0i to x.

Supposing we have a frame in C with n C 1 points, consider the subframe
F D hW;Ri generated by some point x 2 C . We would like to use the inductive
hypothesis to obtain a p-morphism to some subframe of F containing � n points
and extend it to all of F . To do this we consider three cases: (i) x has no successors;
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(ii) x has one immediate successor (i.e., point y such that xRy and there is no z
with xRzRy); and (iii) x has two immediate successors. More than 2 immediate
successors is ruled out by property C2.

Case (i) is trivial. For case (ii), let F 0 be F without the point x, and let y be
the unique immediate successor of x. Then since F 0 2 C and it has n points, we
have a p-morphism f from the subframe generated by some point hm; ii in G1

to F 0, the subframe generated by y. We then consider the subframe generated by
hm C 1; ii instead and extend the p-morphism f so that f .hm C 1; ii/ D x and
f .hm; i � 1i/ D y.

Verifying case (iii) is similar, except that instead of removing the point x, we must
remove the “maximal” points of F . Then the p-morphism obtained by inductive
hypothesis is extended by shifting each point in the morphism by one. Thus, for
example, if hm; ii is mapped to y, then in the new mapping hm C 1; ii is mapped
to y. And we let f .h0; 0i/ D f .h0; 1i/ D x. The details are straightforward and are
left to the reader (or can be found in [18]).

Remark 6.8 The methods in this section carry over to the general case of frames
Gn for arbitrary n. By an analogous argument, one can prove the logic is simply
Q2 (strong confluence) and the axiom corresponding to “non-n+2-ary-branching”,
which is just a generalization9 of nonbranching and non-triple-branching:_

i�nC1

�.�CAi !
_
i¤j

Aj /:

7 On the Proof of Solovay’s Theorem

In Sections 3 and 4 we showed that PLF .T / D GL.3 for a wide range of arith-
metical theories T and fragments F . Otherwise put, PLF .T / gives us the logic of
nonbranching GL-frames. Prima facie, one might imagine the possibility of strate-
gically adding sentences into the fragment F (where F is, e.g., B), so as to obtain
the logic of non-triple-branching GL-frames, then that of non-quadruple-branching
GL-frames, and so on. Assuming this could be generalized it would be possible to
define an infinite fragment H , for which PLH .T / DGL. At that point, to the extent
that Solovay’s Theorem is not already assumed in the determination of H , we would
have a new proof of the result. After all, any nontheorem of GL can be falsified on
some finite, and thus finitely branching, frame. So the witnessing realization would
make use of some finite subset of the fragment.

What we have shown is that the first step in this process is (almost) possible,
vis-à-vis Corollary 5.10. Adding the constant for I˙1 and capitalizing on the well
studied relationship between that theory and PRA, we are able to obtain the logic of
non-triple-branching (and strongly confluent) GL-frames. Two important questions
remain, however, before taking the next step.

The first and most obvious question is what the further constants will be. The
particular case of I˙1 and PRA is already well studied. Going beyond that may
require some significant arithmetical investigation. In Section 5.2 we isolated what
arithmetical facts are sufficient to hold. So on the proposed strategy it would simply
be a matter of finding a theory and a fragment that satisfy these requirements.

The second, and more curious, question is how to dispense with property C3,
strong confluence. We have seen that the logic of the frame Gn always contains the
formula Q2, and so it will clearly remain in the limit. However, Q2 is obviously
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not a theorem of GL. Finding constants whose associated provability logics do not
validate Q2 may prove a challenge. Understanding this phenomenon may shed light
on the situation surrounding Solovay’s original proof.

8 Interpretability Logics with Restricted Substitutions

Interpretations, like proofs, are ubiquitous in mathematics and logic. Loosely speak-
ing, an interpretation from a theory V into a theory U is a structure preserving map
that translates theorems of V to theorems of U . The notion of interpretability that we
discuss below is grosso modo that of [33], and details can be found in, for example,
[22] or in [36].

8.1 Interpretability logics Interpretability can be seen as a generalization of prov-
ability. By ˛ BT ˇ we denote a natural formalized version of the statement that
T C ˇ is interpretable in T C ˛.

Interpretability logics are designed to capture the structural behavior of formal-
ized interpretability. The language of these logics is that of provability logic together
with a binary modality B, orthographically identical to the arithmetical operator,
to model formalized interpretability. And indeed, arithmetical realizations are ex-
tended as expected by imposing that

.A B B/� D A� B B�:

For a clear distinction, let FormIL denote the class of modal formulas in language of
interpretability logic and FormGL the standard modal language of basic provability
logic. In analogy with the definition of PL.T / we define IL.T /, the interpretability
logic of a theory T :

IL.T / WD fA 2 FormIL j 8 � T ` A
�
g and

IL� .T / WD fA 2 FormIL j 8 � 2� T ` A�g:

By Theorem 1.2 and Note 1 we see that provability logics are the same for all suffi-
ciently strong theories. This is certainly not the case for interpretability logics, which
turn out to be more sensitive to differences between theories. One such example is
the notion of an essentially reflexive theory.

A theory is reflexive if it proves the consistency of any finite subpart of it. A theory
is essentially reflexive whenever any finite extension of it is reflexive. The following
theorem is due independently to Berarducci and Shavrukov. The definition of ILM
will follow below.

Theorem 8.1 (Berarducci [7], Shavrukov [31]) If T is an essentially reflexive and
˙1 sound theory, then IL.T/ D ILM.

However, if a theory is finitely axiomatizable we get a different outcome where,
again, ILP is defined below.

Theorem 8.2 (Visser [35]) If T is finitely axiomatizable, ˙1 sound, and extends
I�0 C supexp, then IL.T/ D ILP.

A prominent problem in formalized interpretability is to determine the maximal in-
terpretability logic that is contained in any reasonable arithmetical theory.
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Definition 8.3 The interpretability logic of all reasonable arithmetical theories,
written IL(All), is the set of formulas ' such that for all T and �, T ` '�. Here we
let T range over all reasonable10 arithmetical theories.

Clearly, IL(All) is in the intersection of ILM and ILP but apparently it possesses a
very rich structure (see [26], and [14]). In this paper, it is only important to know
that a certain very weak logic to be defined below is part of IL(PRA).

Fact 8.4 ILW � IL.PRA/.

For most theories that do not fall under Theorems 8.1 and 8.2, the interpretability
logic is unknown. The theory PRA is a notable example: the logic IL(PRA) is still
unknown. The most recent results for IL(PRA) are presented in [9].

PRA is known to be the same as I˙R
1 where I˙R

n is defined as I�0C exp plus the
˙n induction rule. See, for example, [1]. In that paper a proof can also be found for
the following theorem.

Theorem 8.5 I˙R
n is reflexive, as is any extension of I˙R

n by ˙nC1 formulas.

The logical complexity of interpretability is ˙3 and in [32] it is shown that it is
essentially so. However, by a theorem due to Orey and Hájek we can often reduce
the ˙3 notion of interpretability to the ˘2 notion of ˘1-conservativity. A theory V
is ˘1-conservative over U , we write U B˘1

V , whenever for all ˘1 sentences �
we have that [V ` � implies U ` �].

Theorem 8.6 (Orey-Hájek) For reflexive theories U and V we have

.U B V / , .U B˘1
V /

and this equivalence is provable in EA.

One advantage of this characterization is evidently that the logical complexity of
˘1-conservativity is lower than that of interpretability. Another advantage is that the
so-called˘1-conservativity logic is a relatively stable notion. The˘1-conservativity
logic of a theory T is just the set of modal formulas in FormIL that are provable in T
under any arithmetical realization where theB modality is mapped toB˘1

.

Theorem 8.7 For any sound theory T extending I˘�1 we have that the ˘1-
conservativity logic of T is ILM.

The theorem was first proven by Hájek and Montagna in [15] and [16] to hold for
any sound theory containing I˙1. Beklemishev and Visser in [6] improved this to any
theory containing I˘�1 , which allows induction only for parameter-free formulas of
complexity ˘1. It is well known that PRA extends I˘�1 [1].

Remark 8.8 The proof of Theorem 8.7 is rather similar to that of Solovay’s orig-
inal proof and again (see Theorem 1.5), the substitutions in the completeness proof
can be taken11 to be ˙2.

The logics ILM and ILP have elegant syntactical presentations. We shall define them
in parts. First, we define a logic IL that is a sublogic of all interpretability logics of
interest. Next this logic IL is extended by adding more axiom schemata.

(When we write formulas in FormIL we adhere to the following binding conven-
tions. We say that B binds stronger than! but weaker than all other connectives.
Using this convention we can save a lot of brackets.)
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Definition 8.9 The logic IL is the smallest set of formulas closed under the rules
of Necessitation and of Modus Ponens, containing all tautological formulas and all
instantiations of the following axiom schemata.

L1 �.A! B/! .�A! �B/
L2 �A! ��A
L3 �.�A! A/! �A
J1 �.A! B/! A B B
J2 .A B B/ ^ .B B C/! A B C
J3 .A B C/ ^ .B B C/! A _ B B C
J4 A B B ! .ÞA! ÞB/
J5 ÞA B A

Apart from the axiom schemata enumerated in Definition 8.9 we will need to con-
sider other axiom schemata too.

M A B B ! A ^�C B B ^�C
P A B B ! �.A B B/
W A B B ! A B B ^�:A

If X is a set of axiom schemata we will denote by ILX the logic that arises by adding
the axiom schemata in X to IL.

8.2 The closed fragment Because closed formulas in ILW can be reduced to those
of GL [17] we can prove that ILB.PRA/ is again the logic of linear frames.

Definition 8.10 The logic ILW.3 is obtained by adding the linearity axiom
schema�.�A! B/ _�.�B ! A/ to ILW.

Theorem 8.11 ILB.PRA/ D ILW.3

Proof We give a translation from formulas ' in FormIL to formulas ' tr in FormGL
such that

ILW.3 ` ' , GL.3 ` ' tr .�/

and
ILW.3 ` ' $ ' tr: .��/

If we moreover know .���/ W ILW.3 ` ' ) 8 � 2B PRA ` '� we would be
done. For then we have by .��/ and .���/ that

8 � 2Sub.B/ PRA ` '� $ .' tr/�

and consequently

8 � 2B PRA ` '� ,

8 � 2B PRA ` .' tr/
�
,

GL.3 ` ' tr ,

ILW.3 ` ':
We first see that .���/ holds. Certainly, by Fact 8.4, we have that ILW �

ILB.PRA/. Thus it remains to show that PRA ` �.�A� ! B�/_�.�B� ! A�/

for any formulas A and B in FormIL and any �2B. As any formula in the closed
fragment of ILW is equivalent to a formula in the closed fragment of GL (see [17]),
Theorem 3.2 gives us that indeed the linearity axiom holds for the closed fragment
of GL.
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Our translation will be the identity translation except forB. In that case we define

.A B B/tr WD �.Atr
! .B tr

_ÞB tr//:

We first see that we have .��/. It is sufficient to show that ILW.3 ` p B q ! �.p
! .q _ Þq//. We reason in ILW.3. An instantiation of the linearity axiom gives
us �.�:q ! .:p _ q// _�..:p _ q/ ^�.:p _ q/ ! :q/. The first disjunct
immediately yields�.p ! .q _Þq//.

In case of the second disjunct we get by propositional logic �.q ! Þ.p ^ :q//
and thus also �.q ! Þp/. Now we assume p B q. By W we get p B q ^�:p.
Together with �.q ! Þp/, this gives us p B ?, that is, �:p. Consequently, we
have�.p ! .q _Þq//.

We now prove .�/. By induction on ILW.3 ` ' we see that GL.3 ` ' tr. All
the specific interpretability axioms turn out to be provable under our translation in
GL. The only axioms where the�A! ��A axiom scheme is really used are in J2

and J4. To prove the translation of W we also need L3. If GL.3 ` ' tr then certainly
ILW.3 ` ' tr and by .��/, ILW.3 ` '.

We thus see that ILW.3 is an upper bound for IL.PRA/. Using the translation from
the proof of Theorem 8.11, it is not hard to see that both the principles P and M are
provable in ILW.3. This tells us that the upper bound is actually not very informative
as we know that IL.PRA/ ° M. By a straightforward generalization of Lemma 1.4
we see that choosing larger � will generally yield a smaller IL� .PRA/ and thus a
sharper upper bound. In Subsection 8.4 we shall discuss just how large the � should
be as to refute M in IL� .PRA/. First some observations on a fragment slightly larger
than the closed fragment.

8.3 The closed fragment with a constant for I˙1 If we consider the proof of Theo-
rem 2.1, we see that it does not make any assumptions on the signature of the modal
logic under consideration. In particular, the theorem still holds for interpretabil-
ity logics. In the theorem below we use this to give a semantic characterization of
ILF1

.PRA/.
In [25] it is established that for a certain frame, that we will denote here by fG�1 ,

we have the following equivalence.

8A 2 F1 Œ fG�1 ˆ A , PRA ` A � .�/

For the purpose of this paper it is not important what the frame fG�1 looks like. We
need only know that fG�1 is just like G�1 with some additional accessibility relations
to model theB modality. This, together with the mere equivalence .�/, is enough to
obtain the following theorem.

Theorem 8.12 ILF1
.PRA/ D L.fG�1/.

Proof Image-finiteness and definability of separate points is clear as interpretabil-
ity logic is an extension of provability logic. Thus, by Theorem 2.1 we obtain the
result.

In [25], a logic PIL is also defined such that we have

8A 2 F1 Œ fG�1 ˆ A , PRA ` A , PIL ` A �:
This suggests that the following conjecture should not be too difficult to prove. In
this conjecture, ILM.4 denotes the logic that arises by joining ILM and GL.4.
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Conjecture 8.13 L.fG�1/ D ILM:4.

The inclusion L.fG�1/ � ILM.4 is actually very easy and follows from a direct ver-
ification of the validity of the axioms on fG�1 . The other direction is harder, though
also not crucial, as we still have M 2 ILF1

.PRA/.

8.4 Fragments for refuting M in IL� .PRA/ In [36], it is shown that IL.PRA/ °
A B ÞB ! �.A B ÞB/. It is easy to see that ILM ` A B ÞB ! �.A B ÞB/.
This implies that M is not derivable in IL(PRA). We can also find explicit realizations
that violate M, as the following lemma tells us.

Lemma 8.14 For n � 1, we have that IL(I˙R
n ) ° M.

Proof We define a realization � such that I˙R
n ° .p B q ! p^�r B q^�r/�.

It is well known that I˙R
n ¨ I˙n ¨ I˙R

nC1 and that, for every n�1, I˙n is finitely
axiomatized. Let �n be the single sentence axiomatizing I˙n. It is also known that
(for n � 1) IL(I˙n/ D ILP and that ILP ° p B q ! p ^�r B q ^�r . Thus,
for any n�1, we can find ˛n; ˇn, and 
n such that

I˙n ° ˛n B ˇn ! ˛n ^�
n B ˇn ^�
n:

Note that
EA ` ˛n BI˙n

ˇn $ �n ^ ˛n BI˙R
n
�n ^ ˇn

and
EA ` �I˙n


n $ �I˙R
n
.�n ! 
n/:

Thus, we have

I˙R
n ° �n ^ ˛n B �n ^ ˇn ! �n ^ ˛n ^�.�n ! 
n/ B �n ^ ˇn ^�.�n ! 
n/

and we can take p� D �n ^ ˛n, q� D �n ^ ˇn and r� D �n ! 
n.

We see that the realizations used in the proof of Lemma 8.14 are of higher and higher
complexities. The complexity is certainly higher than ˙2.

By Theorem 1 from [9] (Theorem 12.1.1 from [24]) we know that for ˛; ˇ 2 ˙2
we have

PRA ` .˛ B ˇ/! ..˛ ^�
/ B .ˇ ^�
//

for any sentence 
 . This translates to IL˙2
.PRA/ ` M and indicates that an arith-

metical completeness proof for IL(PRA) cannot work with only ˙2-realizations.
For I˙R

n , n � 2 we know that IL.I˙R
n / � ILM. This follows from the next

lemma.

Lemma 8.15 IL˙2
.I˙R

n / D IL�nC1
.I˙R

n / D ILM whenever n � 2.

Proof We use the fact that the logic of ˘1-conservativity for theories containing
I˘�1 is ILM as mentioned in Theorem 8.7. If for two classes of sentences we have
X � Y , then ILY .T/ � ILX .T/. We will thus show that IL˙2

.I˙R
n / � ILM and

ILM � IL�nC1
.I˙R

n /.
First, we prove by induction on the complexity of a modal formula A that for

all �2�nC1 I˙R
n ` A�˘1

$ A�B and that the logical complexity of A�˘1
is at
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most �nC1. The basis is trivial and the only interesting induction step is whenever
A D .B B C/. We reason in I˙R

n :

.B B C/�B $def.
I˙R

n C B
�
B B I˙R

n C C
�
B $i.h.

I˙R
n C B

�
˘1
B I˙R

n C C
�
˘1

$Orey-Hájek
I˙R

n C B
�
˘1
B˘1

I˙R
n C C

�
˘1

$def.
.B B C/�˘1

Note that we have access to the Orey-Hájek characterization as B�˘1
is of complexity

at most �nC1 and thus I˙R
n C B

�
˘1

is a reflexive theory by Theorem 8.5. Also note
that .B B C/�˘1

is a ˘2-sentence and thus certainly �nC1 whenever n � 2.
If now ILM ` A then I˙R

n ` A
�
˘1

and thus whenever � 2 �nC1, I˙R
n ` A

�
B and

ILM � IL�nC1
.I˙R

n /. If ILM ° A then by Remark 8.8 for some � 2 ˙2 we have
I˙R

n ° A�˘1
whence I˙R

n ° A�B. We may conclude that IL˙2
.I˙R

n / � ILM.

Theorem 8.16 IL.PRA/ � ILM.

Proof Although the proof of Lemma 8.15 does not give that IL˙2
.I˙R

1 / D ILM,
it does give us that IL˙2

.I˙R
1 / � ILM. By earlier observations we saw that

IL.PRA/ ¤ ILM.

9 Future Research

We have seen that adding a constant for I˙1 to PRA is sufficient to obtain a nontrivial
provability logic. By a theorem of Leivant it is known that I˙1 � h2iEA>. An
interesting fragment to consider next for PRA would be the closed fragment together
with the set of constants

f.h1iEAh2iEA/
n
> j n 2 !g

or variants thereof.

Notes

1. ˙1-soundness is sufficient.

2. There is a paper by de Jongh, Jumelet and Montagna [13] where an alternative proof
of Solovay’s theorem is given. In that proof, using the diagonal lemma one finds some
sentences with the required properties rather than defining the sentences and then proving
the necessary properties. However, the main ideas are not essentially different from those
used in Solovay’s original proof.

3. This question has been studied in depth in [8]. It also has important connections to
matters in computational complexity. For example, it is shown in [12] that if S1

2 proves
˘b1 -completeness with parameters (˘b1 is the set of formulas .8x � t / � with � sharply
bounded), then NP = coNP.

4. Another example of restricting the substitutions is known in the literature. In [34] Visser
studied the provability logic that arises when restricting substitutions to ˙1 sentences.



152 T. F. Icard and J. J. Joosten

5. In order to get the inductive step for the � operator going we should prove the slightly
stronger statement that for all j 2 i " we have hF ; V i; j � C , M; j � C�.

6. See Note 1 on conditions on theories. The current proof of this theorem invokes Solo-
vay’s completeness result, Theorem 1.2, in full. However, in [23] it is shown how we can
substitute the use of Solovay’s completeness result by the proof of Theorem 2.1. Thus,
Theorem 3.2 actually holds for a larger class of theories including I�0 C˝1.

7. This frame is studied in detail in [5] and [19].

8. See, e.g., [10], Definition 3.13, where p-morphisms go under the name bounded mor-
phism.

9. It is not hard to see that�.�A! B/_�.�CB ! A/ is equivalent to�.�CA! B/

_�.�CB ! A/ over GL.

10. The boundaries are not exactly determined and will depend a bit on the answer. It is
legitimate to think of any theory extending I�0 C exp.

11. Albert Visser (personal conversation) notes that close inspection of the proof actually
reveals that the substitutions can be taken to be �2.I˘�1 /. That is, a ˙2 sentence that is
probably in I˘�1 equivalent to a ˘2 sentence.
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