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p-ADIC EISENSTEIN–KRONECKER SERIES FOR CM
ELLIPTIC CURVES AND THE KRONECKER

LIMIT FORMULAS

KENICHI BANNAI, HIDEKAZU FURUSHO,

and SHINICHI KOBAYASHI

Abstract. Consider an elliptic curve defined over an imaginary quadratic field
K with good reduction at the primes above p≥ 5 and with complex multipli-
cation by the full ring of integers OK of K. In this paper, we construct p-adic
analogues of the Eisenstein–Kronecker series for such an elliptic curve as Cole-
man functions on the elliptic curve. We then prove p-adic analogues of the first
and second Kronecker limit formulas by using the distribution relation of the
Kronecker theta function.

§1. Introduction

Let Γ⊂C be a lattice. Then for an integer a and z,w ∈C, the Eisenstein–

Kronecker–Lerch series for the lattice Γ is defined by

(1) K∗
a(z,w, s; Γ) =

∑
γ∈Γ\{−z}

(z + γ)a

|z + γ|2sχw(γ),

where A(Γ) is the area of the fundamental domain of Γ divided by π =

3.1415 . . . and χw(z) := exp[(zw − wz)/A(Γ)] for any z, w ∈ C. The above

series converges for Re(s)> a/2+1, but one may give it meaning for general

s by analytic continuation. In what follows, we will omit Γ from the notation

if there is no fear of confusion. For integers m,n, the classical Eisenstein–

Kronecker function, more commonly known as the Kronecker double series,

is defined to be the function

Em,n(z) :=K∗
n−m(0, z,n).
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In the context of polylogarithms, these functions are elliptic analogues of

the Bloch–Wigner–Zagier polylogarithm function (see [21, Remark, p. 282]).

In the paper [14], Coleman defined the p-adic analogue of the classical poly-

logarithm function as a Coleman function, which is a class of p-adic analytic

functions generalizing the rigid analytic functions. The purpose of this paper

is to define for integers m,n the p-adic analogue Ecol
m,n(z) of the Eisenstein–

Kronecker function as a Coleman function, when the complex torus C/Γ

has a model as an elliptic curve defined over an imaginary quadratic field K

with good reduction at the primes above p≥ 5 and complex multiplication

by the full ring of integers OK of K. The main ingredient in the construction

of the Eisenstein–Kronecker series is the distribution relation.

Focusing on the distribution relation of the Eisenstein–Kronecker series,

we then prove the p-adic analogues of the Kronecker limit formulas. We let

θ(z) be the reduced theta function on C/Γ associated to the divisor [0] ⊂
C/Γ, normalized so that θ′(0) = 1. (See (2) for the precise transformation

formula.) Then the Kronecker limit formulas in the classical complex case

are given as follows.

Theorem 1.1 (Kronecker limit formulas). Let c be the Euler constant

c := limn→∞(1 + 1/2 + · · ·+ 1/n− logn), and let Δ be the discriminant of

Γ defined as Δ := g32 − 27g23 , where gk :=
∑

γ∈Γ\{0} γ
−2k. Then we have the

following.

(i) The first limit formula

lim
s→1

(
AK∗

0 (0,0, s)−
1

s− 1

)
=− 1

12
log |Δ|2 − 2 logA+ 2c.

(ii) For z /∈ Γ, the second limit formula

AK∗
0 (0, z,1) =− log

∣∣θ(z)∣∣2 + |z|2
A

− 1

12
log |Δ|2.

Numerous proofs exist for the classical case, but many of the proofs rely

on arguments concerning the moduli space. We give a new proof of the above

theorem, valid for a fixed lattice Γ⊂C, using the Kronecker theta function

and the distribution relation. Our view of understanding the Kronecker

limit formulas in terms of the Kronecker theta function and the distribution

relation allows us to prove the p-adic analogues of Theorem 1.1. Suppose

now that Γ corresponds to a period lattice corresponding to the invariant

differential ω = dx/y of an elliptic curve E : y2 = 4x3−g2x−g3 with complex
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multiplication by the ring of integers OK of an imaginary quadratic field K.

We assume in addition that E is defined over K, and that the model above

has good reduction at the primes above p≥ 5. We denote

Kcol
n−m(0, z,n) :=Ecol

m,n(z)

to highlight the analogy. Then in analogy with Theorem 1.1(ii), we have the

following.

Theorem 1.2 (p-adic second Kronecker limit formula). For any prime

p≥ 5 of good reduction, we have the second limit formula

Kcol
0 (0, z,1) =− logp θ(z)−

1

12
logpΔ,

where logp θ(z) is a certain p-adic analogue of the function log |θ(z)|−|z|2/A
defined in Definition 5.1 using the reduced theta function θ(z) and the branch

of our p-adic logarithm.

The p-adic analogues of the second Kronecker limit formula were previ-

ously investigated by Katz [20] and de Shalit [18] in the context of p-adic

L-functions when p is a prime of good ordinary reduction. Our formulation

via the p-adic Eisenstein–Kronecker series gives a direct p-adic analogue,

and is valid even for supersingular p.

Suppose now that p≥ 5 is a prime of good ordinary reduction. In this case,

the prime p splits as p= pp∗ in OK . We denote by ψ the Hecke character

of K associated to E, and we let π := ψ(p). In [5, Section 3.1], we defined a

two-variable p-adic measure μ := μ0,0 on Zp × Zp interpolating Eisenstein–

Kronecker numbers, or more precisely, the values K∗
a+b(0,0, b)/A

a for a,

b ≥ 0. This measure depends on the choice of a p-adic period Ωp of the

formal group of E. We define the p-adic Eisenstein–Kronecker–Lerch series

by

K(p)
a (0,0, s) :=

∫
Z
×
p ×Z

×
p

〈x〉s−1ω(y)a−1〈y〉a−s dμ(x, y)

for any s ∈ Zp, where 〈−〉 : Z×
p → C×

p is given as the composition Z×
p →

1 + pZp ↪→ C×
p and ω : Z×

p → μp−1 is the Teichmüller character, so that

x = ω(x)〈x〉 for any x ∈ Z×
p . Then an argument similar to the proof of

Theorem 1.1(i) gives the following.
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Proposition 1.3 (p-adic first Kronecker limit formula). Suppose that

p≥ 5 is a prime of good ordinary reduction. Then

lim
s→1

K
(p)
0 (0,0, s) = Ω−1

p

(
1− 1

p

)
logp π,

where Ωp is the p-adic period corresponding to μ.

The proof of the above proposition is parallel to that of the proof of The-

orem 1.1(i). However, due to the existence of a trivial zero for the function

K
(p)
0 (0,0, s) at s= 1, the analogy with the classical case is not perfect. (See

Remark 5.8 for details.)

The p-adic analogue of the classical polylogarithm was used to express

the specializations at p-power roots of unity of the p-adic realization of

the polylogarithm sheaf (see [17], [23], [10], [11], [13], [1], [3]). The ellip-

tic analogue of the classical polylogarithm sheaf was first constructed by

Beilinson and Levin [8]. In previous research, we studied the p-adic real-

ization of the elliptic polylogarithm sheaf for CM elliptic curves (see [2],

[7], [6]). As in the classical case, the p-adic Eisenstein–Kronecker function

defined in this paper should be related to specializations at p-power tor-

sion points of the p-adic realization of the elliptic polylogarithm sheaf. We

expect that this function will play a role in future research in the formula-

tion of the p-adic analogue of the elliptic Zagier conjecture formulated by

Wildeshaus [25].

§2. Classical Kronecker limit formulas

In this section, we first review the definitions of the Eisenstein–Kronecker

series and the Kronecker theta function. We then give new proofs of the first

and second Kronecker limit formulas using the Kronecker theta function

and the distribution relation. Our proof in the classical complex case will

be the model for proving the p-adic analogue. As in the original proof by

Kronecker, we first prove the second limit formula, and then deduce the first

limit formula from the second.

2.1. Eisenstein–Kronecker series and the Kronecker theta func-

tion

We fix a lattice Γ in C, and we let A be the area of the fundamental

domain of Γ divided by π. Let a be an integer, and let z0, w0 ∈ C. We

denote by K∗
a(z0,w0, s) the Eisenstein–Kronecker–Lerch series given in (1)
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of the Introduction. The following result was proved by Weil (see also [7,

Proposition 2.4] for details concerning the case a≤ 0).

Proposition 2.1 ([24, Chapter VIII, Section 13]). Let a be an integer.

(i) The function K∗
a(z0,w0, s) for s continues meromorphically to a func-

tion on the whole s plane, with a simple pole only at s= 1 if a= 0 and

w0 ∈ Γ.

(ii) The function K∗
a(z0,w0, s) satisfies the functional equation

Γ(s)K∗
a(z0,w0, s) =Aa+1−2sΓ(a+ 1− s)K∗

a(w0, z0, a+ 1− s)χw0(z0).

As in the Introduction, we define the Eisenstein–Kronecker function,

referred to more commonly as the Kronecker double series, as follows.

Definition 2.2. For any integerm, n, we define theEisenstein–Kronecker

function Em,n(z) to be the C∞-function on C \ Γ defined by

Em,n(z) :=K∗
n−m(0, z,n).

This function is known to satisfy the differential equations

∂zEm,n(z) =−Em−1,n(z)/A, ∂zEm,n(z) =Em,n−1(z)/A.

Remark 2.3. The Eisenstein–Kronecker functions Em,n(z) may be used

to describe the R-Hodge realization of the elliptic polylogarithm sheaf (see

[7, Appendix] for details).

We next review the definition and basic properties of the Kronecker theta

function. Denote by θ(z) the reduced theta function associated to the divisor

[0] of C/Γ, normalized so that θ′(0) = 1. This is the function used by Robert

to define his elliptic units (see [22, Section 1]). This function satisfies the

transformation formula

(2) θ(z + γ) = α(γ) exp
(zγ
A

+
|γ|2
2A

)
θ(z),

where α(γ) =−1 if γ /∈ 2Γ and α(γ) = 1 otherwise. We define the Kronecker

theta function as follows.

Definition 2.4 (Kronecker theta function). We let

Θ(z,w) :=
θ(z +w)

θ(z)θ(w)
.
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The relation of this function to the two-variable Jacobi theta function

Fτ (z,w) of Zagier [26] is given by Θ(z,w) = exp(zw/A)Fτ (z,w).

The values K∗
a(z,w, s) are defined for any z, w ∈ C, but as a function,

K∗
a(z,w, s) is not continuous for z, w ∈ Γ. We let Ka(z,w, s) :=K∗

a(z,w, s)

be the C∞-function defined for any z, w ∈ C \ Γ. We regard the function

Ka(z,w, s) as being undefined for z or w ∈ Γ. Since the function K∗
a(z,w, s)

for z ∈ Γ is defined in (1) by removing the summand with poles, we have

(3) lim
z→0

[
K1(z,w,1)−

1

z

]
=K∗

1 (0,w,1).

The relation between this function and the Kronecker theta function is

given by the following theorem due to Kronecker.

Theorem 2.5 ([24, Chapter VIII, Section 4(7)]). We have

Θ(z,w) = exp
[zw
A

]
K1(z,w,1).

The above theorem was originally proved in terms of Jacobi theta func-

tions by Kronecker using moduli arguments (see, e.g., [24]). In [5, Theo-

rem 1.13] or [4, Theorem 2.10], we give another proof valid for a fixed lattice

Γ⊂ C using the fact that both sides of the equality are reduced meromor-

phic theta functions associated to the Poincaré bundle on C/Γ×C/Γ, with

the same poles and the same residue at each pole.

2.2. Proof of the second limit formula

We now deduce Theorem 1.1(ii) from Theorem 2.5.

Proposition 2.6. There exists a constant C such that

log
∣∣θ(z)∣∣2 − |z|2

A
=−AK∗

0 (0, z,1) +C

for any z /∈ Γ.

Proof. By Theorem 2.5, we have

Θ(z,w)− 1

z
= exp

[zw
A

](
K1(z,w,1)−

1

z

)
+

1

z

(
exp

[zw
A

]
− 1

)
.

Hence by (3), we have

lim
z→0

(
Θ(z,w)− 1

z

)
=K∗

1 (0,w,1) +
w

A
.
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Direct computation also shows that

lim
z→0

(
Θ(z,w)− 1

z

)
=

θ′(w)

θ(w)
.

Hence we have

K∗
1 (0,w,1) +

w

A
=

θ′(w)

θ(w)
=

∂

∂w
log θ(w).

In particular, if we replace the variable w in the above by z, then we have

∂

∂z

(
log θ(z)− zz

A

)
=K∗

1 (0, z,1).

Therefore, if we let Ξ(z) be the function

Ξ(z) := log
∣∣θ(z)∣∣2 − |z|2

A
,

then we have

∂

∂z
Ξ(z) =K∗

1 (0, z,1),
∂

∂z
Ξ(z) =K∗

1 (0, z,1).

On the other hand, one can directly show that

A
∂

∂z
K∗

0 (0, z,1) =−K∗
1 (0, z,1), A

∂

∂z
K∗

0 (0, z,1) =−K∗
1 (0, z,1)

(see, e.g., [7, Lemma A.1]). Hence Ξ(z)+AK∗
0 (0, z,1) must be constant.

Our goal is to determine the constant C. We use the following result,

which is a type of distribution relation. In what follows, we will write zn 	= 0

for n≥ 1 to mean zn ∈ ( 1nΓ/Γ) \ {0} for simplicity.

Lemma 2.7 (Distribution relation). We have

∑
zn �=0

K∗
0 (0, zn,1) =−2 logn

A
,

where the sum is over all n-torsion points zn of C/Γ except zero.
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Proof. We have

∑
zn∈ 1

n
Γ/Γ

χzn(γ) =

{
n2 (γ ∈ nΓ),

0 (γ /∈ nΓ).

Therefore

1

n2

∑
zn∈ 1

n
Γ/Γ

K∗
0 (0, zn, s) =

∑
γ∈nΓ\{0}

1

|γ|2s =
1

n2s
K∗

0 (0,0, s)

when the real part of s is sufficiently large, and hence for any s by analytic

continuation. In particular, we have

1

n2

∑
zn �=0

K∗
0 (0, zn, s) =

( 1

n2s
− 1

n2

)
K∗

0 (0,0, s).

By equation (31) in [24, Chapter VIII, Section 13], noting that Γ(1) = 1,

the residue of K∗
0 (0,0, s) at s= 1 is 1/A. Hence we have

1

n2

∑
zn �=0

K∗
0 (0, zn,1) =−2 logn

n2A
,

as desired.

The above lemma shows that the constant C is

C =
1

n2 − 1

[∑
zn �=0

(
log

∣∣θ(zn)∣∣2 − |zn|2
A

)
− 2 logn

]
.

We will now calculate this value explicitly in terms of Δ.

Proposition 2.8. We have

1

4
log |Δ′|2 =−

∑
z2 �=0

(
log

∣∣θ(z2)∣∣2 − |z2|2
A

)
,

where z2 runs through nontrivial 2-torsion points of C/Γ, and

Δ′ = (e1 − e2)
2(e2 − e3)

2(e3 − e1)
2

for y2 = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).
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Proof. Note that

(x− e1)(x− e2)(x− e3) =
∏
z2 �=0

(
x− ℘(z2)

)
.

Then if Γ = Zω1 + Zω2, we may suppose that e1 = ℘(ω1/2), e2 = ℘(ω2/2),

and e3 = ℘((ω1 + ω2)/2). Since

θ(z +w)θ(z −w)θ(z)−2θ(w)−2 = ℘(w)− ℘(z),

we have

θ
(ω1 + ω2

2

)
θ
(ω1 − ω2

2

)
θ
(ω1

2

)−2
θ
(ω2

2

)−2
= e2 − e1,

θ
(
ω1 +

ω2

2

)
θ
(ω2

2

)
θ
(ω1 + ω2

2

)−2
θ
(ω1

2

)−2
= e1 − e3,

θ
(
ω2 +

ω1

2

)
θ
(ω1

2

)
θ
(ω1 + ω2

2

)−2
θ
(ω2

2

)−2
= e2 − e3.

Hence using the transformation formula

θ(z + γ) = α(γ) exp
(zγ
A

+
γγ

2A

)
θ(z)

of θ(z), where γ is any element in Γ and α(γ) = 1 if γ ∈ 2Γ and = −1

otherwise, the value Δ′ is

exp
[ω1ω1 + ω2ω2 + ω1ω2

A

]
θ
(ω1

2

)−4
θ
(ω2

2

)−4
θ
(ω1 + ω2

2

)−4
.

Multiplying it and its complex conjugation and taking the logarithm, we

obtain the formula. Note that since we take the logarithm of positive real

numbers, the values do not depend on the choice of the branch of the loga-

rithm.

Proof of Theorem 1.1(2). Since the Ramanujan Δ is given by Δ= 24Δ′,
we have by Lemma 2.7 and Proposition 2.8 that

C =
1

3

(
−1

4
log |Δ′|2 − 2 log 2

)
=− 1

12
log |Δ|2.

Our assertion now follows from Proposition 2.6.
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2.3. Proof of the first limit formula

We first review the results of [24, Chapter VIII, Section 13]. For a fixed

z0, w0 ∈C, we let θ∗(t, z0,w0) be the function

(4) θ∗(t, z0,w0) =
∑
γ∈Γ

∗
exp

(
−t|z0 + γ|2/A

)
χw0(γ),

defined for t > 0, where
∑∗ denotes the sum taken over all γ ∈ Γ other than

−z0 if z0 is in Γ. Furthermore, we let

I(z0,w0, s) :=

∫ ∞

1
θ∗(t, z0,w0)t

s−1 dt,

which converges for all s ∈C. Then by (31) in [24, Chapter VIII, Section 13]

we have

AsΓ(s)K∗
0 (z0,w0, s) = I(z0,w0, s)−

δz0
s
χz0(w0)

(5)

+ I(w0, z0,1− s)χz0(w0) +
δw0

s− 1
,

where δx = 1 if x ∈ Γ and δx = 0 otherwise. The above integral expres-

sion gives the meromorphic continuation and the functional equation of

K∗
0 (z0,w0, s). We now prove Theorem 1.1(i) using the second limit formula.

Proof of Theorem 1.1(i). From (5), we have

As−1Γ(s)
(
AK∗

0 (0,0, s)−
1

s− 1

)
= I(0,0, s)− 1

s
+ I(0,0,1− s)− As−1Γ(s)− 1

s− 1
.

Therefore, we have

(6) lim
s→1

(
AK∗

0 (0,0, s)−
1

s− 1

)
= I(0,0,1)− 1 + I(0,0,0)− logA+ c,

where c is the Euler constant as before and we used the fact that Γ′(1) =−c.

On the other hand, we have for z0 = 0, w0 = z /∈ Γ, and s= 1,

AK∗
0 (0, z,1) = I(0, z,1)− 1 + I(z,0,0).

Note that limz→0 I(0, z,1) = I(0,0,1), and for z 	= 0, if we let

I∗(z,0, s) = I(z,0, s)−
∫ ∞

1
exp

(
−t|z|2/A

)
ts−1 dt,
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then limz→0 I
∗(z,0,0) = I(0,0,0) by the definition of the sum

∑∗ in (4).

We have

Γ(s)− 1

s
=

∫ ∞

|z|2/A
e−tts−1 dt+

∫ |z|2/A

0
e−tts−1 dt− 1

s

=

∫ ∞

|z|2/A
e−tts−1 dt+

∫ |z|2/A

0
(e−t − 1)ts−1 dt+

1

s

[( |z|2
A

)s
− 1

]
.

Taking s→ 0, we have

−c=

∫ ∞

|z|2/A
e−tt−1 dt+

∫ |z|2/A

0
(e−t − 1)t−1 dt+ log

( |z|2
A

)
.

Hence

AK∗
0 (0, z,1)

= I(0, z,1)− 1 + I∗(z,0,0) +

∫ ∞

1
exp

(
−t|z|2/A

)
t−1 dt

= I(0, z,1)− 1 + I∗(z,0,0)− c−
∫ |z|2/A

0
(e−t − 1)t−1 dt− log

( |z|2
A

)
.

Therefore

lim
z→0

(
AK∗

0 (0, z,1) + log |z|2
)
= I(0,0,1)− 1 + I(0,0,0)− c+ logA.

Finally, combining this with (6) and the second limit formula, we have

lim
s→1

(
AK∗

0 (0,0, s)−
1

s− 1

)
= lim

z→0

(
AK∗

0 (0, z,1) + log |z|2
)
− 2 logA+ 2c

=− 1

12
log |Δ|2 − 2 logA+ 2c.

This proves our assertion.

§3. Algebraic and p-adic properties of the Kronecker theta func-

tion

In this section, we first recall the definition and the generating function

of Eisenstein–Kronecker numbers, and then we investigate the algebraic and

p-adic properties of the function Fz0,b(z) defined in Definition 3.3. The p-

adic Eisenstein–Kronecker functions will be defined in the next section as

the iterated Coleman integrals of Fz0,b(z).
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3.1. Eisenstein–Kronecker numbers and their generating func-

tion

We define the Eisenstein–Kronecker numbers to be the special values

of Eisenstein–Kronecker–Lerch series (see also [5, Definition 1.5] and [7,

Definition 2.3]).

Definition 3.1. Let z0,w0 ∈ C, and let a and b be integers such that

(a, b) 	= (−1,1) if w0 ∈ Γ. The Eisenstein–Kronecker number e∗a,b(z0,w0) is

defined by e∗a,b(z0,w0) :=K∗
a+b(z0,w0, b). As in [7, Definition 2.3], we let

e∗a,b(z0) := e∗a,b(0, z0) =K∗
a+b(0, z0, b)

for z0 ∈C such that z0 /∈ Γ if (a, b) 	= (−1,1).

For any z0, w0 ∈C, we let

Θz0,w0(z,w) := exp
[
−z0w0

A

]
exp

[
−zw0 +wz0

A

]
Θ(z + z0,w+w0).

This function is known to be the generating function of Eisenstein–Kronecker

numbers as follows (see [5, Section 1.14, Theorem 1.17]).

Theorem 3.2. We have

Θz0,w0(z,w) = χz0(w0)
δz0
z

+
δw0

w
+

∑
a,b≥0

(−1)a+b
e∗a,b+1(z0,w0)

a!Aa
zbwa

in a neighborhood of the origin, where δx = 1 if x ∈ Γ and δx = 0 otherwise.

We define the function Fz0,b(z) as in [7, Definition 4.2] as follows.

Definition 3.3. For any z0 ∈ C and integer b≥ 0, we define Fz0,b(z) to

be the meromorphic function on C given by the equation

Θz0,0(z,w) =
∑
b≥0

Fz0,b(z)w
b−1.

The choice of z0 in the definition of Fz0,b(z) depends only on the class of z0
modulo Γ. When z0 = 0, we let Fb(z) := F0,b(z). Explicit calculations show

that we have F0(z) = 1 and F1(z) = θ′(z)/θ(z) = ζ(z)− e∗0,2z. By definition

Θz0,0(z,w) = exp(−wz0/A)Θ(z + z0,w). This equality and the definition of

F1 gives the equality Fz0,1(z) = F1(z + z0)− z0/A. We will later show that

in the p-adic case, Fz0,b for various z0 paste together to form a Coleman

function.

The formula for Θz0,w0(z,w) as the generating function for Eisenstein–

Kronecker numbers gives the following.
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Proposition 3.4 (Generating function). For any b ≥ 0, the Laurent

expansion of Fz0,b(z) at zero is given by

Fz0,b(z) =
δz0,b
z

+
∑
a≥0

(−1)a+b−1
e∗a,b(z0)

a!Aa
za,

where δx,b = 1 if b= 1 and x ∈ Γ and is zero otherwise.

Proof. The proposition follows from Theorem 3.2 and Definition 3.3.

Next, we assume that our complex torus has an algebraic model. Let F

be a number field with a fixed embedding F ↪→C, and assume that we have

an elliptic curve E over F defined by the Weierstrass equation

(7) E : y2 = 4x3 − g2x− g3.

We let Γ be the period lattice of E with respect to the invariant differential

ω = dx/y. We have a complex uniformization ξ : C/Γ∼=E(C) such that dz

corresponds to ω.

We next define an auxiliary function Ln(z), which is useful since it is an

algebraic meromorphic function defined over F (see Proposition 3.7).

Definition 3.5. Let Ξ(z,w) := exp(−F1(z)w)Θ(z,w). We define the con-

nection function Ln(z) by the formula

Ξ(z,w) :=
∑
n≥0

Ln(z)w
n−1.

Remark 3.6. Explicit calculation shows that the connection function for

small n is given by L0(z) = 1, L1(z) = 0, and L2(z) =−1
2℘(z).

The function Ln(z) is a periodic with respect to Γ, hence defines a func-

tion on C/Γ holomorphic outside the points corresponding to Γ. The relation

between Fz0,b(z) and Ln(z) is given by the formula

(8) Fz0,b(z) =
b∑

n=0

Fz0,1(z)
b−n

(b− n)!
Ln(z + z0).

The connection function Ln(z) is algebraic in the following sense.

Proposition 3.7. The functions Ln(z) correspond through the uniform-

ization ξ to rational functions Ln on E defined over F .



282 K. BANNAI, H. FURUSHO, AND S. KOBAYASHI

Proof. See [7, Proposition 1.6] for the proof.

Assume now that E has complex multiplication by the ring of integers

OK of an imaginary quadratic field K. In this case, the function Θz0,w0(z,w)

satisfies the following algebraicity result.

Theorem 3.8 ([15, Theorem 1], [16, Theorem 2]). Suppose that z0, w0

correspond to torsion points in C/Γ∼=E(C). Then we have

Θz0,w0(z,w)− χz0(w0)z
−1δz0 −w−1δw0 ∈Q[[z,w]],

where δx = 1 if x ∈ Γ and δx = 0 otherwise.

Proof. This is a reformulation of the classical theorem of Damerell. (See

[5, Corollary 2.4] for a proof.)

Corollary 3.9. Suppose that z0 corresponds to a torsion point in C/Γ∼=
E(C). Then we have

Fz0,b(z)− δz0,bz
−1 ∈Q[[z]],

where δx,b = 1 if b= 1 and x ∈ Γ, and δx,b = 0 otherwise.

We fix an isomorphism [ ] :OK
∼=EndF (E) so that α ∈OK acts as [α]∗ω =

αω on the invariant differential ω = dx/y. For any nonzero α ∈ OK , we

denote by E[α] the subgroup of E(Q) annihilated by α. The function Fz0,b(z)

is known to satisfy the following distribution relation with respect to E[α].

Proposition 3.10 (Distribution relation). The function Fz0,b(z) satisfies

the relation ∑
zα∈E[α]

Fz0+zα,b(z) = αα1−bFαz0,b(αz)

for any nonzero α ∈OK .

Proof. By [5, Proposition 1.16], noting that

Θαz0,0(αz,w/α; Γ) = αΘN(α)z0,0

(
N(α)z,w;αΓ

)
,

we see that the Kronecker theta function Θz0,0(z,w) satisfies the distribution

relation ∑
zα∈E[α]

Θz0+zα,0(z,w) = αΘαz0,0(αz,w/α)

for any nonzero α ∈OK . Our assertion follows from the definition of Fz0,b(z).
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3.2. The p-adic properties of Fz0,b(z)

We next review the p-adic properties of the function Fz0,b(z). We let E

be an elliptic curve with complex multiplication by the ring of integers OK

of an imaginary quadratic field K. We assume in addition that E is defined

over K and has good reduction at the primes above p≥ 5. This implies that

p does not ramify in OK . We fix a Weierstrass model of E over OK with

good reduction above p, and by abuse of notation, we denote again by E

this model defined over OK . Let t=−2x/y be the formal parameter of E

at the origin, and denote by Ê the formal group of E with respect to the

parameter t. We denote by λ(t) the formal logarithm.

Let z0 be a torsion point in E(Q), and denote by F̂z0,b(t) := Fz0,b(z)|z=λ(t)

the formal composition of the Laurent expansion of Fz0,b(z) at the origin

with the formal power series z = λ(t). Note that by definition, we have

(9) F̂z0,b(t) =
b∑

n=0

F̂z0,1(t)
b−n

(b− n)!
L̂z0,n(t),

where L̂z0,n(t) := Ln(z + z0)|z=λ(t).

Let ψ := ψE/K be the Hecke character of K associated to E. We let p be

a prime in OK lifting p, and we let π := ψ(p). Note that if p is ordinary,

then π is an element such that p= ππ∗ with π∗ a unit in Kp, and π =−p

if p is supersingular. We fix an embedding K ↪→ Cp such that π maps to

an element of p-adic absolute value less than 1 in Cp. By Corollary 3.9,

we may view F̂z0,b(t) as a power series with coefficients in Cp through this

embedding. We next review the p-adic properties of the power series F̂z0,b(t)

through this embedding.

Proposition 3.11. Let z0 be a torsion point in E(Q) of order prime to p.

Then the radius of convergence of the holomorphic part

F̂z0,b(t)− δz0,bt
−1 ∈Cp[[t]]

of F̂z0,b(t) is 1. In other words, this power series defines a function on

B− := {t ∈ Cp | |t|p < 1} if b 	= 1 or z0 	= 0, and F̂1(t) := F̂0,1(t) defines a

function on A(0) := {t ∈Cp | 0< |t|p < 1}.

Proof. See [7, Proposition 4.7] for the proof.

In the next section, we will prove that the power series F̂z0,b(t) paste

together to form a Coleman function on the elliptic curve minus the identity.
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We next review a formula for translation by πn-torsion points. Let Ê[πn]⊂
Ê(mp) denote the group of πn-torsion points of the formal group Ê, where

mp is the prime ideal of OCp .

Lemma 3.12 (Translation). Suppose that z0 is a torsion point in E(Q)

of order prime to p. Let tn ∈ Ê[πn], and let zn be the image of tn through

the inclusion Ê[πn]⊂E(Q)⊂C/Γ. Then we have

F̂z0,b(t⊕ tn) = F̂z0+zn,b(t),

where ⊕ is the formal addition law of the formal group Ê.

Proof. See [7, Lemma 4.13] for the proof.

The above lemma gives the following corollary.

Corollary 3.13 (Generating function). Suppose that z0 is a nonzero

torsion point in E(Q) of order prime to p. Then for any integer a≥ 0, we

have (
∂a
t,logF̂z0,b(t)

)
|t=tn = (−1)a+b−1e∗a,b(z0 + zn)/A

a,

where ∂t,log is the differential operator λ′(t)−1∂t.

Proof. Since ∂t,log is invariant under translation of the formal group, we

have by Lemma 3.12(
∂a
t,logF̂z0,b(t)

)
|t=tn =

(
∂a
t,logF̂z0,b(t⊕ tn)

)
|t=0 =

(
∂a
t,logF̂z0+zn,b(t)

)
|t=0.

Note that if we let z = λ(t), then we have ∂z = ∂t,log. Hence we have(
∂a
t,logF̂z0+zn,b(t)

)
|t=0 =

(
∂a
zFz0+zn,b(z)

)
|z=0.

Our assertion follows from the generating function property of Fz0,b given

in Proposition 3.4.

We let F
(p)
1 (z) be the function

(10) F
(p)
1 (z) := F1(z)− π−1F1(πz),

which is an elliptic function corresponding to a rational function defined

over K. Then we have F
(p)
1 (z + z0) = Fz0,1(z)− π−1Fπz0,1(πz), and hence

(11) F
(p)
1 (z + z0)|z=λ(t) = F̂z0,1(t)− π−1F̂πz0,1

(
[π]t

)
.
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§4. Construction of the p-adic Eisenstein–Kronecker functions

Coleman integration is a theory of p-adic integration first developed by

Coleman [14] to define the p-adic polylogarithm function. In this section,

we first review the theory of Coleman integration for curves, following the

description of Besser [11], [12] using notation coming from the theory of rigid

cohomology. We then prove that the function Fz0,b(z) of Section 3 defines

a Coleman function F col
b (z) on the CM elliptic curve. We then define the

p-adic Eisenstein–Kronecker functions Ecol
m,n(z) to be the iterated Coleman

integral of F col
b (z) satisfying the distribution relation.

4.1. Review of Coleman integration

Let L be a complete subfield of Cp, with ring of integers OL and residue

field k. Let X be a smooth projective irreducible curve over OL. Let U ⊂X

be an affine open subscheme of X such that the complement X \ U is a

divisor flat over OL.

Denote by Xan
Cp

the rigid analytic space associated to the scheme XCp . Its

points consist of the points of X(Cp). We have the specialization morphism

sp :Xan
Cp

→XFp
,

and we denote the inverse image of a point x ∈X(Fp) by ]x[, which we call

the residue disk. The set ]x[⊂ Xan
Cp

is an admissible open set of Xan
Cp
. We

have a set-theoretic decomposition

Xan
Cp

=
∐

x∈X(Fp)

]x[,

which is not an admissible covering for the rigid topology.

We let U be the formal completion of U with respect to the special

fiber, we let UL be the rigid analytic space over L associated to the for-

mal scheme U , and we let UCp := UL ⊗L Cp. We denote by j : UCp ↪→Xan
Cp

the natural inclusion, and we let j†OUCp
be the ring of functions on UCp

overconvergent along Xan
Cp

\ UCp (see [9, Section 2.1.1.3]).

Definition 4.1. For any x ∈X(Fp), we let A(]x[) be the ring of functions

defined by

A
(
]x[

)
:= Γ

(
]x[, j†OUCp

)
.
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Since X is smooth, each residue disk is isomorphic to the open disk

B− :=
{
t ∈Cp

∣∣ |t|p < 1
}

through a choice of local parameter tx of X at x. Then we have

A
(
]x[

)∼= Γ(B−,OB−), x ∈ U(Fp),

A
(
]x[

)∼= ⋃
0<r<1

Γ
(
A(r),OA(r)

)
, otherwise,

where A(r) is defined to be the admissible open set of B− defined as the

annulus A(r) := {t ∈ Cp | r < |t|p < 1} for any real number r such that 0<

r < 1. Note that A(]x[) is isomorphic to the ring consisting of formal power

series f(tx) =
∑

n≥0 ant
n
x which converge on B− if x ∈ U(Fp), and formal

power series f(tx) =
∑∞

n=−∞ ant
n
x for an ∈ Cp which converge on A(r) for

some r < 1 if x ∈ (X \U)(Fp). This description is independent of the choice

of the parameter tx.

Definition 4.2. A branch of the p-adic logarithm is any locally analytic

group homomorphism logp :C
×
p →Cp, defined by the power series

logp(x) =−
∑
n>0

(1− x)n

n

for x in a neighborhood of 1. It is characterized by the value logp(p).

Suppose a branch of the p-adic logarithm has been chosen. One defines

Alog(]x[) to be A(]x[) if x ∈ U(Fp) and to be the polynomial ring in the

function logp(tx) over A(]x[) if x ∈ (X \ U)(Fp). This definition is inde-

pendent (up to isomorphism) of the choice of the local parameter tx. Set

Ω1
log(]x[) :=Alog(]x[)dtx. Then one defines the ring of locally analytic func-

tions and 1-forms on U by

Aloc(U) :=
∏

x∈X(Fp)

Alog

(
]x[

)
, Ω1

loc(U) :=
∏

x∈X(Fp)

Ω1
log

(
]x[

)
.

We have a differential d :Aloc(U)→Ω1
loc(U), which is surjective.
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Suppose that k = Fq for q = ph, and let X and U be the formal com-

pletions of X and U with respect to the special fiber. For simplicity, we

assume that there exists a Frobenius morphism φ :X →X , which is a OK -

linear morphism lifting the hth power Frh of the absolute Frobenius Fr on

Xk :=X⊗k and such that φ(U)⊂U . Then this map induces a Cp-morphism

φ :Xan
Cp

→Xan
Cp

by extension of scalars.

Coleman constructs a certain subring M(U) of Aloc(U), which we call

the ring of Coleman functions on U , equipped with an integration map.

The ring M(U) is defined so that it contains rational functions on X which

are regular on U , as well as overconvergent functions on UCp ⊂Xan
Cp
, where

UCp is the rigid analytic space associated to U . If we denote by M(U)/Cp

the ring M(U) modulo addition by constants, then the integration map is a

vector space map
∫
:M(U)⊗A(U) Ω

1(U)→M(U)/Cp characterized by the

following three properties.

(i) We have d(
∫
ω) = ω (primitive function).

(ii) We have
∫
(φ∗ω)≡ φ∗(

∫
ω) in M(U)/Cp (Frobenius invariance).

(iii) If g ∈M(U), then
∫
dg ≡ g in M(U)/Cp.

The construction of Coleman functions gives the following lemma.

Lemma 4.3. Suppose that f is a function in Aloc(U), and suppose that

P (x) is a polynomial in Cp whose roots do not contain the roots of unity. If

we have df ∈M(U)⊗Ω1(U) and P (φ∗)f ∈M(U), then we have f ∈M(U).

By abuse of notation, for any ω ∈M(U)⊗A(U) Ω
1(U), we denote by

∫
ω

any Coleman function Fω ∈M(U) satisfying dFω = ω. By construction, the

Coleman function
∫
ω ∈M(U) is determined up to addition by a constant.

It is known that the above theory of integration is independent of the

choice of the branch of the p-adic logarithm (see [19, Proposition 2.3]). Other

important properties of Coleman functions are the uniqueness principle (see

[14, Chapter IV] and [19, Proposition 2.4]) and the functorial property with

respect to the morphisms of the pair (U,X) (see [19, Proposition 2.5]).

4.2. Fz0,b(z) as a Coleman function

We will next show that the functions Fz0,b(z) defined in Section 3 define

a Coleman function on our elliptic curve. It is striking that the functions

modified for each z0 nicely paste together to form a single Coleman function

on the elliptic curve. We fix once and for all a branch of the p-adic logarithm.

Let the notation be as in Section 3.2. In particular, we let E be the

model over OK of our CM elliptic curve, with good reduction at the primes
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above p. Let L be a finite extension of Kp in Cp, and by abuse of notation,

we denote again by E the extension of E to the ring of integers OL of L.

Then for π := ψ(p), multiplication by [π] induces a Frobenius φ :E →E. We

denote by E(Cp) :=Ean
Cp

the extension to Cp of the rigid analytic space Ean
L .

From now until the end of this paper, z will denote a variable on E(Cp).

The residue disks of E(Cp) is parameterized by torsion points z0 of E of

order prime to p. If we let t=−2x/y, then this gives a local parameter of E

at the origin. Then the open disk {t ∈ Cp | |t|p < 1} represents the residue

disk ]0[⊂E(Cp) containing the identity of E. If we let z0 be a torsion point

of E of order prime to p, and if we let ]z0[ := τz0(]0[) for the translation

τz0 :E →E defined by τz0(z) := z+ z0, then ]z0[ is precisely the residue disk

containing z0. The parameter t of ]0[ then gives via translation a parameter

of ]z0[ which gives a homeomorphism ]z0[∼= B− between the residue disk

containing z0 and the unit ball. In what follows, we denote again by t the

parameter of ]z0[ obtained in this fashion.

We first start by investigating the function Fz0,1(z). We let U :=E \ {0}.
Note that by Proposition 3.11, the power series F̂z0,1(t) defines a function

in A(]z0[) through the identification ]z0[∼= B−.

Lemma 4.4. We let F col
1 be the function in Aloc(U) defined by

F col
1 |]z0[ := F̂z0,1(t) ∈Alog

(
]z0[

)
on each residue disk ]z0[, where z0 is a torsion point in E(Q) of order prime

to p, including the case z0 = 0. Then F col
1 is a Coleman function on U .

Proof. The differential form dF1 = η+e∗0,2ω is known to be a meromorphic

differential form of the second kind on U defined over OK . From the defini-

tion of Fz0,1(z) given in Definition 3.3, we have Fz0,1(z) = F1(z+z0)−z0/A,

hence dFz0,1 = τ∗z0 dF1. Hence the calculation of the differential on each

residue disk gives the equality dF col
1 = dF1. For any Coleman function f(z)

on U , denote by f(πz) the Coleman function (φ∗f)(z) = [π]∗f(z). Consider
the function

(12) F̃
(p)
1 (z) :=

(
1− φ∗

π

)
F col
1 (z) = F col

1 (z)− 1

π
F col
1 (πz).

For any z ∈ ]z0[, we have z̃ := πz ∈ ]πz0[. Hence from the definition and the

fact that [π] ◦ τz0 = τπz0 ◦ [π], we have

F col
1 (πz)|]z0[ = F col

1 (z̃ )|]πz0[ = F̂πz0,1(t̃ ) = F̂πz0,1

(
[π]t

)
,
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where t and t̃ are elements in B− corresponding to z and z̃. Substituting

the above equality into the definition (12) of F̃
(p)
1 (z), we obtain by (11) the

equality

F̃
(p)
1 |]z0[ = F

(p)
1 |]z0[,

where F
(p)
1 is the rational function on E defined in (10). Hence F col

1 is

an element in Aloc(U) such that dF col
1 = dF1 and (1 − φ∗/π)F col

1 = F
(p)
1 .

Since F
(p)
1 is a rational function and dF1 is a meromorphic differential form,

which are both regular on U , we have in particular F
(p)
1 ∈M(U) and dF1 ∈

M(U)⊗Ω1(U). Hence by Lemma 4.3, the function F col
1 is in fact a Coleman

function on U .

Note that if z0 	= 0, then we have F col
1 |]z0[ ∈ A(]z0[) ⊂ Alog(]z0[). This

shows that the value F col
1 (z) for z ∈E(Cp)\ ]0[ is independent of the choice

of the branch of the p-adic logarithm.

Since Ln is a rational function on E with poles only at {0} in E, it is

in particular a Coleman function on U . The set of Coleman functions is a

ring, and we define F col
b as follows.

Definition 4.5. We let F col
1 be the Coleman function of Lemma 4.4. For

any integer b≥ 0, we define F col
b to be the Coleman function

(13) F col
b :=

b∑
n=0

(F col
1 )b−n

(b− n)!
Ln

on U .

The functions F col
b interpolate the power series Fz0,b(z) of Section 4.1.

Proposition 4.6 (Interpolation). For any integer b ≥ 0, the function

F col
b on the residue disk ]z0[ is given by

F col
b |]z0[ = F̂z0,b(t) ∈Alog

(
]z0[

)
.

Proof. The case for b= 1 follows from the definition of F col
1 . The case for

b > 1 follows from this case, noting that Ln|]z0[ = L̂z0,n(t) and comparing

the definitions of (9) and (13).

Proposition 4.7 (Distribution relation). For any nonzero α ∈ OK , the

Coleman function F col
b for any integer b≥ 0 satisfies the distribution relation

(14)
∑

zα∈E[α]

F col
b (z + zα) = αα1−bF col

b (αz).
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Note that since F col
b is a Coleman function on U , by the functorial prop-

erty of Coleman functions (see [19, Proposition 2.5]), we may regard both

F col
b (z + zα) and F col

b (αz) as Coleman functions on Uα := E \ E[α]. Then

(14) above is an equality of Coleman functions on Uα.

Proof of Proposition 4.7. We write α = πnα0, where α0 ∈ OK is prime

to π. For any zα ∈ E[α], we write zα = zα0 + zn, where zα0 ∈ E[α0] and

zn ∈E[πn]. Suppose that z is a point in the residue disk ]z0[. Then z+ zα is

in the residue disk ]z0 + zα0 [, and αz is in ]αz0[. Denote by t the parameter

on ]z0[ obtained as the translation by τz0 : E → E of the local parameter

t = −2x/y at the origin of E. This gives an isomorphism ]z0[∼= B−, and
hence t parameterizes the points z on the residue disk ]z0[. We denote by

tn the element on B− corresponding to zn through this isomorphism. Then

Proposition 4.6 shows that we have

F col
b (αz)|]z0[ = F̂αz0,b

(
[α]t

)
,

F col
b (z + zα)|]z0[ = F̂z0+zα0 ,b

(t⊕ tn)

as functions on ]z0[. By Lemma 3.12, we have F̂z0+zα0 ,b
(t⊕ tn) = F̂z0+zα,b(t).

Our result now follows by substituting z = λ(t) into the distribution relation

of Proposition 3.10, noting that Fz0,b(αz)|z=λ(t) = Fz0,b(z)|z=λ([α]t).

Remark 4.8.

(i) The function F col
1 is characterized as the unique function of the form

F col
1 =

∫
dF1 satisfying the distribution relation.

(ii) The convergence property for F̂z0,1(t) shows that the function F col
1

converges on any point in U(Cp).

(iii) Furthermore, the expansion of F̂ col
b (t) for b > 1 shows that F col

b is

defined on E(Cp).

4.3. The p-adic Eisenstein–Kronecker function

We now define the p-adic Eisenstein–Kronecker function. We first prepare

a proposition concerning integration and the distribution relation.

Proposition 4.9. Let m and b be integers greater than or equal to zero.

Suppose that Ecol
m,b is a Coleman function on U which satisfies the distribu-

tion relation

(15)
∑

zα∈E[α]

Ecol
m,b(z + zα) = α1−mα1−bEcol

m,b(αz)
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for any nonzero α ∈ OK . Then there exists a unique integration Ecol
m+1,b :=

−
∫
Ecol

m,bω of −Ecol
m,bω satisfying the distribution relation

(16)
∑

zα∈E[α]

Ecol
m+1,b(z + zα) = α−mα1−bEcol

m+1,b(αz)

for any nonzero α ∈OK .

Proof. Let Ẽm+1,b :=−
∫
Ecol

m,bω be any Coleman integral of −Ecol
m,bω. For

any nonzero α ∈OK , let

cα :=
∑

zα∈E[α]

Ẽm+1,b(z + zα)− α−mα1−bẼm+1,b(αz).

Then the relation (15) shows that dcα = 0, and hence the property of Cole-

man integration shows that cα is a constant in Cp. For any nonzero α,

β ∈OK , we have∑
zαβ∈E[αβ]

Ẽm+1,b(z + zαβ)

=
∑

zα∈E[α],

z̃β∈E[αβ]/E[α]

Ẽm+1,b(z + zα + z̃β)

=
∑

z̃β∈E[αβ]/E[α]

(
cα + α−mα1−bẼm+1,b(αz + αz̃β)

)
=N(β)cα + α−mα1−bcβ + (αβ)−m(αβ)1−bẼm+1,b(αβz),

where the last equality follows from the definition of cβ and the fact that

we have an isomorphism E[αβ]/E[α] ∼= E[β] given by z̃β �→ zβ := αz̃β . By

reversing the roles of α and β, we see from a similar calculation that the

above is also equal to

N(α)cβ + β−mβ
1−b

cα + (αβ)−m(αβ)1−bẼm+1,b(αβz).

This shows that we have (N(β)− β−mβ
1−b

)cα = (N(α)−α−mα1−b)cβ , and

hence the constant

c := cα/
(
N(α)− α−mα1−b

)
is independent of the choice of α ∈OK . If we let

Ecol
m+1,b(z) := Ẽm+1,b(z)− c,

then this function satisfies (16) for any nonzero α ∈OK .
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Definition 4.10. For integers m, b with b ≥ 0, we define the p-adic

Eisenstein–Kronecker series Ecol
m,b recursively going up and down as follows.

We first let Ecol
0,b := (−1)b−1F col

b . Then by Proposition 4.7, this function sat-

isfies the distribution relation (15). For m> 0, we let Ecol
m,b be the Coleman

function recursively defined by Ecol
m,b =−

∫
Ecol

m−1,bω, with the constant term

normalized as in Proposition 4.9 to satisfy the distribution relation

(17)
∑

zα∈E[α]

Ecol
m,b(z + zα) = α1−mα1−bEcol

m,b(αz).

For m< 0, we define Ecol
m,b recursively by the formula dEcol

m+1,b =−Ecol
m,bω.

Again, (17) is an equality of Coleman functions on Uα :=E \E[α]. Propo-

sition 4.9 ensures that such a choice of constant term when m> 0 is possi-

ble. The convergence property of F1 in Proposition 3.11 ensures that Ecol
m,b

is defined on any point in U(Cp) if b= 1 and on E(Cp) if b > 1. When b= 0,

note that Ecol
0,0 ≡ 1. This shows that we have Ecol

a,0 = 0 for a < 0.

The reason we view Ecol
m,b as a p-adic analogue of the Eisenstein–Kronecker

function is that this function interpolates values of the classical Eisenstein–

Kronecker function at torsion points for m≤ 0 as follows.

Proposition 4.11. Let a, b be integers greater than or equal to zero.

Then for any torsion point z in E(Q) such that z 	= 0 if b= 1, we have

Ecol
−a,b(z) =E−a,b(z)/A

a.

Proof. Any torsion point z is of the form z = z0 + zn, where z0 is a

Teichmüller representative and zn is a πn-torsion point. Our result follows

from the fact that

Ecol
−a,b(z) = (−1)a+b−1∂a

t,logF̂z0,b(t)|t=tn

and Corollary 3.13.

Note that we have fixed a branch of the p-adic logarithm. We next prove

that the values of Ecol
m,b(z) are independent of this choice.

Lemma 4.12. Let m and b be integers such that b≥ 0. Suppose that z is

a point in E(Cp)\ ]0[. Then the value Ecol
m,b(z) is independent of the choice

of the branch of the p-adic logarithm.
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Proof. The proof is given by induction on m. The statement for m = 0

and b = 1 follows from the construction of F col
1 , which is independent of

the choice of the branch of the p-adic logarithm. The statement for m= 0

and general b follows from the definition (13) of F col
b , noting that Ln are

rational functions. The statement for m < 0 follows inductively from the

equality Ecol
m,bω = −dEcol

m+1,b. Suppose now that the statement is true for

some m≥ 0. Let Ẽm+1,b =−
∫
Em,bω be any Coleman integral. By Besser’s

formalism (see [12]), Coleman integrals over points of good reduction (i.e.,

points in the smooth subscheme U ⊂X using the notation of Section 4.1)

are free from the choice of the branch of the p-adic logarithm. Hence for

z in E(Cp)\ ]0[, the value Ẽm+1,b(z) is independent of the choice of the

branch. Furthermore, for a point in z in E(Cp)\ ]0[, the values Ẽm+1,b(πz)

and Ẽm+1,b(z+ z1) for z1 ∈E[π] are also free from the choice of the branch.

Hence the global constant c = cπ of Proposition 4.9 is independent of the

choice of the branch. This gives the statement for Ecol
m+1,b(z).

Remark 4.13. The restriction of Ecol
m,b(z) to the residue disk ]0[ is of the

form

Ecol
m,b|]0[ = â0(t) + â1(t) log t+ â2(t)(log t)

2 + · · ·+ ân(t)(log t)
n

for some n and âi(t) ∈ A(]0[), where the âi(t) are rigid analytic functions

on an open annulus around zero free from the choice of the branch. Since

Ecol
m,b(z) for b 	= 1 is analytic on E(Cp), we see that n = 0 in this case.

Therefore if b 	= 1, then the values Ecol
m,b(z) for z ∈ E(Cp) are independent

of the choice of the branch. On the other hand, if b = 1 and m> 0, then

Ecol
m,b(z) for z in the residue disk ]0[ depends on the choice of the branch of

the p-adic logarithm.

§5. p-adic Kronecker limit formulas

Let the notation be as in Section 4. In this section, we prove the p-adic

analogues of the first and second Kronecker limit formulas.

5.1. The p-adic Eisenstein–Kronecker functions

In Section 4, we defined the p-adic analogue of the Eisenstein–Kronecker

series as a Coleman function on the CM elliptic curve. In order to prove

the p-adic limit formulas, we define in this section a p-adic analogue of the

function log |θ(z)|2 − |z|2/A, which turns out to be a Coleman function.



294 K. BANNAI, H. FURUSHO, AND S. KOBAYASHI

We then prove the distribution relation, which we use to characterize this

function.

Let p be a prime greater than or equal to 5. In what follows, fix an embed-

ding of Q into Cp, and we again fix a branch of the p-adic logarithm, which

is a homomorphism logp : C
×
p → Cp, and we extend this homomorphism to

(Cp[[t]])
× by using the decomposition (Cp[[t]])

× = C×
p × (1 + tCp[[t]]) and

defining logp(1− tf(t)) =−
∑

tnfn(t)/n for any f(t) ∈ Cp[[t]]. Let E be a

CM elliptic curve as in the Introduction, and let Γ be the period lattice of

E ⊗C. For z0 ∈ Γ⊗Q, we let

(18) θz0(z) := θ(z + z0) exp
(
−zz0

A
− z0z0

2A

)
.

Then by [5, Proposition 2.1], the Taylor series of θz0(z) at z = 0 has algebraic

coefficients. Note that from the definition, we have

d

dz
log θz0(z) =

θ′z0(z)

θz0(z)
=

θ′(z + z0)

θ(z + z0)
− z0

A
= F1(z + z0)−

z0
A

= Fz0,1(z).

If we consider the formal composition

θ̂z0(t) := θz0(z)|z=λ(t)

of this series with λ(t), where λ(t) is the formal logarithm of the formal

group of E, then we may regard this power series as an element in Cp[[t]]. If

we take the derivative of logp θ̂z0(t) with respect to t, then we have by the

definition of logp and θ̂z0(t) the equality

(19)
(
logp θ̂z0(t)

)′
= θ̂′z0(t)/θ̂z0(t) = F̂z0,1(t).

If z0 corresponds to a torsion point of E of order prime to p, then we see from

Proposition 3.11 that the power series (logp θ̂z0(t))
′, hence also logp θ̂z0(t),

converges on the open unit disk |t|< 1 in Cp.

Definition 5.1. We let logp θ be the function in Aloc(U) defined by

logp θ|]z0[ := logp θ̂z0(t) ∈Alog

(
]z0[

)
on each residue disk ]z0[, where z0 corresponds to a torsion point of E of

order prime to p.

We will see in Section 5.2 that logp θ is in fact a Coleman function on E.

We first investigate the basic properties of logp θ.
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Proposition 5.2. For z0 ∈ Γ⊗Q and zα such that αzα ∈ Γ for a π-power

morphism α ∈ EndQ(E), we have

(20) logp θ̂z0(t⊕ tα) = logp θ̂z0+zα(t),

where tα ∈E(Cp) corresponds to a torsion point in C/Γ represented by zα ∈
C.

Proof. Let α and β be elements of OK such that 2α|β and βz0 ∈ Γ. Then

fβ(z) := θ(z)Nβ/θ(βz) is a rational function on E over Q. We have

(21) θz0+zα(z)
Nβ =±θ(βz)τ∗z0+zαfβ(z).

Similarly, we have

θz0(z)
Nβ =±θ(βz)τ∗z0fβ(z).

Since fβ is a rational function, we also have

τ∗z0+zαfβ(t) = τ∗z0fβ(t⊕ tα).

Hence we have

(22) θ̂z0(t⊕ tα)
Nβ =±θ̂

(
[β]t

)
τ∗z0+zαfβ(t).

Our assertion now follows from (21) and (22).

Corollary 5.3. Let tα be a π-power torsion point, and assume that

z0 	= 0 or tα 	= 0. Then we have

logp θ̂z0(tα) = logp

(
θ(z0 + zα) exp

[
−(z0 + zα)(z0 + zα)

2A

])
.

Proof. This follows by substituting t= 0 on both sides of (20) and using

the definition of θz0+zα(z) given in (18).

Roughly speaking, logp θ(z) is a p-adic function which interpolates

the special values log θ(z)− zz/2A at torsion points. We may thus regard

logp θ(z) as a p-adic analogue of the function log |θ(z)|2 − |z|2/A.
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5.2. The p-adic second limit formula

We are now ready to prove Theorem 1.2, which is a p-adic analogue of the

Kronecker second limit formula. We keep the notation of the Introduction.

In particular, let

Kcol
n−m(0, z,n) :=Ecol

m,n(z).

In addition, we let f⊂OK be the conductor of the Hecke character ψ of K

associated to E, and we let π := ψ(p). Since E has good reduction at the

prime ideals above p, we have (p, f) = 1.

Proposition 5.4. Let z0 ∈ C be a lifting of an f-torsion point of C/Γ.

Then for α ∈OK , we have

θαz0(αz)
24N(αf) =Δ2N(αf)(Nα−1)

∏
zα∈E[α]

θz0+zα(z)
24N(αf),

where zα is a lift of an α-torsion point of E, and the right-hand side is

independent of the choice of the lifts z0 and zα on C.

Proof. Since for γ ∈ Γ we have θz0+γ(z) =±χγ(z0/2)θz0(z), the function

θz0(z)
2N f is independent of the lift z0 if (N f)z0 ∈ Γ. The independence of

the lifts of z0 and zα follows from this fact. The logarithmic derivatives of

both sides coincide by Proposition 3.10. Hence for each α, there exists a

constant cα(z0) such that

θαz0(αz)
2N(αf) = cα(z0)

∏
zα∈E[α]

θz0+zα(z)
2N(αf).

If we compare this equality with the case z0 = 0, then we have from the

definition of θz0(z) given in (18) the equality

cα(0) = cα(z0)
∏
zα

exp
(z0zα − z0zα

2A

)2N(αf)
= cα(z0).

Hence we see that cα := cα(z0) is independent of the choice of z0. We calcu-

late cα for the case z0 = 0 and N f= 1. Then we have∏
zαβ∈E[αβ]

θzαβ
(z)2N(αβ)

=
∏

zαβ∈E[αβ]/E[α]

∏
zα∈E[α]

θzαβ+zα(z)
2N(αβ)
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=
∏

zαβ∈E[αβ]/E[α]

c−Nβ
α θαzαβ

(αz)2N(αβ)

= c−Nβ2

α c−Nα
β θ(βαz)2N(αβ).

Hence we have cNβ2

α cNα
β = cαβ = cNα2

β cNβ
α , or equivalently,

cNβ(Nβ−1)
α = c

Nα(Nα−1)
β .

In particular, c12α = c
Nα(Nα−1)
2 . On the other hand, we consider the constant

term of
θ(2z)8

θ(z)8
= c2

∏
z2∈E[2]−{0}

θz2(z)
8.

As in the proof of Proposition 2.8, we have∏
z2∈E[2]−{0}

θz2(0)
8 =Δ′−2.

Hence c2 = 28Δ′2 =Δ2. Our assertion now follows from these facts.

Corollary 5.5. The function Ξ(z) :=− logp θ(z)− 1
12 logpΔ satisfies the

distribution relation

Ξ(αz) =
∑

zα∈E[α]

Ξ(z + zα).

Proof. By Proposition 5.4, we have

logp θ̂αz0
(
[α]t

)
=

Nα− 1

12
logpΔ+

∑
tα∈E[α]

logp θ̂z0(t⊕ tα)

on each residue disk ]z0[. Our assertion follows from this formula since

Ξ(αz)|]z0[ :=− logp θ̂αz0
(
[α]t

)
− 1

12
logpΔ

= −
∑

tα∈E[α]

logp θ̂z0(t⊕ tα)−
Nα

12
logpΔ=

∑
zα∈E[α]

Ξ(z + zα)|]z0[

on each residue disk.

We now prove the p-adic second limit formula.
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Proof of Theorem 1.2. By the definition of Ξ(z) and (19), the derivative

of Ξ(z) is equal to −F̂z0,1(t) on the residue disk ]z0[. By Definition 4.10, the

derivative of

Kcol
0 (0, z,1) :=Ecol

1,1(z)

is equal to Ecol
0,1(z) :=−F col

1 (z), and hence coincides with −F̂z0,1(t) on ]z0[.

This implies that c(z) := Ξ(z)−Ecol
1,1(z) is a constant on the residue disk ]z0[.

By Corollary 5.5 and the definition of Ecol
1,1(z), the locally constant function

c(z) satisfies the distribution relation. For any torsion point z0 of order f,

we take N such that πN ≡ 1 mod f. Then [πN ]∗(]z0[) = ]z0[ and

[πN ]∗c(z)|]z0[ =
∑

w∈E[πN ]

c(z +w)|]z0[.

Since c(z)|]z0[ is constant, the above relation shows that c(z)|]z0[ = 0.

The above result shows in particular that

Ξ(z) =− logp θ(z)−
1

12
logpΔ

is in fact a Coleman function.

5.3. p-adic Eisenstein–Kronecker–Lerch series

We now give the definition of the p-adic Eisenstein–Kronecker–Lerch

series and then prove Proposition 1.3, which is a p-adic analogue of the

first Kronecker limit formula. We will prove the proposition by considering

p-adic counterparts of our proof in Section 2 of the classical case.

Let p≥ 5 be a prime of good ordinary reduction for E, and fix a prime

p of OK over p. We defined in [5, Section 3.1] a p-adic measure μ := μ0,0 on

Zp×Zp interpolating the Eisenstein–Kronecker numbers, or more precisely,

the special values of the Eisenstein–Kronecker–Lerch series K∗
a+b(0,0, b; Γ)/

A(Γ)a for a, b≥ 0, where Γ is the period lattice of E. We define the p-adic

Eisenstein–Kronecker–Lerch function as in the Introduction as follows.

Definition 5.6. For any integer a ∈ Z, we define the p-adic Eisenstein–

Kronecker–Lerch function by

K(p)
a (0,0, s) :=

∫
Z
×
p ×Z

×
p

〈x〉s−1〈y〉a−sω(y)a−1 dμ(x, y).
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The p-adic Eisenstein–Kronecker–Lerch function is analytic in s ∈ Zp.

The reason we view this function as a p-adic analogue of Eisenstein–

Kronecker–Lerch series is the following interpolation property.

Proposition 5.7. For any integer a, b such that a ≥ b > 0 and b ≡ 1

(mod p− 1), we have

(23)
K

(p)
a (0,0, b)

Ωa−1
p

= (−1)a−1(b− 1)!
(
1− πa

pa−b+1

)(
1− πa

pb

)K∗
a(0,0, b)

A(Γ)a−b
,

where Ωp is a p-adic period of the formal group of E.

Proof. This follows from the interpolation property of the measure μ :=

μ0,0 given in [5, Proposition 3.5].

We now give the proof of Proposition 1.3.

Proof of Proposition 1.3. We consider the function

(24) f(t) := Ωp

∫
Z
×
p ×Z

×
p

y−1 exp
(
yΩ−1

p λ(t)
)
dμ(x, y)

on the p-adic residue disk ]0[ around zero. If we take the derivative of f(t),

the interpolation property of μ given in [5, Proposition 3.5] gives the equality

λ′(t)−1 d

dt
f(t) =

∫
Z
×
p ×Z

×
p

exp
(
yΩ−1

p λ(t)
)
dμ(x, y)

= F̂1(t; Γ)− π−1F̂1

(
[π]t; Γ

)
− F̂1(t;pΓ) + π−1F̂1

(
[π]t;pΓ

)
.

Let E
(p)
1,1(z; Γ) := Ecol

1,1(z; Γ) − p−1Ecol
1,1(πz; Γ). Then the differential of

E
(p)
1,1(z; Γ)−E

(p)
1,1(z;pΓ) is given by

F col
1 (z; Γ)ω− π

p
F col
1 (πz; Γ)ω+ F col

1 (z;pΓ)ω− π

p
F col
1 (πz;pΓ)ω,

which is equal to df(t) on ]0[, hence the function f(t) − E
(p)
1,1(z; Γ) +

E
(p)
1,1(z;pΓ) is a constant on the residue disk ]0[. By the definition of E

(p)
1,1

and substituting z = λ(t) into (16), we have the distribution relation∑
tπ∈E[π]

Ê
(p)
1,1(t⊕ tπ) = 0.



300 K. BANNAI, H. FURUSHO, AND S. KOBAYASHI

Furthermore, since the power series exp(Ω−1
p λ(t)) gives a homomorphism of

formal groups Ê and Ĝm isomorphically mapping E[π] to the group of pth

root of unity (see [7, Section 2.2]), we have for each y ∈ Z×
p the equality∑

tπ∈E[π]

exp
(
yΩ−1

p λ(t)
)
|t=t⊕tπ = exp

(
yΩ−1

p λ(t)
) ∑
tπ∈E[π]

exp
(
yΩ−1

p λ(tπ)
)
= 0.

This gives by definition (24) of f(t) the distribution relation
∑

tπ∈E[π] f(t⊕
tπ) = 0. Since both E

(p)
1,1 and f(t) satisfy the same distribution relation, the

same argument as that in the proof of Theorem 1.2 shows that we must

have f(t) = E
(p)
1,1(z; Γ) − E

(p)
1,1(z;pΓ) on ]0[. On the other hand, the p-adic

second limit formula shows that

E
(p)
1,1(z; Γ) = logp θ(z; Γ)−

1

p
logp θ(πz; Γ) +

1

12

(
1− 1

p

)
logpΔ(Γ).

Noting that

logp θ(z; Γ)− logp θ(z;pΓ) = logp
(
θ(z; Γ)/θ(z;pΓ)

)
for z = 0 is equal to logp(1) = 0 and Δ(pΓ) = π−12Δ(Γ), we have

f(0) =E
(p)
1,1(z; Γ)−E

(p)
1,1(z;pΓ)|z=0 =

(
1− 1

p

)
logp π.

Our assertion now follows from the fact that f(0) = ΩpK
(p)
0 (0,0,1).

Remark 5.8. In the interpolation formula of (23), if we let a = 0 and

b= 1, then the interpolation factor of the right-hand side vanishes. Hence

the value

ΩpK
(p)
0 (0,0,1) =

∫
Z
×
p ×Z

×
p

y−1 dμ(x, y)

is in some sense not the constant term 0 but the residue at s= 1 of the p-adic

analogue of
∑∗

γ∈Γ 1/|γ|2s. Because of this fact, the formula of Proposition 1.3

is not a perfect p-adic analogue of the classical first Kronecker limit formula.
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