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ALMOST DIRECT SUMMANDS

BHARGAV BHATT

Abstract. We prove new cases of the direct summand conjecture using fun-
damental theorems in p-adic Hodge theory due to Faltings. The cases tackled
include the ones when the ramification locus lies entirely in characteristic p.

§1. Introduction

The direct summand conjecture of Hochster asserts that any module-

finite extension R → S of commutative rings with R regular is a direct

summand as an R-module map. This conjecture is known when R contains

a field (see [Ho1]) or if dim(R)≤ 3 (see [H]). The general mixed characteristic

case remains wide open and is a fundamental open problem in commutative

algebra; we refer the interested reader to [Ho3] for a discussion of various

other conjectures implied by the direct summand conjecture.

Our goal in this article is to explain how Faltings’s theory of almost

étale extensions in p-adic Hodge theory can be used to prove new cases

of the direct summand conjecture. Most notably, this method applies to

maps whose ramification locus has simple normal crossings after inverting p;

that is, we impose no requirements on the characteristic p ramification. In

particular, there is no constraint on the dimension.

The statement

Fix a prime number p, and let V be a complete p-adic discrete valuation

ring whose residue field k satisfies [k : kp]<∞; for example, we could take

V to be a finite extension of Zp. We will prove the following.

Theorem 1.1. Let R be a smooth V -algebra, and let f :R→ S be the nor-

malization of R in a finite extension of its fraction field. Assume that there

exists an étale map V [T1, . . . , Td]→R such that f ⊗RR[(1/p · T1, . . . , Td)] is

unramified. Then f :R→ S is a direct summand as an R-module map.
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We will prove Theorem 1.1 using a deep purity result of Faltings con-

ceived in p-adic Hodge theory. To the best of our knowledge, Theorem 1.1,

or even the special case where f [(1/p)] is unramified, is inaccessible to other

methods used to study the direct summand conjecture. It is also worth not-

ing that the general case of the direct summand conjecture can be reduced

to base rings R which are localizations of étale V [T1, . . . , Td]-algebras with

k = k (by [Ho2, Remark 6.5]), so the only serious assumption in Theorem 1.1

is the one on ramification. Finally, note that the almost ring theory approach

to the direct summand conjecture adopted in this paper was also explored

in [R].

This article is organized as follows. In Section 2, we review the basics of

almost ring theory and recall Faltings’s almost purity result, the main ingre-

dient of our proof of Theorem 1.1. We then prove the theorem in Section 3.

§2. Review of almost ring theory

Our proof uses almost ring theory as discovered by Tate [T] and developed

by Faltings in [F1], [F2] with p-adic Hodge-theoretic applications in mind.

The book [GR1] provides a systematic treatment of almost ring theory, and

[O] provides a detailed and comprehensible presentation of the arithmetic

applications of Faltings’s ideas. We review below the aspects of this theory

most relevant to the proof of Theorem 1.1, deferring to the other sources

for proofs.

2.1. Almost mathematics

Let V denote a valuation ring whose value group Λ is dense in Q, and

let m ⊂ V be the maximal ideal. Note that m is necessarily not finitely

generated. For each nonnegative α ∈ Λ, let mα be the (necessarily principal)

ideal of elements of valuation at least α, and let π ∈ V denote an element

of valuation 1.

Example 2.1. Let K denote the fraction field of a complete p-adic dis-

crete valuation ring V , and let V denote the integral closure of V in a fixed

algebraic closure K of K. Then V is a valuation ring whose value group

is Q, and consequently, almost ring theory applies; this will be the only

example relevant to us.

The maximal ideal m can be thought of as the ideal of elements with

positive valuation. As the value group is dense, it follows that m2 =m. This
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observation implies that the category Σ of m-torsion V -modules is a Serre

subcategory of the abelian category Mod(V ) of V -modules. We refer to

modules in Σ as almost zero modules. By general nonsense, we may form

the quotient abelian category

Mod(V )a :=Mod(V )/Σ

of almost V -modules. We denote the localization functor by M �→Ma. With

this notation, we have the following description of maps in Mod(V )a (see

[GR1, Section 2.2.4]):

HomMod(V )a(M
a,Na) = HomMod(V )(m⊗V M,N).

As Σ⊂Mod(V )a is closed under tensor products, the quotient Mod(V )a

inherits the structure of a symmetric ⊗-category with the quotient map

Mod(V )→Mod(V )a being a symmetric ⊗-functor. This formalism allows

one to systematically define almost analogues of standard notions of ring

theory and, indeed, develop almost algebraic geometry. Informally, we may

think of almost algebraic geometry as the study of algebraic geometry over

V where all the results hold up to m-torsion. (For an example of how this

program is carried out at the appropriate level of generality, see [GR1].) We

will adopt the more pragmatic stance of explaining the notions we need to

precisely state Faltings’s almost purity theorem. We start with the following

set of definitions, borrowed from [O, Section 2], which allow us to define the

fundamental notion of an almost étale morphism.

Definition 2.2. Let A be a V -algebra, and let M be an A-module. We

say that

(1) M is almost projective if ExtiA(M,N) is almost zero for all A-modules

N and if i > 0;

(2) M is almost flat if TorAi (M,N) is almost zero for all A-modules N and

if i > 0;

(3) M is almost faithfully flat if it is almost flat and if, for any A-modules

N1 and N2, the natural map

HomR(N1,N2)→HomR(N1 ⊗M,N2 ⊗M)

has an almost zero kernel;
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(4) M is almost finitely generated if for every strictly positive α ∈ Λ there

exists a finitely generated A-module Nα and a πα-isomorphism Nα 	
M ; that is, there are maps φα :Nα →M and ψα :M →Nα such that

φα ◦ψα = πα ◦ id and ψα ◦ φα = πα ◦ id.

Remark 2.3. The properties defined in Definition 2.2 are all invariant

under almost isomorphisms and, consequently, depend only on the almost

isomorphism class Ma ∈Mod(V )a. This is clear for flatness and projectivity

by the exactness of the localization functor Mod(V )→Mod(V )a. The issue

of finite generation is more delicate, and we refer the interested reader to

[GR1, Section 2.3] for a detailed discussion. We simply point out here that

m⊂ V is almost finitely generated with the definition given above.

Warning 2.4. As all the properties defined in Definition 2.2 are invariant

under almost isomorphisms, it is tempting to define notions such as almost

projectivity purely in terms of the internal homological algebra of the abelian

category Mod(V )a—that is, in terms of the internal Ext functors. However,

this approach suffers from two defects. First, as the category Mod(V )a lacks

enough projectives (the generating object V
a
is not projective), one is forced

to resort to a Yoneda definition of the Ext groups, which is typically harder

to work with. More serious, as the Yoneda definition pays no attention to

the ⊗-structure, the resulting theory does not interact well with the ⊗-

structure.

Once we have access to a good theory of flatness and finite generation,

one can copy the standard notions in algebraic geometry to arrive at the

fundamental notion of an almost étale morphism.

Definition 2.5. A morphism A→ B of V -algebras is called an almost

étale covering if

(1) B is almost finitely generated, almost faithfully flat, and almost projec-

tive as an A-module;

(2) B is almost finitely generated and almost projective as a B ⊗A B-

module.

Example 2.6. For completeness, we discuss the first nontrivial example

of an almost étale morphism, which was discovered by Tate in his study of p-

divisible groups [T]; we follow Faltings’s exposition from [F1, Theorem 1.2].

Let V be a finite extension of Zp, and let V be the normalization of V in a

fixed algebraic closure of its fraction field. Fix a tower V = V0 ⊂ V1 ⊂ · · · ⊂
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Vn ⊂ · · · of normal subextensions of V such that Ω1
Vn+1/Vn

has Vn+1/p as

a quotient for each n; such towers can be produced starting with a totally

ramified Zp-extension of V , and an explicit example may be constructed

starting with the tower of extensions obtained by adjoining p-power roots

of 1. We set V∞ = colimn Vn. Then V∞ can be shown to be a valuation

ring whose value group is dense in Q, and consequently, almost ring theory

applies. The key observation (due to Tate, in different language) is that the

natural map V∞ → V is almost étale (see [T, Section 3.2, Proposition 9]).

A consequence of this fact is that many computations over V (such as

those of certain Galois cohomology groups) can be reduced to computations

over V∞, and the latter are typically much more tractable since V∞ can be

chosen to have properties adapted to the problem at hand. The higher-

dimensional version of such arguments plays a key role in [F1].

Finally, we record a basic fact concerning the almost analogue of finite

flat morphisms that is used in the proof of Theorem 1.1.

Lemma 2.7. Let f : A→ B be an inclusion of V -algebras. Assume that

f makes B an almost projective and almost faithfully flat A-module. Then

the cokernel coker(f) is an almost projective A-module.

Proof. For any two A-modules M and N , we have an identification of

functors

RHom(M ⊗L N,−)	RHom
(
M,RHom(N,−)

)
.

A spectral sequence argument then shows that if M and N are almost

projective, then so is M ⊗LN . If, in addition, one of M or N is also almost

flat, then one has an almost isomorphism M ⊗LN 	M ⊗N . Hence, if both

M and N are almost projective and one of them is almost flat, then M ⊗N

is almost projective. In particular, we see that B⊗AB is almost projective.

Now note that we have an exact sequence

0→A→B → coker(f)→ 0.

Tensoring this over A with B gives the new exact sequence

0→B →B ⊗A B → coker(f)⊗A B → 0.

The multiplication map on B splits this exact sequence. Thus, coker(f)⊗A

B is a direct summand of the almost projective A-module B ⊗A B and,

consequently, almost projective itself. By [GR1, Lemma 4.1.5], it follows

that coker(f) is also an almost projective A-module.
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2.2. Faltings’s purity theorem

We now state the version of Faltings’s almost purity theorem most rele-

vant to Theorem 1.1: the case of good reduction with ramification supported

along a simple normal crossings divisor. There exist more general statements

than the one stated below—notably, the case of semistable reduction.

Let V be a complete p-adic discrete valuation ring whose residue field k

satisfies [k : kp]<∞. Let V be the normalization of V in a fixed algebraic

closure of its fraction field. We will work with almost ring theory over V .

Let R be a smooth V -algebra such that RV :=R⊗V V is a domain. Assume

that we are given an étale morphism V [T1, . . . , Td]→R; such a chart always

exists Zariski locally on Spec(R). Then we define a sequence of RV -algebras

by

Rn = V [T
1/n!
i ]⊗V [Ti] R.

One can check that the V -algebras Rn are finitely presented and smooth

over V and, in particular, normal. Moreover, by construction, there are

natural maps Rn → Rm for n≤m, and we set R∞ = colimnRn where the

colimit is taken along the preceding maps. Note that RV →Rn is finite and

faithfully flat, and consequently, RV →R∞ is integral and faithfully flat. A

calculation with differentials shows that the composite R → RV → R∞ is

unramified away from the divisor V (p ·T1, . . . , Td). The purity theorem says

that R→R∞ is the maximal extension of R with this last property, up to

almost étale covers.

Theorem 2.8 ([F2, Section 2b]). Let f :R→ S be the normalization of

R in a finite extension of its fraction field. Assume that the induced map

f ⊗RR[(1/pT1, . . . , Td)] is étale. If Sn denotes the normalization of S⊗RRn

and if S∞ = colimnSn, then the induced map R∞ → S∞ is an almost étale

covering.

Remark 2.9. Theorem 2.8 can be thought of as a mixed characteris-

tic analogue of Abhyankar’s lemma without tameness restrictions. Recall

that Abhyankar’s lemma (see [Gro, Exposé XIII, Proposition 5.2]) asserts

that, for any regular local ring R, the maximal extension of R[T1, . . . , Td]

tamely ramified along the divisor associated to T1 · · ·Td may be obtained by

adjoining all n-power roots of the Ti, where n runs through integers invert-

ible on R. The purity theorem does away with the tameness restrictions at

the expense of describing the maximal extension ramified along a normal

crossings divisor in mixed characteristic only up to almost étale covers. Most

notably, it allows for one of the parameters Ti to be replaced by p.



ALMOST DIRECT SUMMANDS 201

§3. Proof of Theorem 1.1

Our goal in this section is to prove Theorem 1.1. Correspondingly, let

V be as in Theorem 1.1, and let V be the normalization of V in a fixed

algebraic closure of its fraction field. An essential idea informing the con-

struction of almost ring theory is that the passage from algebraic geometry

over V to almost algebraic geometry over V is fairly faithful. We record one

manifestation of this idea that will be useful to us.

Lemma 3.1. Let R be a flat V -algebra essentially of finite type, and let

R∞ be a faithfully flat RV -algebra. If M is an R-module such that M⊗RR∞
is zero in Mod(V )a, then M = 0.

Proof. Let x ∈M be a nonzero element. The assumption that M ⊗R R∞
is almost zero implies that mR∞ ⊂Ann(x⊗1). Thus, the ideal Ann(x⊗1)⊂
R∞ contains arbitrarily small p-powers. On the other hand, by the flatness

of R→R∞, we see that Ann(x⊗ 1) = Ann(x)⊗R R∞. As I =Ann(x) is an

ideal in R which is essentially of finite type over V , the smallest power a of

p it contains is bounded above zero since x �= 0. We formalize this by saying

that the natural map V →R/I defined by 1 induces an injection

V/pa ↪→R/I

for some rational number a > 0. Base changing along the flat map V → V

gives an injection

V /pa ↪→ (R/I)⊗V V 	 (R/I)⊗R RV 	RV /(I ⊗R RV ),

also induced by 1. The assumption that RV → R∞ is faithfully flat then

shows that we have a composite injection induced by 1 as follows:

V /pa ↪→RV /(I ⊗R RV ) ↪→R∞/(I ⊗R R∞).

Since the ideal I ⊗R R∞ =Ann(x⊗ 1) contains arbitrarily small p-powers,

so does its preimage under V →R∞. Hence, the map considered above is an

injection only when a= 0, which contradicts the assumption that a > 0.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. After replacing V with its normalization in a suit-

able finite extension and replacing R and S by the corresponding base
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changes, we may assume that R ⊗V V is a domain. Our goal, then, is to

show that the exact sequence

(1) 0→R→ S →Q→ 0

is split, where Q is the cokernel. The obstruction to splitting is measured by

an element ob(f) ∈ Ext1R(Q,R). We will show that this class almost vanishes

after a suitable big extension, and then we apply Lemma 3.1.

The assumptions in the theorem imply that there exists an étale mor-

phism V [T1, . . . , Td]→ R such that R→ S is étale over R[(1/pT1, . . . , Td)].

Using this presentation, we define rings Rn, Sn, R∞, and S∞ as in Sec-

tion 2.2. The picture over R∞ can be summarized as

0 R∞ S ⊗R R∞ Q⊗R R∞ 0

0 R∞ S∞ Q∞ 0

Here the first row is obtained by tensoring the exact sequence (1) with R∞,

while Q∞ is the cokernel of R∞ → S∞. Theorem 2.8 implies that the map

R∞ → S∞ is an almost étale covering. By Lemma 2.7, the quotient Q∞
is an almost projective R∞-module. Hence, the second exact sequence is

almost zero when viewed as an element of Ext1R∞(Q∞,R∞). The diagram

above shows that the first exact sequence then defines an almost zero ele-

ment of Ext1R∞(Q⊗RR∞,R∞). On the other hand, the flatness of R→R∞
shows that this element is simply ob(f)⊗ 1 under the natural isomorphism

Ext1R(Q,R)⊗R R∞ 	 Ext1R∞(Q⊗R R∞,R∞). By construction of R∞, the

map RV → R∞ is faithfully flat. Lemma 3.1 applied to the submodule of

Ext1R(Q,R) generated by ob(f) shows that ob(f) = 0, so the theorem is

proved.

Remark 3.2. It is tempting to generalize Theorem 1.1 in two ways: (a)

the base ring R should be allowed to be semistable singularities, as Faltings’s

theorem from Section 2.2 works in that setting; and (b) the assumption on

the ramification divisor should only be imposed on f ⊗Q following accepted

philosophy in almost ring theory. While this article was being prepared for

publication, both of these generalizations were carried out in [GR2, Sec-

tion 10.7] using the ideas here. Unfortunately, the statement of the final

result requires close to a thousand pages.
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Remark 3.3. Scholze’s recent work on perfectoid spaces [S], relying cru-

cially on Huber’s theory of adic spaces, as well as the theory of the cotangent

complex, contains a sweeping generalization of Faltings’s purity result used

in the proof of Theorem 1.1. It seems very likely that his result (and the

arguments of this article) can shed significant light on the direct summand

conjecture in general; we plan to further investigate this idea in a future

work.
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Géométrie Algébrique du Bois-Marie (SGA 1), Doc. Math. (Paris) 3, Soc. Math.
France, Paris, 2003. MR 2017446.

[H] R. C. Heitmann, The direct summand conjecture in dimension three, Ann. of
Math. (2) 156 (2002), 695–712. MR 1933722. DOI 10.2307/3597204.

[Ho1] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya
Math. J. 51 (1973), 25–43. MR 0349656.

[Ho2] , Canonical elements in local cohomology modules and the direct sum-
mand conjecture, J. Algebra 84 (1983), 503–553. MR 0723406. DOI 10.1016/
0021-8693(83)90092-3.

[Ho3] , Homological conjectures, old and new, Illinois J. Math. 51 (2007), 151–
169. MR 2346192.

[O] M. C. Olsson, “On Faltings’ method of almost étale extensions” in Algebraic
Geometry (Seattle, 2005), Part 2, Proc. Sympos. Pure Math. 80 Part 2, Amer.
Math. Soc., Providence, 2009, 811–936. MR 2483956.

[R] P. Roberts, Almost regular sequences and the monomial conjecture, Michigan
Math. J. 57 (2008), 615–623. MR 2492472. DOI 10.1307/mmj/1220879428.

[S] P. Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012),
245–313. MR 3090258. DOI 10.1007/s10240-012-0042-x.

http://www.ams.org/mathscinet-getitem?mr=0924705
http://www.ams.org/mathscinet-getitem?mr=0924705
http://dx.doi.org/10.2307/1990970
http://dx.doi.org/10.2307/1990970
http://www.ams.org/mathscinet-getitem?mr=1922831
http://www.ams.org/mathscinet-getitem?mr=1922831
http://www.ams.org/mathscinet-getitem?mr=2004652
http://www.ams.org/mathscinet-getitem?mr=2004652
http://arxiv.org/abs/arXiv:math/0409584v8
http://arxiv.org/abs/arXiv:math/0409584v8
http://www.ams.org/mathscinet-getitem?mr=2017446
http://www.ams.org/mathscinet-getitem?mr=2017446
http://www.ams.org/mathscinet-getitem?mr=1933722
http://www.ams.org/mathscinet-getitem?mr=1933722
http://dx.doi.org/10.2307/3597204
http://dx.doi.org/10.2307/3597204
http://www.ams.org/mathscinet-getitem?mr=0349656
http://www.ams.org/mathscinet-getitem?mr=0349656
http://www.ams.org/mathscinet-getitem?mr=0723406
http://www.ams.org/mathscinet-getitem?mr=0723406
http://dx.doi.org/10.1016/0021-8693(83)90092-3
http://dx.doi.org/10.1016/0021-8693(83)90092-3
http://www.ams.org/mathscinet-getitem?mr=2346192
http://www.ams.org/mathscinet-getitem?mr=2346192
http://www.ams.org/mathscinet-getitem?mr=2483956
http://www.ams.org/mathscinet-getitem?mr=2483956
http://www.ams.org/mathscinet-getitem?mr=2492472
http://www.ams.org/mathscinet-getitem?mr=2492472
http://dx.doi.org/10.1307/mmj/1220879428
http://dx.doi.org/10.1307/mmj/1220879428
http://www.ams.org/mathscinet-getitem?mr=3090258
http://www.ams.org/mathscinet-getitem?mr=3090258
http://dx.doi.org/10.1007/s10240-012-0042-x
http://dx.doi.org/10.1007/s10240-012-0042-x


204 B. BHATT

[T] J. T. Tate, “p-divisible groups” in Proceedings of a Conference on Local Fields
(Driebergen, 1966), Springer, Berlin, 1967, 158–183. MR 0231827.

School of Mathematics

Institute for Advanced Study

Princeton, New Jersey 08540

USA

bhargav.bhatt@gmail.com

http://www.ams.org/mathscinet-getitem?mr=0231827
http://www.ams.org/mathscinet-getitem?mr=0231827
mailto:bhargav.bhatt@gmail.com
mailto:bhargav.bhatt@gmail.com

	Introduction
	The statement

	Review of almost ring theory
	Almost mathematics
	Faltings's purity theorem

	Proof of Theorem 1.1
	Acknowledgments
	References
	Author's Addresses

