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CENTRIOLES IN SYMMETRIC SPACES

PETER QUAST

In honor of Ernst A. Ruh on the occasion of his 75th birthday

Abstract. We describe all centrioles in irreducible simply connected pointed
symmetric spaces of compact type in terms of the root system of the ambient
space, and we study some geometric properties of centrioles.

§0. Introduction

Symmetric spaces are generalizations of spaces of constant sectional

curvature. Though symmetric spaces need not have constant sectional cur-

vature, their sectional curvatures remain constant under parallel transla-

tions of 2-dimensional tangent planes along regular curves. Thus, the eas-

iest examples of simply connected compact symmetric spaces are spheres.

The most prominent totally geodesic submanifolds in spheres are equatorial

hyperspheres. Several generalizations of these submanifolds to other ambi-

ent symmetric spaces have been suggested, for example, embedded minimal

hyperspheres (see [HH], [HHT]).

In this paper, we study another generalization of equatorial hyperspheres

in spheres called centrioles. Centrioles, a term borrowed from cytology, have

been introduced by Chen and Nagano [CN2]. Centrioles in symmetric spaces

arise in the same way as equatorial hyperspheres in spheres, namely, as con-

nected components of the midpoint locus of all geodesic arcs joining two

antipodal points. They share some nice properties with equatorial hyper-

spheres; for example, they are orbits of isotropy groups, and they are reflec-

tive in the sense of Leung [Le]: they are connected components of the fixed-

point set of involutive isometries of the ambient space (see Section 1).

Centrioles also play an important role in Bott’s original proof (see [Bt])

of his periodicity theorem for the homotopy of classical Lie groups (see
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also [Ml]). They can also be used to calculate homotopy groups of some

exceptional symmetric spaces, for example, of E7/(S
1E6) (see [Bu3], [Bu1],

[Mi1], [Mi2], and [Q1]), and to study the periodicity of certain standard

inclusions (see [MQ2]).

In contrast to spheres, compact symmetric spaces of higher rank with a

chosen base point may admit several antipodal points and different noniso-

morphic centrioles. Moreover, not all centrioles consist necessarily of mid-

points of shortest geodesic arcs between these antipodal points.

Our article is organized in the following manner.

Section 1 is devoted to the beautiful and rich geometry of centrioles.

In Section 2, we provide a complete description of centrioles in irreducible

simply connected symmetric spaces of compact type in terms of the root

system of the ambient space (see Theorems 12 and 20).

Hyperspheres in spheres are maximal proper totally geodesic subman-

ifolds, and in Section 3 we show that this still holds for s-centrioles (see

Theorem 30).

To make this article more self-contained, we end with an appendix, in

which we collect some well-known facts about root systems needed in this

paper.

§1. The geometry of centrioles

1.1. Definitions

Let P be a compact Riemannian symmetric space. (We always assume

that P is connected.) If we choose a base point o, we call the pair (P,o)

a pointed symmetric space. Next, we generalize the notion of antipode in a

pointed round sphere. Following Chen and Nagano [CN2], we call a point

p ∈ P different from o a pole of (P,o) if so = sp. Here, so and sp denote the

geodesic symmetries of P at the points o and p, respectively.

Let p be a pole of (P,o). The centrosome C(o, p) of (P,o) relative to

p is the set of the midpoints of all geodesic arcs in P between o and p.

A connected component of a centrosome is called a centriole (see [CN2]). If

x is a point in C(o, p), we denote by Cx(o, p) the centriole containing x.

For further use, we decide on the following nomenclature. A geodesic

γ :R→ P joins the point x ∈ P to the point y ∈ P if γ(0) = x and γ(1) = y.

The transvection group G of a symmetric space P is the closed subgroup

of the isometry group I(P ) of P (in the compact-open topology) generated

by the products of two geodesic symmetries of P. If P is of compact type,
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that is, if the universal Riemannian cover of P is still compact, then G is

the identity component of I(P ) (see, e.g., [W], [He]). Since P is connected,

the transvection group of P acts transitively on P. Indeed, let x and y be

two points in P , and let γ be a geodesic in P joining x to y. To this geodesic

corresponds the 1-parameter subgroup

τγ :R→G, t �→ sγ(t/2) ◦ sγ(0)

of transvections along γ (see, e.g., [S3, p. 175]). We have y = τγ(1).x, where

we denote by g.x the image of x under the isometry g.

1.2. Geometric properties

In this section, we study some nice geometric properties of centrioles.

Though most of the presented results are known or folklore (see, e.g., [CN2],

[N1], [N2], [Ch1]), we discuss them and provide geometric proofs for the sake

of completeness.

Lemma 1 ([CN2, Proposition 2.9], [Ch2, Theorem 3.3]). For any pole

p of a compact pointed symmetric space (P,o), there exists a unique fixed-

point-free involutive isometry ρp of P that maps o to p and commutes with

all transvections of P. Moreover, the orbit space P/Γp with Γp := {Id, ρp} is

a symmetric space.

Proof. (The outline of this proof can be found in [CN2, proof of Proposi-

tion 2.9] or [Ch2, proof of Theorem 3.3]). It is well known that the pointed

Cartan map

ι : P →G, p �→ sp ◦ so

is a covering map onto its image, and this image is again a symmetric space.

According to [W, p. 244], there exists a discrete subgroup Γ of the centralizer

Δ = CG(I(P )) of G in the isometry group I(P ) of P such that the image

of ι is isomorphic to P/Γ as a symmetric space (for a suitable bi-invariant

metric on G).

Since Γ is the deck transformation group of the covering map ι (see, e.g.,

[Ha, Proposition 1.40]), every nontrivial element of Γ acts fixed-point-free.

Since ι(o) = ι(p) holds by the definition of a pole, there must be a unique

element ρp in Γ satisfying ρp(o) = p.

Any geodesic γ in P that joins o to p satisfies γ(2) = sp(o) = so(o) = o. Let

τγ be the 1-parameter subgroup of transvections along γ; then τγ(1) maps
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γ(0) = o onto γ(1) = p and squares to the identity, because τγ(1) ◦ τγ(1) =
τγ(2) = sγ(1) ◦ sγ(0) = sp ◦ so = s2o = Id.

Since ρp commutes with any transvection, we get ρ2p.o = ρp.p =

ρp.(τγ(1).o) = τγ(1).(ρp.o) = τγ(1).(τγ(1).o) = τγ(2).o = o. Hence, ρ2p is an

element of Γ that has a fixed point. Thus, ρ2p = Id. This also shows that

Γp := {Id, ρp} is a subgroup of Δ which is isomorphic to Z2. The result in

[W, p. 244] implies that P/Γp is a symmetric space.

The next proposition shows that centrioles are not just totally geodesic

submanifolds, they are reflective submanifolds in the sense of Leung [Le]

(see [N1, Definition and Proposition 2.12] for the statement); that is, they

are connected components of the fixed-point set of an involutive isometry

of the ambient symmetric space P.

Proposition 2 ([N1, Definition and Proposition 2.12(ii)]). Centrioles

of connected compact pointed symmetric spaces are reflective submanifolds.

More precisely, the centrosome C(o, p) is the fixed-point set of the involutive

isometry rp := ρp ◦ so.
In particular, centrioles are totally geodesic submanifolds.

Proof. Let p be a pole of (P,o), and let x ∈C(o, p) be the midpoint of a

geodesic arc γ in P joining γ(0) = o to γ(1) = p. Then γ̃ := ρp ◦ γ is again

a geodesic in P and satisfies γ̃(0) = p and γ̃(1) = o. Let πp : P → P/Γp be

the canonical projection; then πp ◦ γ = πp ◦ γ̃. Hence, γ̃(t) = γ(t+1). Thus,

rp.x= rp.γ(1/2) = ρp.(so.γ(1/2)) = ρp.γ(−1/2) = γ̃(−1/2) = γ(1/2) = x.

Conversely, let x be a fixed point of rp. Since ρp is involutive, we get ρp.x=

ρp.(rp.x) = (ρp ◦ρp).(so.x) = so.x. Let γ be a geodesic in P satisfying γ(0) =

o and γ(1/2) = x. Then πp(γ(1/2)) = πp(ρp.x) = πp(so.x) = πp(γ(−1/2)).

Since geodesics in symmetric spaces are orbits of 1-parameter groups of

isometries, they close at any self-intersection. Thus, (πp ◦γ)(t) = (πp ◦γ)(t+
1), and in particular, (πp ◦ γ)(0) = (πp ◦ γ)(1). Hence, either γ(1) = γ(0) = o

or γ(1) = p. The first equation implies that γ(t) = γ(t+ 1), and hence x=

γ(1/2) = γ(−1/2) = so.x = ρp.x. This contradicts the fact that ρp has no

fixed point. Thus, γ(1) = p, and x lies in C(o, p).

To prove that rp is an involution, we actually show that so ◦ ρp ◦ so = ρp.

Since ρp commutes with any transvection, we get (so ◦ ρp ◦ so) ◦ (sp ◦ sq) =
so ◦ ρp ◦ (so ◦ sp) ◦ sq = so ◦ (so ◦ sp) ◦ ρp ◦ sq = sp ◦ ρp ◦ sq ◦ so ◦ so = (sp ◦
sq) ◦ (so ◦ρp ◦ so) for all points p and q in P. Since the transvection group G

of P is generated by all products of two geodesic symmetries of P , we see
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that so ◦ρp ◦ so centralizes G. Since ρp is an involution without fixed points,

the same holds true for so ◦ ρp ◦ so. Moreover, (so ◦ ρp ◦ so).o= p. Lemma 1

yields so ◦ ρp ◦ so = ρp by uniqueness.

Observation 3. Let C(o, p) be the centrosome of (P,o) corresponding to

p, and let rp be the corresponding reflection defined in Proposition 2. Then

rp(o) = p.

Each point x ∈ P induces an involutive automorphism

σx : G→G, g �→ sx ◦ g ◦ sx

of the transvection group G. Its differential (σx)∗ at the identity induces an

involutive automorphism of the Lie algebra g of G. It is well known (see,

e.g., [He, Chapter IV, Section 3]) that the fixed-point set of (σx)∗ is the Lie

algebra of the stabilizer of x in G.

If p is a pole of (P,o), then σo = σp. Hence, the identity components of

the stabilizers of o and of p in G coincide, since they have the same Lie

algebras. We denote this connected subgroup of G by Ke. The following

result is known (see, e.g., [Ch1, Proposition 5.1] and [MQ2, Lemma 2.7]).

Lemma 4. Every centriole of C(o, p) is a Ke-orbit.

Proof. The method of the proof presented here can also be found in [MQ2,

Lemma 2.7]. It is similar in spirit to [Ch1, proof of Lemma 3.4].

Let x be a point in C(o, p), and let Cx(o, p) be the centriole containing

it. We have to show that Ke.x=Cx(o, p).

To show that Ke.x⊂ Cx(o, p), we take a geodesic arc γ : [0,1]→ P that

satisfies γ(0) = o, γ(1/2) = x, and γ(1) = p and an element k ∈ Ke. Since

k stabilizes both o and p, the geodesic arc γ̃ := k ◦ γ satisfies γ̃(0) = o and

γ̃(1) = p. Hence, γ̃(1/2) lies in C(o, p). This shows that Ke.x⊂C(o, p). Since

Ke.x is connected, we conclude that Ke.x⊂Cx(o, p).

To show the opposite inclusion (namely, that Cx(o, p) ⊂ Ke.x), we take

a point y ∈ Cx(o, p). Since Cx(o, p) is connected and closed and therefore

compact, there is a geodesic c : R→ Cx(o, p) in Cx(o, p) satisfying c(0) = x

and c(1) = y.

Since Cx(o, p) is a totally geodesic submanifold of P, c is also a geodesic

in P. Let τc be the 1-parameter subgroup of transvections in P along c. For

any t0 ∈R, the isometry τc(t0) stabilizes both o and p. Indeed, since x and
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c(t0/2) are midpoints of geodesic arcs in P joining o to p, we have sx.o=

p, sc(t0/2).p = o and sx.p = o, sc(t0/2).o = p, respectively. Thus, τc(t0).o = o

and τc(t0).p= p. Since τc(0) is the identity, we see that τc takes values in Ke.

Now y = τc(1).x ∈Ke.x. This shows the other inclusion.

Corollary 5. Let x ∈ C(o, p), and let γ : R → P be a geodesic in P

satisfying γ(0) = o and γ(1/2) = x. Then γ intersects C(o, p) perpendicularly

in x; that is, γ̇(1/2)⊥ TxC(o, p).

Proof. By Lemma 4, the centriole Cx(o, p) equals Ke.x=Ke.γ(1/2). Since

all geodesic arcs in {k.γ|[0,(1/2)] : k ∈Ke} have the same length and energy,

our claim follows from the first variation formula for the length or the energy

(see, e.g., [S3, p. 89]).

Corollary 6. Let x ∈ C(o, p), and let γ : R → P be a geodesic in P

satisfying γ(0) = o and γ(1/2) = x. Then γ(1) = p.

Proof. Since rp is an involutive isometry whose fixed-point set is C(o, p),

its differential Dxrp at x is an involutive linear isometry of TxP whose fixed-

point set is TxC(o, p) and whose (−1)-eigenspace is (TxC(o, p))⊥. Corollary 5

implies that Dxrp(γ̇(1/2)) =−γ̇(1/2). Thus, (rp◦γ)(t) = γ(1−t), and there-

fore, γ(1) = γ(1− 0) = (rp ◦ γ)(0) = rp.o= p by Observation 3.

§2. A classification of centrioles

In this section, we describe all centrioles of an irreducible pointed simply

connected symmetric space of compact type. We refer the reader to our

appendix for details on the notation and terminology used in this section

and for a brief overview on root systems. Further details can be found in

the classical literature (e.g., [He], [Lo]).

2.1. The center of a symmetric space of compact type

Let us first assume that P is an irreducible symmetric space of compact

type (not yet necessarily simply connected). To admit centrioles, the pointed

symmetric space (P,o) must of course have poles. Lemma 1 shows that in

this case P must cover another symmetric space. This means in particular

that P cannot be an adjoint space. The adjoint space Ad(P ) of P is the

(up to isometry) unique symmetric space that is locally isometric to P and

that has the following property: Ad(P ) does not cover properly any other

symmetric space (see [He, p. 327]). We can describe the adjoint space as an

orbit space. As in the proof of Lemma 1, we denote by Δ := CG(I(P )) the
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centralizer of G in the isometry group of P. Then Ad(P ) can be identified

with the orbit space P/Δ (see [W, p. 244]).

To admit poles and centrioles, P cannot be Ad(P ). In particular, Ad(P )

is not simply connected in this case. The description of the fundamental

group of Ad(P ) due to Cartan [C] and Takeuchi [Tk] shows that the tan-

gent Lie triple p of (P,o) must contain nonzero elementsX with the property

that ad(X)3 = −ad(X) (see also [MQ1]). We call these elements extrinsi-

cally symmetric, because their isotropy orbits are extrinsically symmetric

submanifolds in the Euclidean space p (see [F2], [EH]). Extrinsically sym-

metric elements in p exist if and only if a simple root system representing

a fundamental Weyl chamber in p contains a root whose coefficient in the

expansion of the highest root is 1 (see, e.g., [MQ1, Lemma 2.1] and [KN]).

Looking at the list of possible root systems (see, e.g., [He, Chapter X]), we

can make the following observation.

Observation 7. To admit centrioles, the root system of P must allow

for extrinsically symmetric elements. Therefore, it can only be of type ar,

br, cr, dr (r ≥ 4), e6, or e7. In particular, the root system of P is reduced.

To determine all centrioles, we need a description of the poles of a pointed

symmetric space (P,o). Poles are special points in the center Z(P,o) of

(P,o). If π : P → P/Δ∼=Ad(P ) denotes the canonical projection, then the

center Z(P,o) of (P,o) is the preimage of π(o); that is,

Z(P,o) := π−1
(
π(o)

)
.

Proposition 8 ([Lo, p. 64, Proposition 2.1.b]). We have

Z(P,o) = {x ∈ P : Ke.x= x}.

2.2. Poles and polars

By Lemma 1, any pole p of (P,o) lies in the center of (P,o). To charac-

terize poles of (P,o) among the center elements, we first notice that poles

are special examples of polars, namely, singleton polars. A polar in (P,o) is

a connected component of the set of all midpoints of simple closed geodesics

in P that emanate at the base point o—in other words, a connected com-

ponent of the fixed-point set of the geodesic symmetry so. Polars have been

introduced and classified by Chen and Nagano [CN1]. (See also [Ch1] for a

survey and [N1] for more details about the classification of polars.) Along

the lines of the proof of Lemma 4, one can show that polars of (P,o) are

Ke-orbits (see [CN1] or [Ch1, Lemma 3.4]). We conclude with the following.
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Observation 9. The set of poles of (P,o) is the intersection of the center

of (P,o) with the union of all polars of (P,o).

Proof. If p is a pole of (P,o), then p lies in Z(P,o) \ {o} by Lemma 1.

Moreover, let γ be a shortest geodesic in P joining o = γ(0) to p = γ(1);

then o = sp.o = γ(2). Hence, p is the midpoint of a simple closed geodesic

emanating at o.

Conversely, let p ∈ Z(P,o) be the midpoint of some simple closed geodesic

emanating at o. Then p lies in the polar Ke.p of (P,o). By Proposition 8,

this polar is a singleton which is different from {o}. Thus, p is a pole.

2.3. Lattices

In this section, we look at the initial directions of geodesics in P joining

o to a pole or to a point in Z(P,o). Since these points are fixed under the

action of Ke, we may assume that the initial direction lies in some fixed

maximal abelian subspace a of p.

The center lattice in a is defined by

ΓZ(P,o) :=
{
X ∈ a : exp(X).o ∈ Z(P,o)

}
,

where exp : g→G denotes the Lie-theoretic exponential map.

To describe this lattice in terms of roots, let ΩP be the root system of P

corresponding to a. By Observation 7, we may assume that ΩP is reduced.

It is well known (see, e.g., [Lo, p. 25] or [MQ1, Lemma 3.1]) that the central

lattice can be described as

ΓZ(P,o) =
{
X ∈ a : α(X) ∈ πZ for all α ∈ΩP

}
.

Let us further choose a fundamental Weyl chamber a+ ⊂ a and denote by

Σ = {α1, . . . , αr} the corresponding set of positive simple roots (see the

appendix below); then

ΓZ(P,o) = spanπZ(Σ
∗) =

{ r∑
j=1

λjα
∗
j : λj ∈ πZ

}
,

where Σ∗ = {α∗
1, . . . , α

∗
r} denotes the basis of a which is dual to Σ.

Since any pole is an element of the center, the set P(P,o) of all poles of

(P,o) is a subset of Z(P,o), and the pole lattice

ΓP(P,o) :=
{
X ∈ a : exp(X).o ∈ P(P,o)

}
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is an affine sublattice of ΓZ(P,o) (not containing zero). In view of Observa-

tion 9, the pole lattice can also be described as

ΓP(P,o) =
{
X ∈ a : exp(X).o ∈ Z(P,o) \ {o}, exp(2X).o= o

}
(1)

=
(
ΓZ(P,o)∩ (1/2)Γo(P,o)

)
\ Γo(P,o),

where

Γo(P,o) :=
{
X ∈ a : exp(X).o= o

}
is the unit lattice of (P,o). To get a particularly easy description of the unit

lattice of P, we assume that P is a simply connected irreducible symmetric

space of compact type. To make visible in our notation when we assume

simple connectedness, we replace P by P̃ .

Notice that if P̃ is simply connected, the isotropy group K in the con-

nected transvection group G of P̃ =G/K is also connected; that is, K =Ke.

This follows from the short exact sequence of homotopy groups

{0}= π1(P̃ )→ π0(K)→ π0(G) = {0}.

Following Loos [Lo, pp. 25, 69, 77], the unit lattice Γo(P̃ , o) can be

described in terms of the system Ω̌P̃ of inverse roots (see equation (9) in

the appendix):

Γo(P̃ , o) = spanπZ{Ω̌P̃ }.
Since ΩP̃ is reduced, the same holds true for Ω̌P̃ (see, e.g., [Bo, p. 197,

Remark 2]), and the set Σ̌ := {α̌1, . . . , α̌r} is a system of simple roots in Ω̌P̃

(see [Se, p. 32, Proposition 7]). Thus, we can write

Γo(P̃ , o) = spanπZ{Σ̌}.

We denote the inverse of the Cartan matrix C of Σ (see the appendix) by

C−1 = (c−1
1 , . . . , c−1

r ),

where c−1
j ∈Rr is the jth column of C−1. The expansion of the simple dual

roots in the basis of simple inverses roots given in (10) in the appendix

implies the following.

Lemma 10. The vector πα∗
j lies in Γo(P̃ , o) if and only if c−1

j ∈ Zr.

By (1) we get the following.

Lemma 11. An element π
∑r

j=1 xjα̌j of ΓZ(P̃ , o) lies also in ΓP(P̃ , o) if

and only if all its coefficients xj lie in ((1/2)Z)r \Zr. In particular, πα∗
j lies

in ΓP(P̃ , o) if and only if c−1
j ∈ ((1/2)Z)r \Zr.



60 P. QUAST

2.4. Classification of centrioles in terms of roots

We are now ready to describe all centriole points; these are points lying in

some centriole, in a pointed irreducible simply connected symmetric space

(P̃ , o) of compact type up to the action of K =Ke.

Let x be a centriole point, and let γ be a shortest geodesic in P̃ between

γ(0) = 0 and γ((1/2)π) = x. There is an element k ∈K such that the initial

direction X := AdG(k)γ̇(0) of the geodesic k.γ lies in the closure a+ of our

previously chosen fundamental Weyl chamber a+ ⊂ a. Hence, the expansion

of X in the basis Σ∗ has only nonnegative coefficients. The point k.x may

differ from x, but it still lies in the same centriole by Lemma 4. Corollary 6

shows that the point πX lies in the polar lattice ΓP(P̃ , o).

The property that γ, and hence also k.γ, is shortest on the interval

[0, (1/2)π] means that the vector (1/2)πX lies inside or on the tangent

cut locus of P̃ in p∼= TpP̃ . According to Sakai [S2, p. 198], the intersection

CutP̃ (a
+) of the tangent cut locus of P̃ in p with the closed fundamental

Weyl chamber a+ is

(2) CutP̃ (a
+) =

{
Y ∈ a+ : δ(Y ) = π

}
,

where

δ =
r∑

j=1

hjαj

is the highest root corresponding to Σ. From the appendix, we have that all

coefficients hj are strictly positive integers.

To sum up: to describe all centriole points of (P̃ , o) up to the action of

K, we have to look at the elements X ∈ a+ that satisfy the two conditions:

πX ∈ ΓP(P̃ , o),(3)

1

2
πδ(X)≤ π or, equivalently, δ(X)≤ 2.(4)

Theorem 12. There are four possible types of elements X ∈ a+ that

satisfy the conditions given in (3) and (4):

type I, X = α∗
j , where hj = 1 and c−1

j ∈ ((1/2)Z)r \ Zr; the vector X is

extrinsically symmetric, and (1/2)πX lies in (1/2)CutP̃ (a
+);

type II, X = α∗
j , where hj = 2 and c−1

j ∈ ((1/2)Z)r \Zr; the vector (1/2)πX

lies in CutP̃ (a
+);
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type III, X = 2α∗
j , where hj = 1 and c−1

j ∈ ((1/4)Z)r \ ((1/2)Z)r; the vector

α∗
j is extrinsically symmetric, and (1/2)πX lies in CutP̃ (a

+);

type IV, X = α∗
j +α∗

k, k �= j, where hj = hk = 1 and c−1
j + c−1

k ∈ ((1/2)Z)r \
Zr; the vector (1/2)πX lies in CutP̃ (a

+).

Conversely, any element X of type I, II, III, or IV satisfies the requirements

given in (3) and (4).

Proof. Any element X ∈ a+ can be expanded in the basis of dual simple

roots, X =
∑

j xjα
∗
j , with nonnegative coefficients; that is, xj ≥ 0. Since

πX ∈ ΓP(P̃ , o) ⊂ ΓZ(P̃ , o), the coefficients xj are, moreover, integers. We

conclude that

xj ∈N= {0,1,2, . . .}.

Since 0 /∈ ΓP(P̃ ), at least one coefficient xj does not vanish. With δ =∑r
j=1 hjαj , (4) reads as follows:

(5)
r∑

j=1

hjxj ≤ 2.

We distinguish several cases.

(1) Exactly one coefficient xj does not vanish.

(a) If hj = 1, there are two cases.

(i) Case xj = 1; then X = α∗
j . Since πX ∈ ΓP(P̃ , o), equation (10)

in the appendix and Lemma 11 show that X is of type I.

(ii) Case xj = 2; then X = 2α∗
j . Since πX ∈ ΓP(P̃ , o), (10) and

Lemma 11 show that X = 2α∗
j is of type III.

(b) If hj = 2, the only possibility is xj = 1, and by (10) and Lemma 11,

X is of type II, because πX ∈ ΓP(P̃ , o).

(2) Exactly two coefficients xj and xk (j �= k) do not vanish. Since hjxj and

hkxk are both greater than or equal to 1 and since hjxj + hkxk ≤ 2, we

get hj = xj = hk = xk = 1, so that X = α∗
j + α∗

k. Equation (10) in the

appendix yields X = α∗
j +α∗

k =
∑r

l=1(s
∗
jl+ s∗kl)α̌l, where s

∗
jk is the entry

of (C−1)T at position (j, k). Lemma 11 shows that X is of type IV.

(3) At least three coefficients xj , xk, and xl do not vanish. Since hjxj , hkxk,

and hlxl are all at least 1, we get hjxj+hkxk+hlxl ≥ 3. This contradicts

equation (5).
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Remark 13. Burns and Nagano discovered necessary conditions (which

also involve roots) for a vector to be the initial direction of a shortest geo-

desic arc joining a base point to some polar (see [Bu3, Lemma 2.1, Propo-

sition 2.2], [N1, Proposition 6.5, p. 72], [N2, p. 52], and [Bu2, Lemma 2.1,

Proposition 2.2]). Their conditions and their proofs have some similarity to

our conditions and our proof of Theorem 12. This is not astonishing. Indeed,

the method used in these proofs shares common aspects with Loos’s method

to prove the classification of inner involutions of a compact simple Lie group

(see [Lo, p. 121]), which may go back to Borel and de Siebenthal [BS]. Notice

that in Theorem 12 only geodesics whose initial direction is of type I are

shortest up to the pole.

Our next goal is to show that the centrioles corresponding to two different

elements X,Y ∈ a+ satisfying the conditions of equations (3) and (4) are

distinct.

We first notice that two different elements X,Y ∈ a+ are not conjugate by

an element of K, because every K-orbit of the linear isotropy representation

intersects a closed Weyl chamber in exactly one point (see [He, Chapter VII,

Proposition 2.2, Theorem 2.22]).

Theorem 12 shows that at a first glance we can distinguish two kinds of

centrioles.

(1) The centrioles of (P̃ , o) that do not intersect the cut locus of (P̃ , o)

are formed by the midpoints of shortest geodesic arcs between o and a

pole of (P̃ , o). We call them s-centrioles or centrioles of s-type (com-

pare also the notion of s-size in [Tn]). S-centrioles are of the form

K.(exp((1/2)πX).o), where X is an element of type I.

(2) The centrioles that are subsets of the cut locus of (P̃ , o) correspond to

elements of type II, III, or IV in Theorem 12.

We see the following directly.

Lemma 14. If X ∈ a+ is an element of type I and if Y ∈ a+ is an element

of type II, III, or IV, then the corresponding centrioles K.(exp((1/2)πX).o)

and K.(exp((1/2)πY ).o) are disjoint.

Lemma 15. If X and Y are two different elements of a+ of type I, then

the corresponding centrioles K.(exp((1/2)πX).o) and K.(exp((1/2)πY ).o)

are disjoint.

Proof. In [MQ1, Lemma 4.4], the authors show that the poles exp(πX).o

and exp(πY ).o of (P̃ , o) are different. The claim follows from Corollary 6.
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Remark 16. Both [MQ1, Lemma 4.4] and our Theorem 12 imply that

the number of poles of (P̃ , o) coincides with the number of different elements

of type I in the closed fundamental Weyl chamber a+. Since the description

of these elements depends only on the root system of P̃ and not on the

multiplicities, the number of poles of (P̃ , o) coincides with the number of

poles of (H̃, e), where H̃ is the connected simply connected compact simple

Lie group whose root system is isomorphic to the one of P̃ . One can verify

that a pole of (H̃, e) is precisely an element of the (group-theoretic) center

of H̃ that squares to the identity.

This implies that if the center of (P̃ , o) contains only one other point

besides o (which happens for the root systems of type br, cr, and e7; see [He,

p. 516, Table IV]), then (P̃ , o) admits precisely one pole. The reason is that

in this case the center of H̃ is isomorphic to Z2. If the root system of (P̃ , o)

is of type e6, then (P̃ , o) does not admit any pole.

We further observe that the center of most simply connected simple real

Lie groups contains either no or just one element of order 2. The only

exception is Spin4n (n≥ 2), whose center is isomorphic to Z2×Z2 and hence

contains three elements of order 2. Thus, poles of (P̃ , o) are unique in most

cases. The only exceptions are the spaces P̃ whose the root system is of type

d2n with n ≥ 2, namely, P̃ = Spin4n and P̃ = G̃2n(R
4n) = SO4n/(SO2n ×

SO2n) with n≥ 2. These spaces, when pointed, admit three poles (see also

[CN2, p. 293] and [N1, Section 2]).

We are left with the question of whether centrioles corresponding to dif-

ferent elements of type II, III, and IV are disjoint. Since these centrioles are

subsets of the cut locus, our main tool is Sakai’s description of the structure

of the tangent cut locus of (P̃ , o). Following Sakai [S1], [S2] we define for

each nonempty subset Ω of Σ = {α1, . . . , αr} the subset SΩ of CutP̃ (a
+) as

the set of all X ∈CutP̃ (a
+) satisfying the two conditions

α(X)> 0 if α ∈Ω,(6)

α(X) = 0 if α ∈Σ \Ω;(7)

that is,

SΩ =
{
X ∈CutP̃ (a

+) : α(X)> 0 ∀α ∈Ω, α(X) = 0 ∀α ∈Σ \Ω
}
.

Lemma 17. We have the following.
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(1) If the coefficient hj of αj in the highest root δ is hj = 1, then S{αj} =
{πα∗

j}.
(2) If the coefficient hj of αj in the highest root δ is hj = 2, then S{αj} =

{(1/2)πα∗
j}.

(3) If j �= k and if the coefficients of αj and αk in the highest root are

hj = hk = 1, then

S{αj ,αk} = {xjα∗
j + xkα

∗
k : xj > 0, xk > 0, xj + xk = π}.

In particular, (1/2)π(α∗
j + α∗

k) ∈ S{αj ,αk}.

Proof. Let X =
∑r

l=1 xlα
∗
l be an element of CutP̃ (a

+); that is, the coef-

ficients xl are all nonnegative. Moreover, δ(X) = π by equation (2).

To show claim (1), assume that X is an element of S{αj}. By equation

(6), we have αj(X) = xj > 0. From equation (7), we obtain xl = αl(X) = 0

if l �= j. Finally, as hj = 1, we get δ(X) = xj = π. Thus, X = πα∗
j .

The proof of claim (2) is similar. Assume that X ∈ S{αj}. By equation

(6), we have xj = αj(X) > 0. Using equation (7), we get xl = αl(X) = 0

if l �= j. Finally, from δ(X) = π we conclude that 2xj = π, because hj = 2.

Therefore, X = (1/2)πα∗
j .

To show claim (3), let X ∈ S{αj ,αk}. Equation (6) yields xj , xk > 0, and by

equation (7), xl = 0 if l �= j, k. With hj = hk = 1, we get δ(X) = xj + xk = π.

Proposition 18 ([S2, Lemmas 4(2), 5(1)]).

(1) For any Ω ⊂ Σ, the set IΩ := {k.(exp(X).o) : k ∈ K,X ∈ SΩ} is an

embedded submanifold of P̃ .

(2) We have IΩ ∩ IΩ′ �= ∅ if and only if Ω=Ω′.

The proof of Proposition 18(1) can be found in [S1, proof of Proposi-

tion 4.10(iv)]. For the proof of Proposition 18(2), we refer to [S1, proof of

Lemma 5.1]. Lemma 17 and Proposition 18 imply the following.

Lemma 19. Let X,Y ∈ a+ be two different elements of type II, III, or

IV. (The types of X and Y need not be different.) Then the corresponding

centrioles K.(exp((1/2)πX).o) and K.(exp((1/2)πY ).o) are disjoint.

We summarize Lemmas 14, 15, and 19 in the following theorem.

Theorem 20. Let X and Y be two different elements of a+ satisfying the

conditions given in equations (3) and (4). Then the centriole that contains

exp((1/2)πX).o is different from the centriole that contains exp((1/2)πY ).o.



CENTRIOLES IN SYMMETRIC SPACES 65

Remark 21. There may well be an isometry g of P̃ fixing o that maps

exp((1/2)πX).o onto exp((1/2)πY ).o, where X and Y are as in the assump-

tions of Theorem 20. But such an isometry g is never a transvection.

Take, for example, P̃ = Spin4n, n≥ 3, endowed with the bi-invariant met-

ric given by the Cartan–Killing form and the identity as a base point. The

nontrivial Dynkin diagram automorphism of d2n induces an isometry g of P̃

that interchanges two extrinsically symmetric elements in the chosen closed

fundamental Weyl chamber, which are not in the same component of the

isotropy orbit.

Remark 22. Theorems 12 and 20 show that the centrioles of a simply

connected pointed symmetric space (P̃ , o) can be read off from its root

system.

Remark 23. In Lemma 1 we have seen that one can associate to a pole

p of (P̃ , o) a double covering πp : P̃ → P̃ /Γp between symmetric spaces.

Any centriole in the centrosome C(o, p) of (P̃ , o) projects to a polar of

(P̃ /Γp, πp(o)). A classification list of polars can be found in [CN1] and [CN2];

a more detailed case-by-case determination of polars is described in [N1],

and further proofs can be found in [N2]. Using the classification of polars,

it is possible to establish case by case a list of all centrioles of (P̃ , o) lying in

C(o, p) by looking at those polars of (P̃ /Γz, πz(o)) that are not projections

of polars of (P̃ , o) (see also [Bu3] or [NS, 1.3b]).

We are not aware that a complete description of all shortest geodesics

to centrioles in an irreducible simply connected pointed symmetric space of

compact type in terms of its root system has been given thus far.

2.5. Examples for each type

In this section we present examples for all four types of elements men-

tioned in Theorem 12.

Example 24 (type I). For any pole p in an irreducible pointed symmetric

space (P,o) of compact type (P need not be simply connected), there exists

at least one centriole that consists of midpoints of shortest geodesic arcs

in P joining o to p. These s-centrioles correspond to extrinsic symmetric

tangent vectors (see [MQ1]). Extrinsic symmetric vectors in a closed Weyl

chamber are precisely the dual vectors of simple roots whose coefficient in

the highest root is 1 (see, e.g., [MQ1, Lemma 2.1] and [KN]). Easy examples

are equatorial hyperspheres in spheres.
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If the simply connected irreducible compact symmetric space P̃ has Dyn-

kin type cr, r ≥ 2, then (P̃ , o) has only one centriole (see [N2, Proposition

2.23(i)]) which is a fortiori an s-centriole. These spaces P̃ include irreducible

Hermitian symmetric spaces of compact type whose noncompact dual spaces

can be realized as tube domains (are of tube type), such as E7/(S
1E6).

Example 25 (type II). The Cartan matrix of the Dynkin diagram

� � � � � �

�α1

α2 α3 α4 α5 α6 α7

2

2 3 4 3 2 1

of type e7 (with each root labeled with its coefficient in the highest root;

compare [He, p. 477]) is

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 −1 0 0 0

0 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

−1 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(compare [He, p. 474]), and its inverse is

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
2 2 4 6 9

2 3 3
2

2 2 3 4 3 2 1

4 3 6 8 6 4 2

6 4 8 12 9 6 3
9
2 3 6 9 15

2 5 5
2

3 2 4 6 5 4 2
3
2 1 2 3 5

2 2 3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By E7 we denote the simply connected and connected compact real Lie

group whose root system is of type e7. Theorems 12 and 20 imply the fol-

lowing.

The simply connected irreducible pointed compact symmetric spaces

(P̃ , o) where the root system of P̃ is of type e7 (which are P̃ = E7 and

P̃ =E7/SU8) have two centrioles:

• an s-centriole defined by α∗
7;
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• a centriole defined by α∗
1, which is of type II.

(See also [NS, proof of Proposition 4.10] and [N2].)

Example 26 (type III). If X = 2α∗
j is of type III, then [MQ1, Proposi-

tion 4.2] shows that the corresponding centriole is a singleton formed by an

element of the center of (P̃ , o). Examples of such center elements occur in

P̃ = SU4n. Let us explain this in the easiest case P̃ = SU4. The root system

of SU4 has type a3, and every simple root has coefficient 1 in the highest

root (see, e.g., [He, p. 477]). Using the enumeration and notation of [He,

Chapter X, Section 3], the Cartan matrix and its inverse are

C =

⎛
⎝ 2 −1 0

−1 2 −1

0 −1 2

⎞
⎠ and C−1 =

⎛
⎝

3
4

1
2

1
4

1
2 1 1

2
1
4

1
2

3
4

⎞
⎠ .

This shows that 2α∗
1 and 2α∗

3 are elements of type III.

Example 27 (type IV). To find an example of elements of type IV, we

consider a root system of type d4, for example, P̃ = Spin8. The correspond-

ing Dynkin diagram labeled with its coefficients in the highest root is (see,

e.g., [He, p. 477])

� ��
�

�
�

�

�

α1 α2

α3

α4

1 2

1

1

The roots α1, α3, and α4 have coefficient 1 in the highest root. The Cartan

matrix C (see, e.g., [He, p. 464]) and its inverse are

C =

⎛
⎜⎜⎝

2 −1 0 0

−1 2 −1 −1

0 −1 2 0

0 −1 0 2

⎞
⎟⎟⎠ and C−1 =

⎛
⎜⎜⎝
1 1 1

2
1
2

1 2 1 1
1
2 1 1 1

2
1
2 1 1

2 1

⎞
⎟⎟⎠ .

This shows that α∗
1 + α∗

3, α
∗
1 + α∗

4, and α∗
3 + α∗

4 are of type IV.

§3. S-centrioles

3.1. S-centrioles as embedded R-spaces

Whenever an irreducible pointed symmetric space (P,o) of compact type,

which is not necessarily simply connected, admits a pole p, then p lies in
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the center of (P,o). The set of all midpoints of shortest geodesics between

o and p decomposes into Ke-orbits (see [MQ1, Theorem 1.2]). Each of these

s-centrioles is an isometric embedding of an extrinsic symmetric space in p

(see [MQ1, Theorem 1.3(a)]) or, in other words, an embedded symmetric

R-space. Thus, we can state the following.

Theorem 28. Every irreducible pointed symmetric space of compact type

that admits a pole contains a centriole that is an embedded symmetric

R-space.

One should compare this result with [NT1, Corollary 5.10, Theorem

5.11(i)] and [NT2, p. 414].

3.2. S-centrioles as maximal totally geodesic submanifolds

We call a proper complete totally geodesic submanifold M ⊂ P,M �= P,

maximal if M is not contained in any other complete totally geodesic sub-

manifold of P except M and P themselves. Surely equatorial hyperspheres

in spheres are maximal totally geodesic submanifolds. On the other hand,

the singleton centrioles from Example 26 show that we cannot expect that

any centriole is a maximal totally geodesic submanifold. But it turns out

that several centrioles, especially all s-centrioles, are maximal totally geo-

desic submanifolds.

Since s-centrioles are isometric embeddings of extrinsically symmetric

s-orbits in p (see [MQ1]), it is necessary to present some facts on these

orbits (see also [F1], [F2], [EH], and [BCO, Chapter 3]).

Let (P,o) be an irreducible pointed symmetric space of compact type,

let g= k⊕ p be the corresponding Cartan decomposition of its transvection

Lie algebra g, and let (σo)∗ be the corresponding involution of g (see the

appendix). Up to a positive factor, the Cartan–Killing form of g induces

the Riemannian metric on p∼= ToP. Let ξ �= 0 be an extrinsically symmetric

element in p, that is, ad(ξ)3 = −ad(ξ); or, equivalently, the spectrum of

ad(ξ) consists only of the eigenvalues ±i and 0. The isotropy orbit M :=

AdG(Ke)ξ ⊂ p of ξ carries the natural transitive isometric Ke-action

Ke ×M →M, (k,m) �→AdG(k)m.

M is known to be an extrinsically symmetric submanifold of p; that is, M

is invariant under the reflections through all its normal spaces.

Since ξ ∈ p, and since Ad(exp(πξ)) = Ad(exp(−πξ)), the involutive auto-

morphism τ := Ad(exp(πξ)) = eπ ad(ξ) commutes with (σo)∗. Thus, we have
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two orthogonal splittings (with respect to the Cartan–Killing form of g)

k= k+ ⊕ k− and p= p+ ⊕ p−,

where τ is the identity on k+⊕ p+, and k−⊕ p− is the (−1)-eigenspace of τ .

The linear space p+ = {X ∈ p : ad(ξ)X = 0} is the normal space of NξM.

Therefore, p− is the tangent space TξM. This shows that τ |p is the extrinsic
symmetry of M at ξ.

We want to show that k is the Lie algebra of infinitesimal transvections

of M. Since P is an irreducible symmetric space, the isotropy action of Ke

on p is irreducible, too. It follows that M is a full submanifold of p, that is,

that M is not contained in any proper affine linear subspace of p. Therefore,

an element k ∈Ke that acts trivially on M acts as the identity on p∼= ToP

and therefore on P, too. This shows that the action of Ke on M is effective.

We therefore consider Ke as a subgroup of the isometry group of M.

The subspace k− ⊂ k is a Lie triple corresponding to the symmetric space

M. It can be identified with TξM by the differential of the principal bundle

Ke →M,k �→ AdG(k)ξ at the identity, which coincides with −ad(ξ). The

transvection Lie algebra h of M is therefore generated by k−; that is, h :=
[k−, k−]⊕ k− ⊆ k.

Let h⊥ be the orthogonal complement (with respect to the Cartan–Killing

form κ of g) of h in k. Then h⊥ is a subspace of the isotropy Lie algebra k+

of (M,ξ) in k. Take Z ∈ h⊥. For all X,Y ∈ k−, we have [X,Y ] ∈ h. Hence,

κ([Z,X], Y ) = κ(Z, [X,Y ]) = 0, and we conclude that ad(Z) vanishes on

k−. Hence, the 1-parameter subgroup t �→ exp(tZ) acts trivially on k− and

therefore also trivially on M. As K acts effectively on M, we conclude that

Z vanishes; that is, h⊥ = {0}, or, in other words, h= k. This shows that k

is the transvection Lie algebra of M.

Lemma 29. The Lie algebra of the transvection group of an s-centriole

in an irreducible pointed symmetric space of compact type (P,o) coincides

with the Lie algebra k of the isotropy group K of (P,o).

Proof. Let Cx(o, p) be an s-centriole. Then there is an extrinsically sym-

metric element ξ in p with the property that the map

M := AdG(Ke)ξ → P, X �→ exp
(π
2
X
)
.o

is a Ke-equivariant isometric embedding whose image is just Cx(o, p) (see

[MQ1, Theorem 1.3(a)]). Since the transvection Lie algebra of M coincides

with k, the same holds true for Cx(o, p).
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Recall that because P is irreducible, k is a maximal proper subalgebra of

g; that is, the only Lie subalgebras of g that contain k are k and g themselves.

Indeed, let u be a Lie subalgebra of g that satisfies k� u� g. Since g=

k ⊕ p is an orthogonal splitting with respect to the Killing form, we can

write u= k⊕m for a nonzero proper linear subspace m= u∩p⊂ p. But then

[k,m] ⊂ m, contradicting the fact that adg(k) is irreducible on p (see [He,

p. 377]).

Theorem 30. An s-centriole in an irreducible pointed symmetric space

of compact type (P,o) is a maximal totally geodesic submanifold.

Proof. Recall that the Lie algebra of infinitesimal transvections of any

symmetric space P is generated by any of its tangent Lie triples; more

precisely, if P is a symmetric space and if p is a subspace of the Lie algebra

of infinitesimal isometries of P that is a tangent Lie triple of P, then the

Lie algebra of the transvection group of P is [p,p]⊕ p.

Let Cx(o, p) be an s-centriole of (P,o), and let c⊂ k be the tangent Lie

triple of Cx(o, p) that is identified with TxCx(o, p). Lemma 29 yields k =

[c, c]⊕ c.

Assume that there exists a complete totally geodesic submanifold M of

P with the property Cx(o, p)�M � P , and let m be the tangent Lie triple

of M that is identified with TxM. Then the transvection Lie algebra of M

is [m,m] ⊕ m. We conclude that k � [m,m] ⊕ m � g. This contradicts the

irreducibility of P.

Remark 31. Our proof of Theorem 30 still works for a lot of other

positive-dimensional centrioles in an irreducible pointed symmetric space

(P,o), but there are some exceptions, too.

Since our proof of Theorem 30 relies on Lemma 29, we look for centrioles

which are not of s-type and whose transvection Lie algebra is k.

Let Cx(o, p) be such a centriole corresponding to some pole p of (P,o).

The projection π : P →Ad(P ) identifies o and p. Moreover, π(Cx(o, p)) is a

polar of Ad(P ) that is locally isometric to Cx(o, p).

If one looks at the classification of polars in irreducible adjoint spaces of

Dynkin type ar,br, cr,dr, and e7 in [CN2, Appendix] and [N1, Sections 3, 4]

one sees that Lemma 29 still holds for other positive-dimensional centrioles

up to the following possible exceptions:

(1) the simply connected space P =E7/(S
1E6);

(2) the simply connected Grassmannian P = G̃r(R
n) of oriented r-dimen-

sional real linear subspaces of Rn with 2r �= n.
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E7/(S
1E6) is a Hermitian symmetric space of Dynkin diagram type c3

and therefore has only one centriole, which is of s-type (see [N2, Proposi-

tion 2.23(i)]).

Case (2) yields examples of positive-dimensional centrioles whose Lie alge-

bra of infinitesimal transvections is not k. We present a first example, but

similar phenomena also occur in some higher Grassmannians.

The simply connected Grassmannian G̃3(R
7) has Dynkin type b3:

� � �=⇒
α1 α2 α3

1 2 2 , C =

⎛
⎝ 2 −1 0

−1 2 −2

0 −1 2

⎞
⎠, C−1 =

⎛
⎝1 1 1

1 2 2
1
2 1 3

2

⎞
⎠ .

(The information for this Dynkin diagram labeled with coefficients in the

highest root and the Cartan matrix above is taken from [He, pp. 463, 477].)

According to Theorem 12, the element X = α∗
3 is of type II and defines a

centriole in G̃3(R
7). Since Lemma 29 is a statement of infinitesimal nature,

we can also look at the polar P+ in the (usual) Grassmannian G3(R
7) that

arises from the projection of the centriole mentioned before.

The standard subspace R3 = spanR(e1, e2, e3) ⊂ R7 serves as our base

point o ∈G3(R
7). This yields

k=

{(
A 0

0 B

)
:A ∈ o3,B ∈ o4

}
∼= o3 × o4;

p=

{(
0 Y

−Y T 0

)
: Y ∈R3×4

}
.

The maximal abelian subspace of p of our choice is

a=

{
A′ =

(
0 A

−AT 0

)
:A= (ajk) ∈R3×4, where ajk = 0 if j �= k

}
.

Following [He, p. 463], we take

α1(A
′) := a11 − a22, α2(A

′) := a22 − a33, and α3(A
′) = a33

as simple roots defining a positive fundamental Weyl chamber in a. We

conclude that

X := α∗
3 =

⎛
⎝ 0 I3 0

−I3 0 0

0 0 0

⎞
⎠ ∈ a,
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and hence

exp(tX) =

⎛
⎝ cos(t)I3 sin(t)I3 0

− sin(t)I3 cos(t)I3 0

0 0 1

⎞
⎠

and

x= exp
(π
2
X
)
.o=

⎛
⎝ 0 I3 0

−I3 0 0

0 0 1

⎞
⎠ . spanR(e1, e2, e3) = spanR(e4, e5, e6).

The centriole in G̃3(R
7) that corresponds to X covers a polar P+ in G3(R

7).

This polar P+ is the orbit of x under the action of the group S(O3 ×O4).

Every point in P+ is a subspace of spanR(e4, e5, e6, e7). Hence, the connected

subgroup of S(O3 ×O4) with Lie algebra o3 × {0} acts trivially on P+.

Appendix. Root systems

The geometry of a simply connected pointed symmetric space of compact

type can be encoded algebraically in a root system. To make this article more

self-contained and to introduce the necessary terminology and notation, we

give a brief overview of the theory of root systems of symmetric spaces

needed in this article. Further details and proofs can be found in many

standard references, such as [He], [Lo], [Bo], and [Se].

Let (P,o) be an irreducible simply connected pointed symmetric space of

compact type; that is, P is compact and not a product of two symmetric

spaces. As in Section 1.2, we denote by G its transvection group, which in

this case is the identity component of its full isometry group, and we denote

by K the G-stabilizer of the base point o. The Lie group G is compact and

semisimple. Thus, the Cartan–Killing form

κ(X,Y ) := trace
(
ad(X) ◦ ad(Y )

)
, X,Y ∈ g

of g is negative definite.

The geodesic symmetry so of P at o defines an involution

σo : G→G, g �→ sogso.

Its derivative at the identity, (σo)∗, is an involution of the Lie algebra g of G.

The fixed space k of (σo)∗ is the Lie algebra of K, and the (−1)-eigenspace of

(σo)∗, denoted by p, can be identified with ToP by restricting the differential
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of the principal bundle G → P,g → g.o at the identity to p. We call p a

tangent Lie triple of P. Since P is irreducible, the scalar product on ToP

coincides up to a negative factor with the restriction of the Cartan–Killing

κ to p.

Every isometry k ∈ K acts on ToP by its derivative at o. The resulting

representation of K is called linear isotropy representation. Under the above

identification of ToP with p, this action becomes the restriction of AdG(k)

on p.

The curvature tensor on ToP ∼= p can be written in terms of the Lie

bracket as R(X,Y )Z =−[[X,Y ],Z] =−ad(ad(X)Y )Z. Since the curvature

tensor is a very important geometric quantity, we take a closer look at the

derivations ad(X) of g with X ∈ p. For this we choose a maximal abelian

subspace a of p. Any two maximal abelian subspaces of p are conjugate

under the isotropy action. Since {ad(A) :A ∈ a} is a system of commuting

skew-symmetric (with respect to the Cartan-Killing form) linear maps, its

elements can be diagonalized simultaneously with purely imaginary eigen-

values. The set

ΩP :=
{
α ∈ a∗ : α �= 0,gα �= {0}

}
,

where a∗ is the set of all real-valued linear forms on a and where gα := {X ∈
g⊗C : ad(A)X = iα(A)X for all A ∈ a}, is called the root system of P , and

its elements are called roots.

The Cartan–Killing form κ induces a scalar product on ΩP as follows.

For each root α, the root vector Hα is defined by α(A) =−κ(Hα,A) for all

A ∈ a. For two roots α and β, we define

〈α,β〉 :=−κ(Hα,Hβ).

Since P is irreducible, the same holds true for ΩP ; that is, no root is per-

pendicular to all other roots.

The kernel of each root is a real hyperplane in a, and each connected

component of

a \
⋃

α∈ΩP

kernel(α)

is a simplicial cone called a (fundamental) Weyl chamber. Any two Weyl

chambers in p are conjugate under the isotropy representation.

The root system ΩP is called reduced if, for any root α ∈ ΩP , the only

multiples of α that are roots are precisely ±α. For our purposes (see Obser-

vation 7), we can restrict our attention to symmetric spaces P whose root
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system is reduced. We now choose a fundamental Weyl chamber a+ and

look at the set Σ = {α1, . . . , αr} formed by those roots αj that satisfy

• αj > 0 on a+;

• kernel(αj) bounds a
+.

The system Σ is a system of simple roots ; that is,

• r is the real dimension of a, called the rank of P ;

• each root α can be written as a linear combination of elements of Σ with

either only nonnegative coefficients (positive roots) or only nonpositive

coefficients (negative roots).

There is a highest root δ in ΩP characterized by the fact that each coefficient

of δ in the basis Σ is not smaller than the corresponding coefficient of any

other root in the basis Σ.

The geometry of Σ can be encoded in the (invertible) Cartan matrix

C = (cjk) ∈Rr×r whose coefficients are

(8) cjk = 2
〈αj , αk〉
|αk|2

.

Finally, we denote by Σ∗ = {α∗
1, . . . , α

∗
r} the dual basis of Σ defined by

αj(α
∗
k) = δjk :=

{
1, j = k,

0, j �= k.

We can construct another root system from ΩP as follows. Given α ∈ΩP ,

we define its inverse root by

(9) α̌ := 2
Hα

|α|2 ,

and the set Ω̌P of all inverse roots is called the inverse root system of P. It

turns out (see, e.g., [Se, p. 32]) that Σ̌ = {α̌1, . . . , α̌r} is a system of simple

roots of Ω̌P and therefore is a basis of a.

We now want to express the vectors of the dual basis Σ∗ in the basis Σ̌ of

a. For this we first set Hαj =
∑r

k=1 sjkα
∗
k and get 〈Hαl

,Hαj 〉 = αl(Hαj ) =∑r
k=1 sjkαl(α

∗
k) = sjl. Since α̌j = 2(Hαj/|αj |2), we obtain α̌j =

∑r
k=1 šjkα

∗
k,

where šjk = 2(〈Hαj ,Hαk
〉/|αj |2) =: ckj is a coefficient of the Cartan matrix

(see equation (8)). We conclude that

(10) α∗
j =

r∑
k=1

s∗jkα̌k,
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where s∗jk is the entry of the matrix (C−1)T at position (j, k). For an explicit

formula for the entries of C−1, we refer the reader to [LT].
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