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ESTIMATES FOR F -JUMPING NUMBERS AND
BOUNDS FOR HARTSHORNE–SPEISER–LYUBEZNIK

NUMBERS

MIRCEA MUSTAŢĂ and WENLIANG ZHANG

Abstract. Given an ideal a on a smooth variety in characteristic zero, we
estimate the F -jumping numbers of the reductions of a to positive characteristic

in terms of the jumping numbers of a and the characteristic. We apply one of

our estimates to bound the Hartshorne–Speiser–Lyubeznik invariant for the
reduction to positive characteristic of a hypersurface singularity.

§1. Introduction

Let a be a nonzero ideal on a smooth, irreducible variety X over an

algebraically closed field k. A fundamental invariant of the singularities

of the subscheme defined by a is the log canonical threshold lct(a). This

can be defined in terms of either divisorial valuations or, when working

over the complex numbers, integrability conditions. On the other hand, by

considering models for X and a over a Z-algebra of finite type A⊂ k, one

can take reductions Xs and as to positive characteristic for all closed points

s ∈ SpecA. Using the Frobenius morphism, Takagi and Watanabe [TW]

defined an analogue of the log canonical threshold in this setting, the F -

pure threshold fpt(as). A problem that has attracted a lot of interest is the

relation between lct(a) and fpt(as).

It follows from the work of Hara and Yoshida [HY] that after possibly

replacing A by a localization Aa, we may assume that lct(a)≥ fpt(as) for all

closed points s ∈ SpecA. Moreover, for every ε > 0, there is an open subset

Uε ⊆ SpecA such that fpt(as)> lct(a)− ε for all s ∈ Uε. One can see that

even in very simple examples, one cannot take Uε to be independent of ε.
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On the other hand, it is expected that there is a Zariski dense set of closed

points s ∈ SpecA such that lct(a) = fpt(as) (see [MS]). As a consequence of

our main results, we give an effective estimate for the difference between the

log canonical threshold of a and the F -pure threshold of as (see Corollaries

3.5 and 4.5 below).

Theorem A. With the above notation, after possibly replacing A by a

localization Aa, the following hold.

(i) There is C > 0 such that lct(a) − fpt(as) ≤ C/(char(k(s))) for every

closed point s ∈ SpecA.

(ii) Assuming that a is locally principal, there is a positive integer N such

that

lct(a)− fpt(as)≥
1

char(k(s))N

for every closed point s ∈ SpecA for which fpt(as) �= lct(a).

In fact, we prove similar estimates for the higher jumping numbers, that

we now describe. Recall that if a and X are as above, then one associates

to a and to every λ ∈R≥0 the multiplier ideal J (aλ) of OX . These ideals

have found a lot of applications in the study of higher-dimensional varieties,

because they measure the singularities of the subscheme defined by a in a

way that is relevant to vanishing theorems (see [Laz, Section 9]). The multi-

plier ideals can be defined using either divisorial valuations or integrability

conditions (when we work over C). All multiplier ideals can be computed

from a log resolution of a, and this description immediately implies that

there is an unbounded sequence of positive rational numbers λ1 < λ2 < · · ·
such that

J (aλ) = J (aλi)� J (aλi+1) for all i≥ 0 and all λ ∈ [λi, λi+1)

(with the convention λ0 = 0). The rational numbers λi, with i≥ 1, are the

jumping numbers of a. The smallest such number λ1 can be described as the

smallest λ such that J (aλ) �=OX ; this is the log canonical threshold lct(a).

Suppose now that we choose models of X and a over A as before, and

we consider the reduction as, where s ∈ SpecA is a closed point. Hara and

Yoshida [HY] introduced the (generalized) test ideals τ(aλs ). While giving an

analogue of multiplier ideals in the positive characteristic setting, they are

defined by very different methods. (The original definition in [HY] involves

a generalization of the theory of tight closure, due to Hochster and Huneke.)
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One can show that in this case, too, there is an unbounded, strictly increas-

ing sequence of positive rational numbers αi = αi(s) for i≥ 0, with α0 = 0,

such that

τ(aλ) = τ(aαi)� τ(aαi+1) for all i≥ 0 and all λ ∈ [αi, αi+1).

The rational numbers αi, with i≥ 1, are the F -jumping numbers of a. The

smallest F -jumping number α1 can be described as the smallest λ such that

τ(aλs ) �=OXs ; this is the F -pure threshold fpt(as). We mention that, unlike

in the case of multiplier ideals, both the rationality of the αi and the fact

that they are unbounded are nontrivial (see [BMS1]).

The comparison between lct(a) and fpt(as) comes from a relation between

the multiplier ideals of a and the test ideals of as, proved in [HY]. This says

that after possibly replacing A by a localization Aa, we may assume that

τ(aλs )⊆J (aλ)s

for all closed points s ∈ SpecA. Furthermore, given any λ ∈ R≥0, there

is an open subset Vλ ⊆ SpecA such that τ(aλs ) = J (aλ)s for every closed

point s ∈ Vλ. This set, in general, depends on λ. On the other hand, it is

expected that there is a Zariski dense set of closed points s ∈ SpecA such

that τ(aλs ) = J (aλ)s for every λ (see [MS]). We can now state our main

results concerning jumping numbers (see Theorem 3.3, Theorem 4.1, and

Corollary 4.4 below).

Theorem B. With the above notation, given λ ∈ Q>0, after possibly

replacing A by a localization Aa, the following hold.

(i) There is C > 0 such that for every closed point s ∈ SpecA with

char(k(s)) = ps, we have

J (aλ−C/ps)s = τ(aλ−C/ps
s ).

In particular, if λ is a jumping number of a and if λ′ is the largest jump-

ing number smaller than λ (with the convention λ′ = 0 if λ = lct(a)),

then we may assume that for every s as above, there is an F -jumping

number μ ∈ (λ′, λ] for as, and for every such μ, we have λ− μ≤C/ps.

(ii) Assuming that a is locally principal, there is a positive integer N such

that for every F -jumping number μ < λ of as, we have λ− μ≥ 1/pNs .
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We deduce assertion (ii) from the description of test ideals in [BMS1]

and an observation from [BMS2]. The more involved assertion (i) follows

using the methods introduced by Hara and Yoshida [HY]. The statements

in Theorem A then follow by applying Theorem B to λ= lct(a).

We apply assertion (ii) in Theorem B to Hartshorne–Speiser–Lyubeznik

(HSL) numbers, as follows. Recall that given a Noetherian local ring (S,n)

of characteristic p > 0, a p-linear structure on an S-module M is an additive

map ϕ : M →M such that ϕ(az) = apϕ(z) for all a ∈ S and z ∈M . If M

is Artinian, then by a theorem due to Hartshorne and Speiser [HS] and

Lyubeznik [Lyu], the nondecreasing sequence of S-submodules

Ni :=
{
z ∈M

∣∣ ϕi(z) = 0
}
⊆M

is eventually stationary. The HSL number of (M,ϕ) is the smallest � such

that N� =N�+j for all j ≥ 1.

We are interested in the case when S =R/(f), for a regular local ring R of

positive characteristic and a nonzero noninvertible f ∈R. Let d= dim(S).

In this case, the injective hull ES of S/n over S can be identified with the

top cohomology module Hd
n (S) and therefore carries a canonical p-linear

structure Θ induced by functoriality from the Frobenius action on S. If

we are in a setting where the test ideals of R are defined (e.g., when R

is essentially of finite type over a perfect field), then the HSL number of

(ES ,Θ) is equal to the smallest positive integer � such that

τ(f1−1/p�) = τ(f1−1/(p�+j))

for every j ≥ 1. If we are in the setting of Theorem B(ii), we obtain the

following (see Theorem 5.9 below).

Theorem C. If X, a, and A are as in Theorem B, with a locally princi-

pal, and if Z is the subscheme defined by a, then there is a positive integer

N such that for every closed point s ∈ SpecA and every point in the fiber

Zs of Z over s, the HSL number of (EOZs,x
,Θ) is bounded above by N .

We also give an example to illustrate that in the above theorem, even

after possibly replacing A by a localization, we cannot take N = 1. (This

gives a negative answer to a question of M. Katzman.)

The paper is structured as follows. In Section 2 we recall the definitions

of multiplier ideals and test ideals, as well as the framework for reducing

from characteristic zero to positive characteristic. In Section 3 we explain



ESTIMATES FOR F -JUMPING NUMBERS AND BOUNDS FOR HSL NUMBERS 137

how to get upper bounds for the jumping numbers of an ideal in positive

characteristic. In particular, we prove Theorems A(ii) and B(ii). In Section 4

we describe how to use the methods from [HY] to get lower bounds for

the F -jumping numbers of the reductions to positive characteristic of an

ideal defined in characteristic zero. This gives Theorems A(i) and B(i). In

Section 5 we discuss the HSL numbers and their connection with F -jumping

numbers. The last section contains some examples.

§2. Review of multiplier ideals and test ideals

In this section we recall the definitions of multiplier ideals and test ideals,

and we review the results connecting these ideals via reduction mod p. For

simplicity, we consider only the case of smooth ambient algebraic varieties.†

We start by discussing the multiplier ideals in characteristic zero.

2.1. Multiplier ideals

LetX be a smooth scheme of finite type over an algebraically closed field k

of characteristic zero. Suppose that a is an ideal‡ of OX which is everywhere

nonzero. (In other words, its restriction to every connected component of

X is nonzero.) A log resolution of a is a projective birational morphism

π : Y →X , with Y smooth, such that a · OY is the ideal defining a divisor

D on Y and such that D+KY/X is a simple normal crossing divisor. Here

KY/X is the relative canonical divisor, an effective divisor supported on the

exceptional locus of π, such that OY (KY/X)	 ωY ⊗π∗(ωX)−1. (Recall that

for a smooth scheme W over k, one denotes by ωW the line bundle of top

differential forms on W .)

Given such a log resolution, we define for every λ ∈R≥0 the multiplier

ideal of a of exponent λ by

J (aλ) := π∗OY

(
KY/X − �λD�

)
.

Here, for a divisorwith real coefficientsF =
∑

iαiFi, we put �F � :=
∑

i�αi�Fi,

where �u� denotes the largest integer at most u. Note that since KY/X is

effective and supported on the exceptional locus, we have π∗OY (KY/X) =

OX ; hence, J (aλ) is indeed an ideal of OX .

We now review some basic properties of multiplier ideals. For proofs of

these facts and for a detailed introduction to this topic, see [Laz, Section 9].

†While the results in Section 4 work more generally, for the upper bounds in Section 3
we will need to restrict anyway to smooth ambient varieties.

‡All ideal sheaves are assumed to be coherent.
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One can show that the definition is independent of the choice of log reso-

lution. A few things are straightforward from the definition. If λ < μ, then

J (aμ) ⊆ J (aλ). Furthermore, for every λ ∈R≥0, there is ε > 0 such that

J (aλ) = J (aμ) for every μ with λ ≤ μ ≤ λ + ε. One says that λ > 0 is a

jumping number of a if J (aλ) is strictly contained in J (aμ) for every μ < λ.

It follows from the definition that if D =
∑r

i=1 aiDi, then for every jump-

ing number λ of a, there is i such that λai is an integer. In particular, we see

that the set of jumping numbers of a is a discrete set of rational numbers.

As we have mentioned, J (a0) =OX . The smallest jumping number is thus

the smallest λ such that J (aλ) �= OX . This is the log canonical threshold

lct(a) of a.

A result due to Ein and Lazarsfeld allows us to reduce studying arbitrary

multiplier ideals to those for which the exponent is less than the dimension

of X . This is Skoda’s theorem (see [Laz, Section 11.1.A]), saying that if a

is locally generated by r elements, then

J (aλ) = a · J (aλ−1) for λ≥ r.

In particular, one can take r = dim(X).

2.2. Test ideals

The (generalized) test ideals have been introduced by Hara and Yoshida

[HY] using a generalization of tight closure theory. Since we will work only

on regular schemes, it is more convenient to use the alternative definition

from [BMS1], that we now present. For proofs and more details, we refer to

[BMS1].

Let X be a regular scheme of positive characteristic p. We denote by

F : X →X the absolute Frobenius morphism, which is the identity on the

topological space and is given by the pth power map on the sections of OX .

We assume that X is F -finite, that is, that F is a finite map. (Note that

F is also flat since R is regular.) This is satisfied, for example, if X is a

scheme of finite type over a perfect field, a local ring of such a scheme, or

the completion of such a ring.

Suppose first, for simplicity, that X = SpecR, where R is a regular F -

finite domain. For an ideal J in R and for e≥ 1, one denotes by J [pe] the

ideal (hp
e | h ∈ J). Using the fact that F is finite and flat, one shows that,

given any ideal b in R, there is a unique smallest ideal J such that b⊆ J [pe].

We denote this J by b[1/p
e].
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Suppose now that a is a nonzero ideal in R and that λ ∈R≥0. It is not

hard to see that for every e≥ 1, we have an inclusion

(a�λp
e�)[1/p

e] ⊆ (a�λp
e+1�)[1/p

e+1].

It follows from the Noetherian property that for e 0, the ideal (a�λp
e�)[1/p

e]

is independent of e. This is the (generalized) test ideal τ(aλ) of a of expo-

nent λ. One can show that the construction of test ideals commutes with

localization and completion. In particular, we can extend the above defi-

nition to the general case when X is a regular F -finite scheme of positive

characteristic and a is an everywhere nonzero ideal; the test ideals τ(aλ) are

coherent ideals of OX .

The formal properties that we discussed for multiplier ideals also hold in

this setting. If λ < μ, then τ(aμ) ⊆ τ(aλ). With a little effort (see [BMS1,

Proposition 2.14]), one shows that for every λ ∈R≥0 there is ε > 0 such that

τ(aλ) = τ(aμ) for every μ with λ≤ μ≤ λ+ ε. A positive λ is an F -jumping

number of a if τ(aλ) �= τ(aμ) for every μ < λ. The set of F -jumping numbers

of a is known to be a discrete set of rational numbers when X is essentially

of finite type over a field (see [BMS1, Theorem 3.1]) or when a is locally

principal (see [BMS2, Theorem 1.1]). Note, however, that this assertion

is considerably more subtle than the corresponding one in characteristic

zero. One property that is special to characteristic p says that if λ is an

F -jumping number, then pλ is an F -jumping number, too. It follows from

the definition that τ(a0) = OX ; hence, the first F -jumping number is the

smallest λ such that τ(aλ) �=OX . This is the F -pure threshold fpt(a). We

note that if X = U1 ∪ · · · ∪ Um is an open cover, then λ is an F -jumping

number of a if and only if it is a jumping number of one of the restrictions

a|Ui .

There is a version of Skoda’s theorem also in this setting, and this is

in fact more elementary than in the case of multiplier ideals. (For a proof

involving the above definition, see [BMS1, Proposition 2.25].) This says that

if a is locally generated by r elements, then

τ(aλ) = a · τ(aλ−1) for λ≥ r.

In particular, one can always take r = dim(X).

We end by mentioning a formula for computing ideals of the form b[1/p
e],

which we will use to compute examples in Section 6. Suppose that X =

SpecR, where R is a regular domain of characteristic p > 0, such that R
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has a basis over Rpe given by u1, . . . , ur. If the ideal b in R is generated by

h1, . . . , hm, and if we write hi =
∑r

j=1 a
pe

i,juj , then

(1) b[1/p
e] = (ai,j | 1≤ i≤m,1≤ j ≤ r).

(For a proof, see [BMS1, Proposition 2.5].) We will apply this when R =

k[[x1, . . . , xn]], with k a perfect field, when we may consider the basis given

by all monomials xi11 · · ·xinn with 0≤ i1, . . . , in ≤ pe − 1.

2.3. Relating multiplier ideals and test ideals via

reduction mod p

We start by briefly discussing the framework for reduction to positive

characteristic. (For details, we refer to [MS, Section 2.2].) Suppose that Y is

a scheme of finite type over an algebraically closed field k of characteristic

zero. We can find a finitely generated Z-subalgebra A ⊆ k, a scheme YA
of finite type over A (a model for Y ), and we can find an isomorphism

ϕA : YA ×SpecA Speck→ Y . If we choose a different B ⊆ k, a corresponding

scheme YB over B, and an isomorphism ϕB : YB ×SpecB Speck → Y , then

we can find a finitely generated Z-subalgebra C ⊆ k containing both A and

B and an isomorphism ψ : YA ×SpecA SpecC → YB ×SpecB SpecC such that

we have ψ×SpecC Speck = ϕ−1
B ◦ϕA.

Given A and YA as above, we consider closed points s ∈ SpecA. Note that

the residue field k(s) of s is finite. We denote by Ys the fiber of YA over s.

We always choose A and YA as above, but all properties that we will

discuss refer to closed points in some open subset of SpecA; in particu-

lar, they are independent of the choice of A and YA. In light of this, we

allow replacing A by some localization Aa, with a ∈A nonzero, and YA by

YA ×SpecA SpecAa. For example, after possibly replacing A by Aa, we may

assume that YA is flat over A. Furthermore, if Y is smooth (and irreducible),

then we may assume that for every closed point s ∈ SpecA, the fiber Ys is

smooth (and irreducible, of the same dimension as Y ).

Given a coherent sheaf F on Y , we may choose A and a model YA such

that there is a sheaf FA on YA (a model for F) whose pullback to Y is

isomorphic to F . In this case, we denote by Fs the restriction of FA to Ys.

Furthermore, given a morphism of coherent sheaves α : F → G, we may

choose models YA, FA, and GA such that there is a morphism of sheaves

αA : FA →GA inducing α. In particular, we may consider αs : Fs →Gs for

every closed point s ∈ SpecA. Given an exact sequence of sheaves F ′ →
F →F ′′, we may assume, after replacing A by a suitable localization Aa,
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that the sequences F ′
s →Fs →F ′′

s are exact for all closed points s ∈ SpecA.

In particular, if F is an ideal in OY , then we may assume that each Fs is

an ideal in OYs .

Given a morphism of schemes π : Y →X of finite type over k, we may

chooseA and the models YA andXA such that there is a morphism πA : YA →
XA of schemes over A inducing π. In this case, we obtain morphisms

πs : Ys → Xs for all closed points s ∈ SpecA. Furthermore, if π is projec-

tive (or birational, finite, open, or closed immersion), we may assume that

each πs has the same property. Given, in addition, a coherent sheaf F on Y ,

we may assume, after restricting to a suitable open subset of SpecA, that

for all s we have canonical isomorphisms

(2) Riπ∗(F)s 	Ri(πs)∗(Fs).

We now describe the setting that we will be interested in. Suppose that

a is an everywhere nonzero ideal on the smooth scheme X over k. We fix a

log resolution π : Y →X of a, and we write a · OY =OY (−D) and

D =
N∑
i=1

aiEi, KY/X =
N∑
i=1

kiEi.

We choose A and models πA, XA, YA, DA, (Ei)A, and aA such that for every

closed point s ∈ SpecA, the induced map πs : Ys →Xs is a log resolution of

as, and we have as · OYs =OYs(−Ds) and

Ds =
N∑
i=1

ai(Ei)s, KYs/Xs
=

N∑
i=1

ki(Ei)s.

Moreover, given λ ∈R≥0, we may consider J (aλ)s, and it follows from (2)

that we may assume that

(3) J (aλ)s = (πs)∗OYs

(
KYs/Xs

− �λDs�
)
.

If we consider all λ in some bounded interval, we have the above formula

for all such λ, because we need only to consider finitely many ideals. (It

is enough to consider only those λ such that λai is an integer for some

i.) If we want to consider all multiplier ideals J (aλ) and their reductions

to prime characteristic, we simply decree, motivated by Skoda’s theorem,

that J (aλ)s = as · J (aλ−1)s for λ ≥ dim(Xs); this reduces us to having to
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define only J (aλ)s for λ < dim(X). In what follows, we refer to all the above

choices simply as a model for the multiplier ideals of a.

We can now formulate the two main results due to Hara and Yoshida

concerning the connection between the reductions of multiplier ideals and

the corresponding test ideals (see [HY, Theorem 3.4]). We assume that X

is a smooth scheme over k and that a is an everywhere nonzero ideal on

X ; furthermore, we choose models for the multiplier ideals of a over some

finitely generated Z-algebra A⊂ k.

Theorem 2.1. With the above notation, after possibly replacing A by a

localization Aa, we have

τ(aλs )⊆J (aλ)s

for all closed points s ∈ SpecA and all λ ∈R≥0.

Note that even if we start with models for X and a, in order to apply

Theorem 2.1, we might need to change A. Indeed, we need to guarantee that

some log resolution of a is defined over A and that (3) holds for λ < dim(X).

Theorem 2.2. With the above notation, given any λ ∈R≥0, there is an

open subset Vλ ⊆ SpecA such that

τ(aλs ) = J (aλ)s

for all closed points s ∈ Vλ.

It is definitely not the case that Vλ can be taken independently of λ.

However, it is expected that there is a dense set of closed points in s ∈ SpecA

such that the equality in Theorem 2.2 holds for all λ ∈R≥0 (see [MS]).

The proof of Theorem 2.1 is elementary. For a proof in our simplified

setting, and with our definitions, see [BHMM, Proposition 4.3]. The proof

of Theorem 2.2 is deeper and makes use of the action of the Frobenius on

the de Rham complex. We will make use of the main ingredient in this proof

in Section 4, in order to give lower bounds for the F -jumping numbers of

the reductions of a to positive characteristic.

In particular, Theorems 2.1 and 2.2 give the following relation between

the log canonical threshold of a and the F -pure thresholds of the reductions

as to positive characteristic. If A is chosen as in Theorem 2.2, then the

theorem implies that lct(a) ≥ fpt(as) for all closed points s ∈ SpecA. On

the other hand, Theorem 2.2 implies that for every ε > 0, there is an open
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subset Uε ⊆ SpecA such that lct(a) − fpt(as) < ε for every closed point

s ∈ Uε.

The above results raise the following problem that we will consider in

Sections 3 and 4. Suppose that λ is a jumping number of a, and denote by

λ′ the largest jumping number < λ. (When λ= lct(a), we put λ′ = 0.) After

replacing A by some localization Aa, we may assume by Theorem 2.2 that

for every closed point s ∈ SpecA we have

J (aλ
′
)s = τ(aλ

′
s ) and J (aλ)s = τ(aλs ).

It follows that in this case there is an F -jumping number of as in the inter-

val (λ′, λ]. The following problem addresses the question of how close this

jumping number is from λ.

Problem 2.3. With the above notation, show that there are C ∈R>0

and N ∈ Z>0 such that after possibly replacing A by a localization, for

every closed point in SpecA and every F -jumping number μ of as in the

open interval (λ′, λ), we have

(4)
1

char(k(s))N
≤ λ− μ≤ C

char(k(s))
.

In Section 3 we prove the existence of N in Problem 2.3 when a is a locally

principal ideal, while in Section 4 we show how to find C for arbitrary a.

§3. Upper bounds for F -jumping numbers

The key ingredient for giving an upper bound for F -jumping numbers is

provided by the following result from [BMS2]. We include the proof for the

sake of completeness.

Lemma 3.1 ([BMS2, Proposition 4.3]). Let X be a regular F -finite scheme

of characteristic p > 0, and let a be an everywhere nonzero locally principal

ideal in OX . Given λ= r/(pe − 1) for positive integers r and e, let us put

λm = (1− (1/pme))λ for m ≥ 0. If there is an F -jumping number of a in

(λm, λm+1] with m ≥ 1, then there is also an F -jumping number of a in

(λm−1, λm]. In particular, in this case there are at least m+ 1 F -jumping

numbers of a in (0, λ).

Proof. Note that Skoda’s theorem for a locally principal ideal implies that

μ > 1 is an F -jumping number if and only if μ− 1 is an F -jumping number.

Furthermore, as we have mentioned, if μ is an F -jumping number for a, then
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also pμ is an F -jumping number. It is easy to see that if μ ∈ (λm, λm+1],

then peμ− r ∈ (λm−1, λm], and as we have seen, peμ− r is an F -jumping

number of a.

Corollary 3.2. With X and a as in Lemma 3.1, if there are at most

d F -jumping numbers of a that are less than λ= r/(pe − 1), then there are

no F -jumping numbers of a in the open interval (λd, λ).

We can now state and prove the main result of this section. Suppose that

A is a finitely generated Z-algebra and that X is a smooth scheme of finite

type over SpecA, of relative dimension n. Let a be a locally principal ideal

on X , whose restriction to every fiber is everywhere nonzero.

Theorem 3.3. With the above notation, if λ ∈Q>0, then there are posi-

tive integers N and p0 = p0(λ) such that, for every closed point s ∈ SpecA

with char(k(s))> p0 and every F -jumping number μ of as that is less than λ,

we have

λ− μ≥ 1

char(k(s))N
.

In particular, this holds for every closed point s ∈ SpecAa, for some nonzero

a ∈A.

Proof. After taking a suitable affine open cover of X , we may assume

that X = Spec(R) is affine and that a= (f) is a principal ideal. Let us write

λ= a/b, with a, b ∈Z>0. We first require that p0 is such that all divisors of

b are at most p0.

Claim. There is a positive integer d such that for every closed point

s ∈ SpecA, there are at most d F -jumping numbers of fs that are less than λ.

Indeed, since X is of finite type over A, we can write R	A[x1, . . . , xm]/J

for some ideal J , and let g ∈ A[x1, . . . , xm] be a polynomial whose class

corresponds to f . It follows from [BMS1, Proposition 3.6] that τ(fμ
s ) =

τ((Js + (gs))
μ+m−n) ·Rs. On the other hand, let M be such that J + (g)⊆

A[x1, . . . , xm] is generated in degree at most M . It follows from [BMS1,

Proposition 3.2] that τ((Js + (gs))
μ+m−n) is generated in degree at most

�M(μ+m− n)� for every μ. In particular, the number of F -jumping num-

bers of fs that are less than λ is bounded above by the number of F -jumping

numbers of Js+(gs) that are less than λ+m−n, which in turn is bounded

above by the dimension of the vector space of polynomials in k(s)[x1, . . . , xm]

of degree at most �M(λ+m−n)�. Note that this dimension is independent

of the closed point s ∈ SpecA; hence, we obtain d as in the claim.
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Let us fix d as in the claim, and let s ∈ SpecA be a closed point. Let

p= char(k(s)), and let e≥ 1 be the order of p in the group of units of Z/bZ.

(Recall that p does not divide b.) In this case we can write λ= r/(pe − 1),

and it follows from Corollary 3.2 that if μ < λ is an F -jumping number of

as, then

λ− μ≥ λ− λd =
λ

pde
.

Note that e≤ b, and if we require also that p0 ≥ λ−1, we see that N = db+1

satisfies the first assertion in the theorem.

The second assertion is clear, too: if we consider u : SpecA→ SpecZ, it

is enough to take a nonzero a ∈ A such that u(SpecAa) does not contain

any prime pZ, with 0< p≤ p0.

Corollary 3.4. Given λ ∈Q>0 and n,M ∈Z>0, there are positive inte-

gers N =N(n,M,λ) and p0 = p0(λ) such that for every F -finite field k of

characteristic p≥ p0 and every f ∈ k[x1, . . . , xn] with deg(f)≤M , we have

λ− μ≥ 1

pN

for every F -jumping number μ < λ of f .

Proof. We could either apply Theorem 3.3 for the universal polynomial of

degree at most M in n variables (with SpecA being the parameter space for

such polynomials), or simply apply the argument in the proof of the theorem,

noting that in this case we obtain directly the bound for the number of F -

jumping numbers of f that are less than λ, in terms of n, M , and λ.

Suppose now that X is a smooth scheme over an algebraically closed field

k and that a is an everywhere nonzero, locally principal ideal on X . Let us

consider models for X and a over a finitely generated Z-algebra A⊂ k. By

applying Theorem 3.3 to λ= lct(a), we obtain the following.

Corollary 3.5. With the above notation, there is N such that, after

possibly replacing A by a localization Aa, we would then have that

lct(a) − fpt(as) ≥ 1/(char(k(s))N ) for every closed point s ∈ SpecA such

that lct(a) �= fpt(as).

§4. Lower bounds for F -jumping numbers

In this section we assume that X is a smooth scheme of finite type over an

algebraically closed field k of characteristic zero. We consider an everywhere

nonzero ideal sheaf a in OX , and we fix a model over a finitely generated
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Z-algebra A ⊂ k for X , a, and the multiplier ideals of a. Our goal in this

section is to prove the following theorem.

Theorem 4.1. With the above notation, for every λ > 0 there is C ∈R>0

such that after possibly replacing A by a localization Aa, for every closed

point s ∈ SpecA we have

(5) J (aλ−C/ps)s = τ(aλ−C/ps
s ),

where ps = char(k(s)).

Remark 4.2. Note the interesting inclusion in (5) of “⊆”, since the

reverse one can be guaranteed using Theorem 2.1.

Remark 4.3. With the notation in the above theorem, we may assume

that for every closed point s ∈ SpecA, we have λ− (C/ps) ≥ λ′, where λ′

is the largest jumping number of a that is less than λ (with the convention

that λ′ = 0 if there is no such jumping number). In this case, the ideal on

the left-hand side of (5) is J (aλ
′
)s.

Corollary 4.4. With the notation in Remark 4.3, if λ is a jumping

number of a, then there is C > 0 such that after possibly replacing A by a

localization Aa, the following holds: for every closed point s ∈ SpecA, there

is an F -jumping number μ ∈ (λ′, λ] for as, and for every such μ we have

λ− μ≤ C

ps
.

Proof. It follows from Theorem 2.1 that we may assume that τ(aαs ) ⊆
J (aα)s for every α ∈R>0. Suppose now that the conclusion of Theorem 4.1

holds. In this case, for every closed point s ∈ SpecA and every α with

λ′ ≤ α≤ λ− (C/ps), we have

(6) J (aλ−C/ps) = τ(aλ−C/ps
s )⊆ τ(aαs )⊆ τ(aλ

′
s )⊆J (aλ

′
)s.

Since J (aλ−(C/ps)) = J (aλ
′
)s, we conclude that all inclusions in (6) are

equalities. In particular, there is no F -jumping number for as in the internal

(λ′, λ− (C/ps)].

On the other hand, since λ is a jumping number for a, we have

τ(aλs )⊆J (aλ)s � J (aλ−C/ps)s = τ(aλ−C/ps
s ).

Therefore, there is an F -jumping number of as in the interval (λ−(C/ps), λ],

and we thus obtain both assertions in the corollary.
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Corollary 4.5. With the notation in Theorem 4.1, there is C > 0 such

that after possibly replacing A by a localization Aa, we have lct(a)−fpt(as)<

(C/ps) for every closed point s ∈ SpecA.

Proof. Applying Theorem 4.1 with λ= lct(a), we see that we may assume

that τ(a
λ−(C/ps)
s ) =OXs ; hence, fpt(as)> λ− (C/ps).

Remark 4.6. The assertion in Theorem 4.1 is interesting only when λ

is a jumping number of a. Indeed, otherwise we can find ε > 0 such that

J (aλ) = J (aλ−ε). By applying Theorem 2.2, we see that we may assume

that for all closed points s ∈ SpecA we have

τ(aλ−ε
s ) = J (aλ−ε)s = J (aλ)s = τ(aλs ).

If we consider a localization Aa of A such that for every closed point

s ∈ SpecA we have char(k(s)) > 1/ε, it is clear that the conclusion of the

theorem holds by taking C = 1.

Remark 4.7. In order to prove Theorem 4.1, we may assume that X is

affine and irreducible and that a is a principal ideal. Indeed, after taking an

open affine cover, we reduce to the case when X is affine and irreducible.

Consider now generators g1, . . . , gm for the ideal a. If M > λ is an integer

and if h1, . . . , hM are general linear combinations of the gi with coefficients

in k, then

J (aα) = J (hα/M )

for every α <M , where h= h1 · · ·hM (see [Laz, Proposition 9.2.28]). If the

theorem holds for h and λ/M , then we can find C ′ > 0 such that after

replacing A by a localization,

J (h(λ/M)−(C′/ps))s = τ(h(λ/M)−(C′/ps)
s )

for every closed point s ∈ SpecA. Using the fact that h ∈ aM , we now obtain

J (aλ−C′M/ps)s = J (h(λ/M)−(C′/ps))s = τ(h(λ/M)−(C′/ps)
s )⊆ τ(aλ−C′M/ps

s );

hence, we obtain the inclusion “⊆” in Theorem 4.1 if we take C = C ′M ,

while the reverse inclusion is trivial (see Remark 4.2).

Before giving the proof of Theorem 4.1, we recall the criterion from [HY]

that guarantees the equality of multiplier ideals and test ideals in a fixed

positive characteristic. This is the heart of the proof of Theorem 2.2. We

start by describing the setting.
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Suppose that X ′ is a smooth, irreducible, n-dimensional affine scheme

over a perfect field L of characteristic p > 0. We assume that we have

a log resolution π′ : Y ′ → X ′ of a nonzero principal ideal a′ on X ′. Let

Z ′ be the divisor on Y ′ such that a′ · OY ′ = OY ′(−Z ′). By assumption,

there is a simple normal crossing divisor E′ = E′
1 + · · · + E′

N such that

both KY ′/X′ and Z ′ are supported on E′. Under these assumptions, we put

J (a′α) = π∗OY ′(KY ′/X′ − �αZ ′�). It is shown in [HY] that in this case we

have τ(a′α) ⊆ J (a′α) for every α. (This is the result that implies Theo-

rem 2.1.)

Suppose now that α ∈R≥0 is fixed and that we choose μ > α such that

J (a′α) = J (a′μ). (Note that if Z ′ =
∑

i aiZ
′
i, then it is enough to take μ <

(�αai�+ 1− αai)/ai for all i with ai > 0.) Suppose also that we have a

Q-divisor D′ on Y ′ supported on E′ such that D′ is ample over X ′ and
−D′ is effective. We put G′ = μ(D′ − Z ′) and assume, in addition, that

�G′�= �−μZ ′�. The following is the main criterion for the equality of τ(a′α)
and J (a′α). We denote by Ωi

Y ′(logE′) the sheaf of i-differential forms on Y ′

with log poles along E′. If F ′ =
∑N

i=1αiE
′
i is a divisor with real coefficients,

then we put �F � =
∑N

i=1�αi�E′
i, where �u� denotes the smallest integer

at least u.

Proposition 4.8. With the above notation, if the conditions

(A) H i(Y ′,Ωn−i
Y ′ (logE′)(−E′ + �p�G′�)) = 0 for all i≥ 1 and �≥ 1;

(B) H i+1(Y ′,Ωn−i
Y ′ (logE′)(−E′ + �p�G′�)) = 0 for all i≥ 1 and �≥ 0

hold, then τ(a′α) = J (a′α).

We refer to [HY] for a proof of this result. For a somewhat simplified ver-

sion of the argument, using our definition of test ideals, see the presentation

in [BHMM, Section 4]. We can now prove the main result of this section.

Proof of Theorem 4.1. It is easy to see that the assertion in the theorem

is independent of the models we have chosen. The point is that if A ⊂
B is an inclusion of finitely generated Z-algebras, and s ∈ SpecA is the

image of the closed point t ∈ SpecB, then we have a finite field extension

k(s) ⊆ k(t); if we have models of X and a over both A and B such that

XB 	XA ×SpecA SpecB, then it follows from the description of test ideals

in [BMS1, Proposition 2.5] that τ(aμt ) = τ(aμs )⊗k(s) k(t).

In particular, we may change the log resolution, and we may assume that

all divisors that we define in characteristic zero have models over A. We
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also note that by Remark 4.6, we may assume that λ is a jumping number

of a; hence, it is rational. Finally, by Remark 4.7, we may and will assume

that X is affine and irreducible and that a is principal.

By assumption, we have a log resolution π : Y →X of a that admits a

model over A such that construction of multiplier ideals commutes with

taking the fiber over the closed points in SpecA. Since we may choose a

convenient log resolution, we may assume that π is an isomorphism over

X � V (a). Let Z be the divisor on Y such that a · OY = OY (−Z). By

assumption, Z is supported on a simple normal crossing divisor E = E1 +

· · ·+EN on Y such that the support of KY/X is also contained in E.

We fix an integral divisor H on Y that is ample over X and such that −H

is effective and supported on E. (For example, if we express Y as the blowup

of X along some closed subscheme T , then we may choose H =−π−1(T ).)

Let us write

Z =
N∑
i=1

aiEi and −H =
N∑
i=1

hiEi,

so by assumption, ai > 0 and hi ≥ 0 for all i.

Lemma 4.9. With the above notation, if F is a coherent sheaf on Y , there

is m0 such that after possibly replacing A by a localization Aa, we have

H i
(
Ys,Fs ⊗OYs(mHs)

)
= 0

for all i≥ 1, all m≥m0, and all closed points s ∈ SpecA.

Proof. We may assume that OY (H) is very ample over X ; indeed, there is

d≥ 1 such that OY (dH) is very ample over X , and it is enough to prove the

assertion in the lemma for OY (dH) and each of the sheaves F ⊗OY (jH),

with 0≤ j ≤ d− 1. We now assume that OY (H) is very ample over X . By

asymptotic Serre vanishing, there is m0 such that H i(Y,F ⊗OY (mH)) = 0

for every i ≥ 1 and every m ≥ m0. After possibly replacing A by some

localization Aa, we may assume that H i(Ys,Fs ⊗OYs(mHs)) = 0 for every

i≥ 1, every m with m0 ≤m≤m0+n−1, and every closed point s ∈ SpecA.

For every such s, the sheaf Fs on Ys is (m0 + n)-regular with respect to

OYs(Hs) in the sense of Castelnuovo-Mumford regularity. (We refer to [Laz,

Section 1.8] for the basic facts on Castelnuovo–Mumford regularity.) In this

case, Fs is m-regular for every m≥m0+n, and we obtain all the vanishings

in the statement of the lemma by the definition of Castelnuovo–Mumford

regularity.
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Corollary 4.10. With the above notation, if F is a coherent sheaf on

Y , if d is a positive integer, and if γ is a positive rational number, then

there is m1 such that

H i
(
Ys,Fs

(
�mγHs − qZs�

))
= 0

for all m ≥ m1/γ, all q ∈ Q with qd ∈ Z, all i ≥ 1, and all closed points

s ∈ SpecA.

Proof. By assumption, bothmγ and q have bounded denominators; hence,

mγH − qZ can be written as �mγ�H − �q�Z + T , where, when we vary

m and q, the Q-divisor T can take only finitely many values T1, . . . , Tr.

Furthermore, note that since a is assumed to be principal, Z is the pullback

of a divisor from X . Since X is affine, it follows that H i(Ys,Fs(�mγHs −
qZs�)) = 0 if H i(Ys,Fs(�T �+ �mγ�H)) = 0. Hence, we obtain our assertion

by applying Lemma 4.9 to each of the sheaves F(�Ti�), for 1≤ i≤ r.

We now return to the proof of Theorem 4.1. We first apply Corollary 4.10

to choose m1 such that after possibly replacing A by a localization, we have

(7) H i
(
Ys,Ω

j
Ys
(logEs)

(
−Es + �mγHs − qZs�

))
= 0

for all closed points s ∈ SpecA, all i≥ 1, j ≥ 0, m≥m1/γ, and q ∈Q with

qd ∈Z, where γ = 1/3 ·
∏

hi>0(1/hi) and d ∈ 2Z is such that λd ∈Z>0.

Let C ∈Z>0 be such that (C/3) ·min{(ai/hi) | hi > 0} ≥m1. After possi-

bly replacing A by a localization Aa, we may assume that for every closed

point s ∈ SpecA, the characteristic ps of k(s) is large enough. In particular,

we may assume that J (aλ−(C/ps)) = J (aλ−(C/2ps)) and that

(8)
⌊(

λ− C

2ps

)
ai

⌋
= �λai� − 1 for all i with 1≤ i≤N.

Suppose now that s ∈ SpecA is a closed point. We use primes to denote

the corresponding varieties and divisors obtained after restricting the mod-

els over Speck(s), and we write p= ps. In order to show that the condition

in the theorem is satisfied, it is enough to show that we may apply Propo-

sition 4.8 to α= λ− (C/p), μ= λ− (C/2p), and G′ = μ(ηH ′ − Z ′), where
η ∈Q>0 is given by

(9) η =
C

3pμ
min

{ai
hi

∣∣∣ hi > 0
}
.
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In order to show that �G′�= �−μZ ′�, it is enough to show that

(10) −μηhi − μai > �−μai� − 1 for all i≤N.

This is clear if hi = 0; hence, let us assume that hi > 0. Using (8) and (9),

we obtain

μηhi ≤
Cai
3p

<
Cai
2p

≤ �λai� −
(
λ− C

2p

)
ai = �μai� − μai + 1,

which gives (10).

Arguing as in the proof of [HY, Theorem 3.4], it is easy to guarantee the

vanishing in Proposition 4.8(B) for �= 0. Indeed, after possibly replacing A

by a localization, we may assume that

dimk(s)H
i+1

(
Y ′,Ωn−i

Y ′ (logE′)
(
−E′ + �G′�

))
is independent of the closed point s ∈ SpecA. On the other hand, there is

such a closed point t ∈ SpecA with the properties that char(k(t))> dim(X)

and that Yt and Et admit liftings to the second ring of Witt vectors W2(k(t))

of k(t). In this case, a version of the Akizuki–Nakano vanishing theorem (see

[Hara, Corollary 3.8]) gives

H i+1
(
Yt,Ω

n−i
Yt

(logEt)
(
−Et + �Gt�

))
= 0,

where G= (λ− (C/2p))(ηH −Z).

On the other hand, the other vanishings in Proposition 4.8 items (A) and

(B) hold by our choice of m1. Indeed, for � ≥ 1 we have p�G′ = p�μηH ′ −
p�μZ ′, and p�μη ≥ pμη ≥ m1 by the definition of C. Moreover, p�μd =

p�−1(pλd− (Cd/2)) ∈Z, and p�μη ∈Zγ. Therefore, we may apply Proposi-

tion 4.8 to obtain the assertion in the theorem.

§5. Bounds for Hartshorne–Speiser–Lyubeznik numbers

In this section we apply the results in Section 3 to get bounds for the

HSL numbers. We start by recalling the definition of these numbers.

Let (S,n, k) be a d-dimensional Noetherian local ring of characteristic

p > 0. Given any S-module M , a p-linear structure on M is an additive

map ϕ : M → M such that ϕ(az) = apϕ(z) for all a ∈ S and z ∈ M . For

example, the Frobenius endomorphism on S gives a p-linear structure on S,

and it also induces by functoriality a p-linear structure Θ on the top local

cohomology module Hd
n (S).
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We recall the following theorem, originally proved by Hartshorne and

Speiser [HS, Proposition 1.11] and later generalized by Lyubeznik [Lyu,

Proposition 4.4] (see also [Sha] for a simplified proof).

Theorem 5.1. Let (S,n, k) be a Noetherian local ring of characteristic

p > 0, and let M be an Artinian S-module with a p-linear structure ϕ : M →
M . If each element z ∈M is nilpotent under ϕ, then M is nilpotent under

ϕ; that is, there exists a positive integer � such that ϕ�(M) = 0.

The above theorem has the following immediate consequence. Let ϕ be a

p-linear structure on an S-module M , and set

Ni =
{
z ∈M

∣∣ ϕi(z) = 0
}
.

When M is an Artinian S-module, it follows from Theorem 5.1 that the

ascending chain of submodules

· · · ⊆Ni ⊆Ni+1 ⊆ · · ·

eventually stabilizes; that is, there is an integer � such that N� =N�+j for

all j ≥ 1. This motivates the following definition.

Definition 5.2 (Hartshorne–Speiser–Lyubeznik number). With the

above notation, if M is an Artinian S-module and if ϕ is a p-linear structure

on M , then the HSL number of (M,ϕ) is the smallest positive integer � such

that N� =N�+j for all j ≥ 1.

Remark 5.3. For every complete Noetherian local ring T , Matlis duality

gives an inclusion-reversing one-to-one correspondence between the ideals

of T and the submodules of the injective hull ET of the residue field of T .

This correspondence is given by

I →AnnET
I = {u ∈ET | Iu= 0}, with inverse M →AnnT M.

Therefore, the stabilization of an ascending chain of submodules · · · ⊆Ni ⊆
Ni+1 ⊆ · · · of ET is equivalent to the stabilization of · · · ⊇ Ii ⊇ Ii+1 ⊇ · · · ,
where Ii =AnnT Ni.

The injective hull ES of the residue field of S is of particular interest due

to the following remark.
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Remark 5.4. Suppose that S is a complete local Noetherian ring of

characteristic p > 0; hence, by Cohen’s theorem, S is a homomorphic image

of a complete regular local ring R; that is, S 	 R/I . In this case, there is

a one-to-one correspondence between (I [p] : I)/I [p] and the set of p-linear

structures ϕ on ES , as follows.

By Cohen’s theorem, we may assume that R= k[[x1, . . . , xn]], for a field k.

The injective hull ER is isomorphic to Hn
m(R), where m= (x1, . . . , xn). The

natural p-linear structure F on ER is given by

[ r

xj11 · · ·xjnn

]
→

[ rp

xj1p1 · · ·xjnpn

]

for each cohomology class [r/(xj11 · · ·xjnn )] ∈ Hn
m(R) 	 Rx1···xn/∑n

i=1Rx1···x̂i···xn . Given an element u ∈ (I [p] : I), we claim that uF induces

a p-linear structure on ES . Note that ES can be identified with AnnER
I .

Given any z ∈ ES , that is, an element in ER that is annihilated by I , we

have

IuF (z)⊆ I [p]F (z) = F (Iz) = F (0) = 0;

hence, uF (z) is an element of AnnER
I = ES . Therefore, the restriction of

uF to AnnER
I gives a p-linear structure on ES .

It is an easy exercise, using Matlis duality, to check that uF gives the

trivial p-linear structure on ES if and only if u ∈ I [p]. On the other hand,

Blickle [Bli, Chapter 3] has shown that every p-linear structure on ES comes

from an element in (I [p] : I)/I [p].

Remark 5.5. Suppose now that R is a regular local ring of positive

characteristic and that S = R/I , for some ideal I in R. If we denote by

R̂ and Ŝ the completions of R and S, respectively, then ES =E
Ŝ
, and the

p-linear structures of this module over S and over Ŝ can be identified. Using

the fact that R̂ is flat over R, we deduce from the previous remark that the

p-linear structures on ES are in bijection with (Î [p] : Î)/Î [p], where Î = IR̂.

In particular, this set contains (I [p] : I)/I [p].

Example 5.6. Let R be an n-dimensional regular local ring of character-

istic p > 0, let f ∈R be nonzero and noninvertible, and let S =R/(f). We

denote by n and m the maximal ideals in S and R, respectively. We have

ER 	Hn
m(R) and ES 	AnnER

(f)	Hn−1
n (S). (The second isomorphism is

a consequence of the exact sequence in the diagram below.) Let Θ be the
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natural p-linear structure on ES induced by the Frobenius morphism on S.

From the commutative diagram

0 Hn−1
n (S)

Θ

Hn
m(R)

f

fp−1F

Hn
m(R)

F

0

0 Hn−1
n (S) Hn

m(R)
f

Hn
m(R) 0

one sees immediately that Θ is the restriction of fp−1F to ES . Note also

that for every i≥ 1, we have{
u ∈ER

∣∣ (fp−1F )i(u) = 0
}
⊆ES .

Indeed, if (fp−1F )i(u) = 0, then fpi−1F i(u) = 0; hence, fpiF i(u) =

F i(fu) = 0. And since F is injective on ER, we deduce that fu= 0; hence,

u ∈ES .

We thus conclude that determining the HSL number of (ES ,Θ) is equiv-

alent to determining the one of (ER, f
p−1F ).

We recall that if R is a regular F -finite domain of characteristic p > 0 and

if f ∈ R is nonzero, then the test ideal τ(fm/pe) has a simple description

(see [BMS2, Lemma 2.1]):

(11) τ(fm/pe) = (fm)[1/p
e].

Proposition 5.7. Let R be a regular F -finite local ring of characteristic

p > 0, and let f ∈R be nonzero. If we put Ni = {z ∈ER | (fp−1F )i(z) = 0}
for i≥ 1, then

AnnR(Ni) = τ(f (pi−1)/pi).

Proof. Note first that since taking the test ideal commutes with comple-

tion, we may assume that R is complete. We then use [Kat, Theorem 4.6]

(and its proof) with I = (f) and u= fp−1 to get that AnnRNi is the smallest

ideal Ji of R such that

(i) (f)⊆ Ji and

(ii) (fp−1)(p
i−1)/(p−1) = fpi−1 is contained in J

[pi]
i .

By definition, this says that AnnRNi = (fpi−1)[1/p
i], and the formula in the

proposition follows from (11).
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Corollary 5.8. Let R and f be as in Proposition 5.7, with f noninvert-

ible. The HSL number of (ER, f
p−1F ) (or, equivalently, that of (ER/(f),Θ))

is the smallest positive integer � such that

τ(f1−1/p�) = τ(f1−1/p�+i
)

for all i≥ 1.

Proof. Since the HSL number of (ER, f
p−1F ) does not change when we

pass from R to its completion, and taking test ideals commutes with com-

pletion, we may assume that R is complete. In this case, the assertion in

the corollary follows from the definition of the HSL number for (ER, f
p−1F )

via Matlis duality and Proposition 5.7.

Note that the condition in Corollary 5.8 is equivalent to saying that there

is no F -jumping number for f in the interval (1− (1/p�),1). We can now

reformulate Theorem 3.3 and Corollary 3.4 as follows.

Theorem 5.9. Let A be a finitely generated Z-algebra, and let X be a

scheme of finite type over SpecA, smooth of relative dimension n. If a is a

locally principal ideal on X, whose restriction to every fiber is everywhere

nonzero, and if Z is the closed subscheme defined by a, then there is a

positive integer N such that for every closed point s ∈ SpecA and every point

x in the fiber Zs of Z over s, the HSL number of (EOZs,x
,Θ) is bounded

above by N .

Proof. The assertion follows from the above interpretation of HSL num-

bers, and Theorem 4.1 applied to λ= 1, by noting two facts. First, if p is a

prime ideal in a regular F -finite R, and if b is an everywhere nonzero ideal in

R, then the F -jumping numbers of b ·Rp are among the F -jumping numbers

of b; this follows since taking multiplier ideals commutes with localization

at p. Second, we may take p0 = 1. (This follows by inspecting the proof of

Theorem 3.3.)

Corollary 5.10. Given n and M , there is a positive integer N =

N(n,M) such that for every F -finite field k of characteristic p > 0 and

every nonzero polynomial f ∈ k[x1, . . . , xn] with deg(f)≤M , the following

holds: for every prime ideal p in S = k[x1, . . . , xn]/(f), the HSL number of

(ESp
,Θ) is bounded above by N .

Remark 5.11. By inspecting the proof of Theorem 3.3, we see that we

may take N(n,M) to be 1 plus the dimension of the vector space of poly-

nomials in k[x1, . . . , xn] of degree at most M ; that is, N(n,m) =
(
n+M
n

)
+1.
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§6. Examples

In this section we give two examples in order to illustrate how the F -

jumping numbers vary when we reduce modulo various primes. In our com-

putations of test ideals, we will use (1) in Section 2, describing ideals of the

form b[1/p
e]. We begin by recalling the following theorem due to Lucas (see

[Gra]).

Theorem 6.1. Let p be a positive prime integer. Given two positive

integers m and n, if we write m = mep
e + me−1p

e−1 + · · ·m0 and n =

nep
e + ne−1p

e−1 + · · ·n0, with 0≤mi, ni ≤ p− 1, then(
m

n

)
≡

e∏
i=0

(
mi

ni

)
modp.

Remark 6.2. It is clear from Lucas’s theorem that
(
m
n

)
is divisible by p

if and only if there is an i such that ni >mi.

The following proposition shows that if we want to bound the HSL num-

ber of a polynomial, as in Corollary 5.10, we indeed need to bound the

degree of the polynomial.

Proposition 6.3. Let n be a positive integer, and set a= 2n+1 + 1 and

f = xa + ya + za. For all prime numbers p such that p ≡ 2 (moda), the

principal ideal (f), considered as an ideal in Fp[[x, y, z]], has an F -jumping

number in (1− (1/pn),1− (1/pn+1)].

Proof. In order to prove the proposition, it is enough to show the following

two assertions.

(i) The monomial xa−3 lies in τ(f1−(1/pn)).

(ii) The monomial xa−3 does not lie in τ(f1−(1/(pn+1))).

We first prove (i). It follows from (11) that τ(f1−(1/pn)) = (fpn−1)[1/p
n].

Note that a divides pn − 2n, and we consider the following term in the
expansion of fpn−1:(

pn − 1
pn − 1− 2

a
(pn − 2n)

)( 2
a
(pn − 2n)

1
a
(pn − 2n)

)
(xa)p

n−1− 2
a (pn−2n)(ya)

1
a (pn−2n)(za)

1
a (pn−2n)

=

(
pn − 1

pn − 1− 2
a
(pn − 2n)

)( 2
a
(pn − 2n)

1
a
(pn − 2n)

)
x(a−3)pn+pn−1yp

n−2nzp
n−2n .

It follows from the description for (fpe−1)[1/p
e] given in (1) that if the two

binomial coefficients in the above expression are not zero, then (i) holds.
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Remark 6.2 implies that
(pn−1

i

)
is not zero in Fp for every i with 0 ≤ i ≤

pn−1. In particular, we have
( pn−1
pn−1−(2/a)(pn−2n)

)
�= 0. For the other binomial

coefficient, we write

2

a
(pn− 2n) =

n−1∑
j=0

2j+1(p− 2)

a
pn−1−j ;

1

a
(pn− 2n) =

n−1∑
j=0

2j(p− 2)

a
pn−1−j .

Since a= 2n+1−1, we see that (2j+1(p− 2))/a < p. Using again Remark 6.2,

we deduce that
((2/a)(pn−2n)
(1/a)(pn−2n)

)
�= 0, which completes the proof of (i).

We now prove (ii). It follows from the description of τ(f1−(1/(pn+1))) =

(fpn+1−1)[1/p
n+1] given by (1) that if xa−3 lies in this ideal, then we have a

monomial xaryaszat that appears with nonzero coefficient in the expansion

of fpn+1−1 such that 0 ≤ ar − (a− 3)pn+1 ≤ pn+1 − 1, as ≤ pn+1 − 1, and

at≤ pn+1 − 1. In this case we have

as≤ pn+1 − 1⇒ s≤ pn+1 − 1

a
=

pn+1 − 2n+1

a
+

2n+1 − 1

a

⇒ s≤ pn+1 − 2n+1

a
,

where the last inequality holds since a= 2n+1 + 1 and s is an integer. We

similarly have t≤ (pn+1 − 2n+1)/a. Therefore,

ar = a(pn+1 − 1− s− t)≥ a(pn+1 − 1)− a · 2
a
(pn+1 − 2n+1)

= (a− 2)pn+1 + (2n+2 − a)≥ (a− 2)pn+1,

a contradiction. We thus conclude that xa−3 /∈ τ(f1−(1/(pn+1))), proving (ii).

Remark 6.4. In [AIM, Problem 1.05], Katzman asks the following ques-

tion: given f ∈Z[x1, . . . , xn], if αp denotes the HSL number of the injective

hull of the residue field of Fp[[x1, . . . , xn]]/(fp) with respect to the natural p-

linear structure Θ, is limsupp→∞αp = 1? Note that Proposition 6.3 gives a

negative answer to this question. Indeed, since 2 and 2n+1+1 are relatively

prime, according to Dirichlet’s theorem there are infinitely many prime num-

bers p such that p≡ 2 (mod 2n+1 + 1). Therefore, Proposition 6.3 implies

that given any N , there is f ∈ Z[x1, x2, x3] such that αp >N for infinitely

many primes p.
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Example 6.5. Let R= Fp[[x, y, z]], and let f = x5 + y5 + z5. In this case,

we have the following F -jumping numbers in (0,1).

(i) When p = 2, there are three F -jumping numbers in (0,1): λ1 = 1/4,

λ2 = 1/2, and λ3 = 3/4.

(ii) When p = 3, there are three F -jumping numbers in (0,1): λ1 = 1/3,

λ2 = 2/3, and λ3 = 8/9.

(iii) When p = 5, there are four F -jumping numbers in (0,1): λ1 = 1/5,

λ2 = 2/5, λ3 = 3/5, and λ4 = 4/5.

(iv) When p≡ 1 (mod 5), there are two F -jumping numbers in (0,1): λ1 =

3/5 and λ2 = 4/5.

(v) When p ≡ 2 (mod 5) and p > 2, there are four F -jumping numbers

in (0,1): λ1 = (3/5)− (1/5p), λ2 = (4/5)− (3/5p), λ3 = 1− (1/p), and

λ4 = 1− (1/p2).

(vi) When p ≡ 3 (mod 5) and p > 3, there are four F -jumping numbers

in (0,1): λ1 = (3/5)− (4/5p), λ2 = (4/5)− (2/5p), λ3 = 1− (1/p), and

λ4 = 1− (1/p2).

(vii) When p ≡ 4 (mod 5), there are three F -jumping numbers in (0,1):

λ1 = (3/5)− (7/5p), λ2 = (4/5)− (6/5p), and λ3 = 1− (1/p).

Since the computations involved in checking the above example are rather

tedious, we omit them. For a sample of such computations proving assertion

(v), see the archive version of this paper, available at http://front.math.

ucdavis.edu/1110.5687.

Remark 6.6. Let R and f be as in Example 6.5. The description of the

F -jumping numbers in this example allows us to compute via Corollary 5.8

the HSL number of (ER/(f),Θ). We see that this is equal to 2 if p ≡ 2 or

3 (mod 5), and it is equal to 1 otherwise.
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