
Nagoya Math. J. 199 (2010), 107–122
DOI 10.1215/00277630-2010-005

DYNAMICAL CONSTRUCTION OF
KÄHLER-EINSTEIN METRICS

HAJIME TSUJI

Abstract. In this article, we give a new construction of a Kähler-Einstein
metric on a smooth projective variety with ample canonical bundle. As a con-
sequence, for a dominant projective morphism f : X −→ S with connected

fibers such that a general fiber has an ample canonical bundle, and for a pos-
itive integer m, we construct a canonical singular Hermitian metric hE,m on
f∗ OX(mKX/S) with semipositive curvature in the sense of Nakano.

§1. Introduction

Let X be a smooth projective n-fold with ample canonical bundle defined
over C. Then by the celebrated solution of Calabi’s conjecture (see [A], [Y1]),
there exists a unique Kähler-Einstein C∞-form ωE such that

(1.1) − RicωE = ωE

holds, where RicωE denotes the Ricci form of the Kähler manifold (X,ωE).
On the other hand, for a complex manifold with very ample L2-canonical

forms, there exists a standard Kähler form called the Bergman Kähler form.
Let us explain more precisely. Let M be a complex manifold of dimen-

sion n such that the space of L2-canonical forms

H0
(2)

(
M, OM (KM )

)
(1.2)

:=
{
η ∈ H0

(
M, OM (KM )

) ∣∣∣ (
√

−1)n2

∫
M

η ∧ η̄ < ∞
}

gives a very ample linear system. Then M admits a Bergman kernel,

(1.3) B(z,w) :=
∑

i

σi(z) · σi(w) (z,w ∈ M),
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where {σi} is a complete orthonormal basis of H0
(2)(M, OM (KM )) with

respect to the inner product

(1.4) (η, η′) := (
√

−1)n2

∫
M

η ∧ η̄′.

We see that B(z,w) is independent of the choice of the orthonormal basis
{σi} and that

(1.5) ωB(z) :=
√

−1∂∂̄ logB(z, z) (z ∈ M)

is a Kähler form; ωB is called the Bergman Kähler form on M . The same
construction applies for the case of the adjoint bundle of a (possibly singular)
Hermitian line bundle (L,h) on M (see Section 3).

Both Kähler-Einstein metrics and Bergman metrics are determined
uniquely by the complex structures. In this sense, these metrics are canon-
ical. Hence, it is natural to study the relation of these metrics.

Recently, S. K. Donaldson [Do] found a new construction of Kähler-
Einstein metrics or, more generally, of Kähler metrics with constant scalar
curvature; actually, he found a strong connection between the existence of
Kähler metrics with constant scalar curvature and the asymptotic stabil-
ity of Hilbert points of projective embeddings. In particular, this implies
the connection between the existence of Kähler-Einstein metrics and the
asymptotic stability of Hilbert points of projective embeddings.

Let us explain a part of his results. Let X be a smooth projective variety,
and let L be an ample line bundle on X . Then for every sufficiently large
positive integer m, the linear system |mL| gives a projective embedding

(1.6) Φm : X −→ P
Nm ,

given by

(1.7) Φm(x) := [σ(m)
0 : · · · : σ(m)

Nm
],

where {σ
(m)
0 , . . . , σ

(m)
Nm

} is a basis of H0(X, OX(mL)). Hence, Φm depends
on the choice of the basis. Let ωFS denote the Fubini-Study Kähler form on
P

Nm . If, for some choice of {σ
(m)
0 , . . . , σ

(m)
Nm

}, the equality

(1.8)
∫

X

σ
(m)
i · σ̄

(m)
j∑Nm

i=0 |σ(m)
i |2

(Φ∗
mωFS)n = δij



DYNAMICAL CONSTRUCTION OF KÄHLER-EINSTEIN METRICS 109

holds for every 0 � i, j � Nm (i.e., if {σ
(m)
0 , . . . , σ

(m)
Nm

} is orthonormal with
respect to the L2-inner product with respect to the Hermitian metric(∑Nm

i=0 |σ(m)
i |2

)−2 on mL and the volume form (Φ∗
mωFS)n), the Kähler form

(1.9) ωm :=
1
m

Φ∗
mωFS

is called balanced (or critical). The Hilbert point of Φm(X) is stable if and
only if there exists a choice of the basis {σ

(m)
0 , . . . , σ

(m)
Nm

} such that Φm is
balanced (see [Z]). Donaldson’s theorem is the following.

Theorem 1.1 ([Do, page 482, Theorem 3]). Let X be a smooth projective
variety, and let L be an ample line bundle on X. Suppose that Aut(X,L)
is discrete. If X admits a Kähler form ω cohomologous to 2πc1(L) with
constant scalar curvature, then, for every sufficiently large m, Φm(X) is
stable (i.e., (X,L) is called asymptotically stable). The limit of the balanced
Kähler forms {ωm} exists in C∞-topology, and the limit is a Kähler form
with constant scalar curvature.

In short, Theorem 1.1 gives a construction of a Kähler form with constant
scalar curvature as the limit of a sequence of balanced Kähler forms, and
Theorem 1.1 is closely related to the asymptotic expansion of Bergman
kernels (see [C], [Ze]).

The purpose of this article is to construct Kähler-Einstein forms with neg-
ative Ricci curvature as a limit of Bergman Kähler forms. More precisely,
the purpose of this article is to relate Kähler-Einstein forms and Bergman
Kähler forms in the case of projective manifolds with ample canonical bun-
dle.

Let us explain the construction. Let X be a smooth projective n-fold with
ample canonical bundle. Let m0 be a positive integer such that

(1) |mKX | is very ample for every m � m0, and
(2) for every pseudoeffective singular Hermitian line bundle (L,hL) (see

Definition 2.3), OX(m0KX + L) ⊗ I(hL) is globally generated.

The existence of such m0 follows from Nadel’s vanishing theorem [N, page 561].
Let hm0 be a C∞-Hermitian metric on m0KX with strictly positive curva-

ture. Suppose that we have constructed Km and the C∞-Hermitian metric
hm on mKX . Then we define

(1.10) Km+1 := K
(
X, (m + 1)KX , hm

)
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and

(1.11) hm+1 := 1/Km+1,

where K(X, (m+1)KX , hm) denotes the diagonal part of the Bergman ker-
nel of (m + 1)KX with respect to hm constructed as follows.

Let {σ
(m+1)
0 , . . . , σ

(m+1)
Nm+1

} be the complete orthonormal basis of H0
(
X,

OX((m + 1)KX)
)

with respect to the inner product

(1.12) (σ, τ) := (
√

−1)n2

∫
X

hm · σ ∧ τ̄ (σ, τ ∈ H0(X, OX((m + 1)KX))).

Then for x ∈ X we define

Km+1(x) = K
(
X, (m + 1)KX , hm

)
(x)(1.13)

:=
Nm+1∑
i=0

|σ(m+1)
i |2(x),

where, for a global section σ of (m + 1)KX , |σ|2 denotes the global section
σ · σ̄ of (KX ⊗ KX)⊗(m+1). We note that by the choice of m0, |(m + 1)KX |
is very ample. Hence, hm+1 := 1/Km+1 is a C∞-Hermitian metric on (m +
1)KX . Inductively, we construct the sequences {hm}m�m0

and {Km}m>m0 .
This is the same construction originated by the author in [T3].

The following theorem is the main result in this article.

Theorem 1.2. Let X be a smooth projective n-fold with ample canonical
bundle. Let m0 and {hm}m>m0 be the sequence of Hermitian metrics as
above. Then

(1.14) h∞ := lim inf
m→∞

m
√

(m!)n · hm

is a C∞-Hermitian metric on KX such that

(1.15) ω∞ := Θh∞

is a Kähler form on X with

(1.16) − Ricω∞ = ω∞.

Remark 1.3. The existence of the limit h∞ has already been proved in
[T3] not only for the canonically polarized varieties but also for varieties of
general type (for smooth projective varieties of nongeneral type, see [T3],
[T5], [T6], and [T7]).
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The construction of the Kähler-Einstein form in Theorem 1.2 is more
straightforward than the one in Theorem 1.1. Also Theorem 1.2 seems to
imply that the sequence of Kähler forms

(1.17)
{ 1

m
Θhm

}
m�m0

induced by the morphisms Φ(m) : X −→ P
Nm(m > m0) defined by

(1.18) Φ(m)(x) = [σ(m)
0 (x) : · · · : σ(m)

Nm
(x)] (x ∈ X)

is asymptotically nearly balanced.
Theorem 1.2 implies the following semipositivity theorem.

Theorem 1.4. Let f : X −→ S be a projective morphism with connected
fibers between smooth varieties. Let S◦ denote the maximal Zariski dense
subset of S such that f is smooth over X◦ := f −1(S◦). Suppose that a general
fiber of f is a smooth projective variety with ample canonical bundle. Let
ωE/S be the family of relative Kähler-Einstein forms on X◦. Let h◦

E be the
C∞-Hermitian metric on KX/S | X◦ defined by

(1.19) h◦
E := (ωn

E/S)−1,

where n denotes the relative dimension of f : X −→ S. Then we have the
following:

(1) h◦
E extends to a singular Hermitian metric hE on KX/S ;

(2) the curvature current ΘhE
of hE is semipositive on X;

(3) Fm := f∗ OX(mKX/S) is locally free on S◦, and Fm|S◦ carries the
C∞-Hermitian metric hE,m defined by
(1.20)

hE,m(σ, τ) := (
√

−1)n2

∫
Xs

hm−1
E · σ ∧ τ̄ (σ, τ ∈ H0(Xs, OXs(mKXs))).

Then (Fm|S◦, hE,m) is semipositive in the sense of Nakano (see [D, VII-
6]).

We note that Theorems 1.2 and 1.4 can be generalized to the case of
Kähler-Einstein currents (or, more generally, canonical measures; see [ST],
[T7]) without any essential changes by using the existence of Kähler-Ein-
stein currents due to Sugiyama [S] (which is a generalization of [T0]) and
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the recent result on finite generation of canonical rings (see [BCHM]).* (For
such further generalizations, see [T6], [T7], [T8], and [T9].)

Theorem 1.4 has several applications. For example, it immediately gives
canonical positive line bundles on the moduli space of canonically polar-
ized varieties with only canonical singularities. Such applications will be
discussed in a subsequent paper ([T9]).

We should note that the convergence in Theorem 1.2 is much weaker than
in Theorem 1.1. Also, Theorem 1.2 does not say anything about Kähler
forms with constant scalar curvature at this moment.

§2. Preliminaries

In this section, we review the basic terminologies used in this paper.

2.1. Singular Hermitian metrics
In this subection, L denotes a holomorphic line bundle on a complex

manifold M .

Definition 2.1. A singular Hermitian metric h on L is given by

(2.1) h = e−ϕ · h0,

where h0 is a C∞-Hermitian metric on L and ϕ ∈ L1
loc(M) is an arbitrary

function on M . We call ϕ a weight function of h.

The curvature current Θh of the singular Hermitian line bundle (L,h) is
defined by

(2.2) Θh := Θh0 +
√

−1∂∂̄ϕ,

where ∂∂̄ is taken in the sense of a current and where Θh0 =
√

−1∂̄∂ logh0.
We note that in our convention, the curvature current Θh is always a closed
real current.

The L2-sheaf L2(L,h) of the singular Hermitian line bundle (L,h) is
defined by

(2.3) L2(L,h)(U) :=
{
σ ∈ Γ

(
U, OM (L)

) ∣∣ h(σ,σ) ∈ L1
loc(U)

}
,

where U runs over the open subsets of M . In this case, there exists an ideal
sheaf I(h) such that

(2.4) L2(L,h) = OM (L) ⊗ I(h)

*Actually, this paper is a part of [T6].
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holds. We call I(h) the multiplier ideal sheaf of (L,h). If we write h as

(2.5) h = e−ϕ · h0,

where h0 is a C∞-Hermitian metric on L and where ϕ ∈ L1
loc(M) is the

weight function, we see that

(2.6) I(h) = L2(OM , e−ϕ)

holds. For ϕ ∈ L1
loc(M), we define the multiplier ideal sheaf of ϕ by

(2.7) I(ϕ) := L2(OM , e−ϕ).

Example 2.2. Let σ ∈ Γ(X, OX(L)) − {0} be a global section. Then

(2.8) h :=
1

|σ|2 =
h0

h0(σ,σ)

is a singular Hermitian metric on L, where h0 is an arbitrary C∞-Hermitian
metric on L (the right-hand side is obviously independent of h0). The cur-
vature Θh is given by

(2.9) Θh = 2π(σ),

where (σ) denotes the current of integration over the divisor of σ.

Definition 2.3. Here L is said to be pseudoeffective if there exists a
singular Hermitian metric h on L such that the curvature current Θh is a
closed positive current. Also, a singular Hermitian line bundle (L,h) is said
to be pseudoeffective if the curvature current Θh is a closed positive current.

2.2. Analytic Zariski decompositions
Let L be a pseudoeffective line bundle on a compact complex manifold X .

To analyze the ring

(2.10) R(X,L) =
∞⊕

m=0

H0
(
X, OX(mL)

)
,

it is sometimes useful to introduce the notion of analytic Zariski decompo-
sitions.

Definition 2.4. Let M be a compact complex manifold, and let L be a
holomorphic line bundle on M . A singular Hermitian metric h on L is said
to be an analytic Zariski decomposition if the following hold:
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(1) Θh is a closed positive current; and
(2) for every m ≥ 0, the natural inclusion

(2.11) H0
(
M, OM (mL) ⊗ I(hm)

)
→ H0

(
M, OM (mL)

)

is an isomorphism.

Remark 2.5. If an analytic Zariski decomposition (AZD) exists on a
line bundle L on a smooth projective variety M , L is pseudoeffective by
condition (1) above.

It is known that for every pseudoeffective line bundle on a compact com-
plex manifold, there exists an AZD on L (see [T1], [T2], [DPS]).

The advantage of the AZD is that we can handle pseudoeffective line
bundle L on a compact complex manifold X as a singular Hermitian line
bundle with semipositive curvature current as long as we consider the ring
R(X,L).

§3. Proof of Theorem 1.2

Let X be a smooth projective n-fold with ample canonical bundle. Let m0

be a positive integer such that

(1) |mKX | is very ample for every m � m0; and
(2) for every pseudoeffective singular Hermitian line bundle (L,hL),

OX(m0KX + L) ⊗ I(hL) is globally generated.

Let hm0 be a C∞-Hermitian metric on m0KX with strictly positive curva-
ture. Let {hm}m�m0

and {Km}m>m0 be the sequences of Hermitian metrics
and Bergman kernels constructed as in Section 1; that is, {hm}m�m0

and
{Km}m>m0 are defined inductively by

(3.1) Km+1 = K(X,KX + mKX , hm)

and

(3.2) hm+1 = 1/Km+1.

3.1. Upper estimate of Km

Let Δ be the unit open disk in C with center zero. Let

(3.3) K1(Δ) := K(Δ,KΔ),
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and let h1,Δ := 1/K1(Δ). Inductively, we define Km(Δ)(m � 1) and hm,Δ

by

(3.4) Km(Δ) := K(Δ,mKΔ, hm−1,Δ)

and

(3.5) hm,Δ = 1/Km(Δ).

Then by direct calculation, we see that

(3.6) Km(Δ) =
(m + 1)!

(1 − |z|2)2m

( √
−1
2π

dz ∧ dz̄
)⊗m

holds.
Let x ∈ X , and let (U,z1, . . . , zn) be a local coordinate around x such that

z1(x) = · · · = zn(x) = 0 and U is biholomorphic to the unit open polydisk
Δn with center the origin via (z1, . . . , zn). Then by induction in m, it is easy
to see that there exists a positive constant CU such that

(3.7) Km � Cm
U ·

(
(m + 1)!

)n ·
n∏

i=1

1
(1 − |zi|2)2m

·
( n∧

i=1

√
−1
2π

dzi ∧ dz̄i

)⊗m

holds on U . Hence, moving U , by the compactness of X , we have the fol-
lowing lemma.

Lemma 3.1. Let dV be a C∞-volume form on X. Then there exists a
positive constant C+ such that

(3.8) Km � Cm
+ · (m!)n · (dV )m

holds on X.

3.2. Lower estimate of Km

Let ωE be the Kähler-Einstein form on X such that

(3.9) − RicωE = ωE .

Let dVE = (n!)−1ωn
E be the volume form associated with (X,ωE).

Lemma 3.2. Here

(3.10) limsup
m→∞

m
√

(m!)−nKm � (2π)−n dVE

holds on X.
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Proof. Let us consider the Hermitian line bundle (KX , dVE) on X . Let
p ∈ X be a point. Then by the Kähler-Einstein condition, there exists a
holomorphic normal coordinate (U,z1, . . . , zn) such that

(3.11) dV −1
E =

{ n∏
i=1

(1 − |zi|2) + O(‖z‖3)
}

· |dz1 ∧ · · · ∧ dzn|−2

holds. Suppose that

(3.12) Cm−1 · dV m−1
E � Km−1

holds on X for some positive constant Cm−1. We note that
(3.13)

Km(x) = sup
{

|σ|2(x);σ ∈ H0
(
X, OX(mKX)

)
, (

√
−1)n2

∫
X

hm−1 · σ ∧ σ̄ = 1
}

holds for every x ∈ X , by the extremal property of the Bergman kernel.
(This is well known; see, e.g., [Kr, page 46, Proposition 1.3.16].) We note
that for the open unit disk Δ = {t ∈ C | |t| < 1},

(3.14)
∫

Δ
(1 − |t|2)m dt ∧ dt̄ =

2π
m + 1

holds. Then by Hörmander’s L2-estimate of ∂̄-operator, we see that there
exists a positive constant λm such that

(3.15)
(
λm · (2π)−n · mn

)
· Cm−1 · dV m

E � Km

with

(3.16) λm � 1 − C√
m

,

where C is a positive constant independent of m.
In fact, this can be verified as follows. Let x ∈ X be a point on X , and let

(U,z1, . . . , zn) be the normal coordinate as above. We may assume that U

is biholomorphic to the polydisk Δn(r) of radius r with center O in C
n for

some r via (z1, . . . , zn).
Taking r sufficiently small, we may assume that there exists a C∞-

function ρ on X such that
(1) ρ is identically 1 on Δn(r/3),
(2) 0 � ρ � 1,
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(3) Suppρ ⊂⊂ U , and
(4) |dρ| < 3/r, where | | denotes the pointwise norm with respect to ωE .

We note that by (3.11), the mass of ρ · (dz1 ∧ · · · ∧ dzn)⊗m concentrates
around the origin as m tends to infinity. Hence, by (3.14) we see that the
L2-norm

(3.17) ‖ρ · (dz1 ∧ · · · ∧ dzn)⊗m‖

of ρ · (dz1 ∧ · · · ∧ dzn)⊗m with respect to (dVE)− ⊗m and ωE is asymptotically

(3.18) ‖ρ · (dz1 ∧ · · · ∧ dzn)⊗m‖2 ∼
(2π

m

)n

as m tends to infinity, where ∼ means that the ratio of the both sides
converges to 1. We set

(3.19) φ := nρ log
n∑

i=1

|zi|2.

We may and do assume that m is sufficiently large so that

(3.20) m · ωE +
√

−1∂∂̄φ > 0

holds on X .
By (3.18), the L2-norm

(3.21)
∥∥∂̄

(
ρ · (dz1 ∧ · · · ∧ dzn)⊗m

)∥∥
φ

of ∂̄(ρ · (dz1 ∧ · · · ∧ dzn)⊗m) with respect to e−φ · (dVE)− ⊗m and ωE satisfies
the inequality

(3.22)
∥∥∂̄

(
ρ · (dz1 ∧ · · · ∧ dzn)⊗m

)∥∥2

φ
� M0 ·

(3
r

)2n+2(2π
m

)n

for every m, where M0 is a positive constant independent of m.
By Hörmander’s L2-estimate applied to the adjoint line bundle of the

Hermitian line bundle ((m − 1)KX , e−φ · dV
−(m−1)
E ), we see that for every

sufficiently large m, there exists a C∞-solution of the equation

(3.23) ∂̄u = ∂̄
(
ρ · (dz1 ∧ · · · ∧ dzn)⊗m

)
such that

(3.24) u(x) = 0
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and

(3.25) ‖u‖2
φ � M1

m

∥∥∂̄
(
ρ · (dz1 ∧ · · · ∧ dzn)⊗m

)∥∥2

φ

hold, where ‖ ‖φ denotes the L2-norm with respect to e−φ · dV
−(m−1)
E and

ωE , respectively, and where M1 is a positive constant independent of m.
Then ρ · (dz1 ∧ · · · ∧ dzn)⊗m − u is a holomorphic section of mKX such that

(3.26)
(
ρ · (dz1 ∧ · · · ∧ dzn)⊗m − u

)
(x) = (dz1 ∧ · · · ∧ dzn)m

and

(3.27) ‖ρ · (dz1 ∧ · · · ∧ dzn)⊗m − u‖2 �
(

1 + M0 ·
(3

r

)2n+2
√

M1

m

)(2π
m

)n
.

Hence, by induction on m, using (3.13) and (3.15), we see that there exist
positive constants C and C ′ such that, for every m > m0,

(3.28) Km � C ′
( m∏

k=m0

(
1 − C√

k

))
· (m!)n · (2π)−mn · dV m

E

holds on X . This implies that

(3.29) limsup
m→∞

m
√

(m!)−nKm � (2π)−n dVE

holds on X .

3.3. Integral estimate of Km

Lemma 3.3. The inequality

(3.30)
∫

X

m
√

Km �
( m∏

k=m0

(Nk + 1)
)1/m

·
(∫

X

m0
√

Km0

)m0/m

holds, where Nk := dim |kKX | = dimH0(X, OX(kKX)) − 1.

Proof. By Hölder’s inequality, we have

∫
X

m
√

Km =
∫

X

K
1/m
m

K
1/(m−1)
m−1

· K
1/(m−1)
m−1

�
(∫

X

Km

K
m/(m−1)
m−1

· K
1/(m−1)
m−1

)1/m
·
(∫

X
K

1/(m−1)
m−1

)(m−1)/m
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=
(∫

X

Km

Km−1

)1/m
·
(∫

X
K

1/(m−1)
m−1

)(m−1)/m

= (Nm + 1)1/m ·
(∫

X
K

1/(m−1)
m−1

)(m−1)/m
.

Then continuing this process, by using

(3.31)
∫

X
K

1/(m−1)
m−1 � (Nm−1 + 1)1/(m−1) ·

(∫
X

K
1/(m−2)
m−2

)(m−2)/(m−1)
,

we have that∫
X

(Km)1/m

(3.32)

�
{
(Nm + 1) · (Nm−1 + 1)

}1/m ·
(∫

X
(Km−2)1/(m−2)

)(m−2)/m

holds. Continuing this process, we obtain the lemma.

Using Lemma 3.3, we obtain the following.

Lemma 3.4. The inequality

(3.33) limsup
m→∞

1
(m!)n/m

∫
X

(Km)1/m � Kn
X

n!

holds.

Proof. By the Kodaira vanishing theorem,

(3.34) Hq
(
X, OX(mKX)

)
= 0

holds for every m � 2 and q � 1. Then by Hirzebruch’s Riemann-Roch the-
orem, we have that

(3.35) Nm + 1 =
Kn

X

n!
mn + O(mn−1)

holds. Then by Lemma 3.3, we have

(3.36) limsup
m→∞

1
(m!)n/m

∫
X

(Km)1/m � Kn
X

n!

holds.
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3.4. Completion of the proof of Theorem 1.2
By Lemma 3.1 and Lebesgue’s bounded convergence theorem, we see that

(3.37) limsup
m→∞

1
(m!)n/m

∫
X

(Km)1/m =
∫

X

(
limsup
m→∞

1
(m!)n/m

(Km)1/m
)

holds. Hence, by Lemma 3.4, we have that

(3.38)
∫

X

(
limsup
m→∞

1
(m!)n/m

(Km)1/m
)

� (2π)nKn
X

n!

holds. Since

(3.39)
∫

X
dVE =

1
n!

∫
X

ωn
E =

(2π)nKn
X

n!

holds by the Kähler-Einstein condition, combining Lemma 3.2 and (3.38),
we have the equality

(3.40) limsup
m→∞

1
(m!)n/m

m
√

Km = (2π)−n dVE .

This completes the proof of Theorem 1.2.

§4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by using Theorem 1.2. Roughly
speaking, Theorem 1.2 implies that what we can say about Bergman kernels
also holds for Kähler-Einstein volume forms.

Proof of Theorem 1.4. Let A be a sufficiently ample line bundle on X ,
and let h0 be a C∞-Hermitian metric with strictly positive curvature. Then
for every s ∈ S◦, we define the dynamical system of the Bergman kernels
{Km,s} on the fiber Xs := f −1(s) as in Section 1. Then by induction on m,
we see that the Hermitian metric

(4.1) hm | Xs = 1/Km,s

on A+mKX/S | X◦ has semipositive curvature by [B] or [T6, Theorem 1.4].
It also extends to a singular Hermitian metric on A + mKX/S with semi-
positive curvature by [T6, Theorem 1.4] or [BP]. Then by Theorem 1.2,
we see that hE is a singular Hermitian metric on KX/S with semipositive
curvature current by [T6, Theorem 1.4] or [BP]. And hE is smooth over
f −1(S◦) by the well-known standard implicit function theorem argument.
Then again, by [B], we see that hE,m defined as (1.20) has semipositive
curvature in the sense of Nakano for every m � 1. This completes the proof
of Theorem 1.4.
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