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ROUQUIER BLOCKS OF THE CYCLOTOMIC HECKE
ALGEBRAS OF G(de,e,r)

MARIA CHLOUVERAKI

Abstract. The Rouquier blocks of the cyclotomic Hecke algebras, introduced
by Rouquier, are a substitute for the families of characters defined by Lusztig
for Weyl groups, which can be applied to all complex reflection groups. In this
article, we determine them for the cyclotomic Hecke algebras of the groups of
the infinite series G(de,e,r), thus completing their calculation for all complex
reflection groups.

Introduction

Until recently, the lack of Kazhdan-Lusztig bases for the non-Coxeter
complex reflection groups did not allow the generalization of the notion of
families of characters from Weyl groups to all complex reflection groups.
However, thanks to the results of Gyoja [12] and Rouquier [21], we have
obtained a substitute for the families of characters that can be applied
to all complex reflection groups. In particular, Rouquier has proved that
the families of characters of a Weyl group W coincide with the Rouquier
blocks of the Iwahori-Hecke algebra of W, that is, its blocks over a suitable
coefficient ring. This definition generalizes to all complex reflection groups,
and we are grateful for this for the following reasons.

On the one hand, since the families of characters of a Weyl group play
an essential role in the definition of the families of unipotent characters of
the corresponding finite reductive group (see [14]), the families of characters
of the cyclotomic Hecke algebras could play a key role in the organization
of families of unipotent characters in general. On the other hand, for some
(non-Coxeter) complex reflection groups W, we have data that seem to
indicate that behind the group W, there exists another mysterious object—
the Spets (see [3], [18])—that could play the role of the “series of finite
reductive groups of Weyl group W.”
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In [2], Broué and Kim presented an algorithm for the determination of the
Rouquier blocks of the cyclotomic Hecke algebras of the groups G(d,1,7).
Using the generalization of some classic results, known as Clifford theory,
they were able to obtain the Rouquier blocks for G(d,d,r) from those of
G(d,1,r). Later, Kim [13] generalized the methods used in [2] in order to
obtain the Rouquier blocks of the cyclotomic Hecke algebras of G(de,e,r)
from those of G(de, 1,7).

As far as the exceptional complex reflection groups are concerned, some
special cases were treated by Malle and Rouquier in [19]. Finally, in [5],
the author gives the complete classification of the Rouquier blocks of the
cyclotomic Hecke algebras for all exceptional complex reflection groups.

However, recently it was realized that the algorithm of [2] for G(d,1,r)
does not work, unless d is a power of a prime number. In [7], the author gives
the correct algorithm, which is more complicated than the one in [2]. Now, it
remains to recalculate the Rouquier blocks of the cyclotomic Hecke algebras
of G(de,e,r) in order to complete the determination of the Rouquier blocks
for all complex reflection groups.

Using the same idea as in [13], we apply Clifford theory in order to obtain
the Rouquier blocks for G(de, e, r) from those of G(de, 1,7). However, there
is one case where this is not possible, that is, when r =2 and e is even. In
that case, we apply the same methods as in [5] in order to determine the
Rouquier blocks of the cyclotomic Hecke algebras of G(de,2,2), and then we
apply Clifford theory in order to obtain the Rouquier blocks for G(de,e,?2).

Finally, to every irreducible character of a cyclotomic Hecke algebra of
a complex reflection group we can attach integers a and A, as Lusztig has
done for Weyl groups. In [15], Lusztig shows that these integers are constant
on families. Here, we complete the proof that a and A are constant on the
Rouquier blocks of the cyclotomic Hecke algebras of all irreducible complex
reflection groups, having already shown it for the exceptional ones (cf. [6])
and G(d,1,r) (cf. [7]).

81. Blocks of symmetric algebras

All the results of this section are presented here for the convenience of
the reader. Their proofs can be found in [5, Chapter 2].
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1.1. Generalities on blocks

Let us assume that O is a commutative integral domain with field of
fractions F' and that A is an O-algebra, free and finitely generated as an
O-module.

DEFINITION 1.1. The block-idempotents (blocks) of A are the primitive
idempotents of ZA.

Let K be a field extension of F. Suppose that the K-algebra KA :=
K ®p A is semisimple. Then there exists a bijection between the set Irr( K A)
of irreducible characters of KA and the set BI(K A) of blocks of K A:

Irr(KA) < BI(KA),
X €y

The following theorem establishes a relation between the blocks of the
algebra A and the blocks of KA.

THEOREM 1.2. There exists a unique partition BI(A) of Irr(KA) such
that

(1) for all B € BI(A), the idempotent ep =, . ey is a block of A; and
(2) for every central idempotent e of A, there exists a subset Bl(A,e) of

BI(A) such that
e= Z ep.

BeBI(A,e)
In particular, the set {ep}peri(a) is the set of all the blocks of A.

If x € B for some B € BI(A), then we say that x belongs to the block ep.

1.2. Symmetric algebras
From now on, we make the following assumptions.

ASSUMPTIONS 1.3.

(int) The ring O is a Noetherian and integrally closed domain with field of
fractions F', and A is an O-algebra that is free and finitely generated
as an O-module.

(spl) The field K is a finite Galois extension of F', and the algebra KA is
split (i.e., for every simple KA-module V', Endg 4o(V) ~ K ) semisim-
ple.
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DEFINITION 1.4. We say that a linear map t: A — O is a symmetrizing
form on A or that A is a symmetric algebra if

(a) t is a trace function, that is, t(ab) = t(ba) for all a,b € A; and
(b) the morphism

~

t: A—Homp(A,0),a (z+ i(a)(z) :=t(azx))
is an isomorphism of A-modules-A.

EXAMPLE 1.5. In the case where O =Z and A =Z[G] (G a finite group),
we can define the following symmetrizing form (canonical) on A:

t: Z|G) — Z, Zagg —an,
geG
where a4 € Z for all g € G.

From now on, let us suppose that A is a symmetric algebra with sym-
metrizing form ¢. By [9], we have the following results.

THEOREM 1.6. (1) We have

= Y

Sx
X€lrr(KA)

where s, is the Schur element of x with respect to t.
(2) For all x e Irr(K A), the central primitive idempotent associated to x is

where (€;)icr is a basis of A over O and (e});er is the dual basis with
respect to t (i.e., t(e;e}) = d;z).

COROLLARY 1.7. The blocks of A are the nonempty subsets B of Irr(K A)
minimal with respect to the property

Z ix(a) €0, forallac A.

S
xX€B X

Let us suppose now that O is a discrete valuation ring with unique prime
ideal p and that K is the field of fractions of O. Then the following result
gives a criterion for a block to be a singleton.
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PROPOSITION 1.8. Let x € Irt(K A). The character x is a block of A by
itself if and only if sy & p.

Proof. If s, ¢ p, then 1/s, € O and Corollary 1.7 implies that the char-
acter  is a block of A by itself. The inverse is a consequence of a theorem
by Geck and Rouquier (see [10, Proposition 4.4]). 0

1.3. Twisted symmetric algebras of finite groups

Let A be an O-algebra such that Assumptions 1.3 are satisfied with a
symmetrizing form ¢. Let A be a subalgebra of A free and of finite rank as
an O-module.

DEFINITION 1.9. We say that A is a symmetric subalgebra of A if it
satisfies the following two conditions:
(1) A is free (of finite rank) as an O-module and the restriction Resj%(t) of
the form ¢ to A is a symmetrizing form on A; and
(2) A is free (of finite rank) as an A-module for the action of left multipli-
cation by the elements of A.

We denote by
Indg :gmod — 4 mod and Resg :Amod — 7 mod
the functors defined as usual by
Indg = A®j, where A is viewed as an A-module-A

and
Resg :=A®,, where A is viewed as an A-module-A.

In the next sections, we will work on the Hecke algebras of complex
reflection groups, which are symmetric. Sometimes the Hecke algebra of
a group W appears as a symmetric subalgebra of the Hecke algebra of
another group W', which contains . Since we are mostly interested in the
determination of the blocks of these algebras, it would be helpful to obtain
the blocks of the former from the blocks of the latter. This is possible with
the use of a generalization of some classic results, already introduced above
as Clifford theory (see, e.g., [8]), to the twisted symmetric algebras of finite
groups and, more precisely, of finite cyclic groups.
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DEFINITION 1.10. We say that a symmetric O-algebra (A, t) is the twisted
symmetric algebra of a finite group G over the subalgebra A if the following
conditions are satisfied.

e A is a symmetric subalgebra of A.
e There exists a family {A4|g € G} of O-submodules of A such that

(a) A=Byeq Ay
(b) A Ah— gn for all g,h € G;

(c) A

(d) ( )—Ofor all g€ G,g9# 1;

(e) AgNA*#0 for all g€ G (where A* is the set of units of A).

In particular, if a; € A; N A*, then we have A, = agA = Aag.

Action of G on ZA

From now on, we assume that (A,t) is the twisted symmetric algebra of
a finite group G over A and that K is an extension of F such that the
algebras KA, KA, and KG are split semisimple.

THEOREM-DEFINITION 1.11. Let a € ZA, and let g € G. There exists a
unique element g(a) of A satisfying

gla)g=ga forallge A,.

If a; € AX such that Ay =ayA, then

g(a) = ag&agl.

The map a+— g(a) defines an action of G as ring automorphism of Z A.

Induction and restriction of K A-modules and K A-modules

For all Yy € Iir(KA), we denote by &(%) the block-idempotent of KA
associated to y. If g € G, then g(&(x)) is also a block of KA. Since KA
is split semisimple, it must be associated to an irreducible character g(¥)
of KA. Thus, we can define an action of G on Irr(K A) such that for all
g€ G, e(g(x)) =g(e(x)). We denote by Gy the stabilizer of the character
X in G, and we denote by ) the orbit of ¥ under the action of G. We have
Q| =|G|/|Gx|. We define

eQ):= > elgw)= Y. gx).
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Case where G is cyclic. Since the group G is abelian, the set Irr(KG) forms
a group denoted by GV. The application 1 — ) - £, where 1 € Irr(K A) and
¢ € GV, defines an action of GV on Irr(K A). Then we have the following
result.

ProprosITION 1.12. If the group G is cyclic, there exists a bijection

Irr(KA)/G & Tr(KA)/GY,
Q=0
such that
éQ)=e(@), lQlQl=|Gl,
and

VX €, Resii(x) =2 e X
VY€, Indii(x) =3 eqX:

Moreover, for all x € Q and ¥ € 0, we have
5y = |9 sy.

Blocks of A and blocks of A
Denote by BI(A) the set of blocks of A, and denote by BI(A) the set of
blocks of A. For b€ BI(A), we set

Tr(G,b):= Y _ g(b).

gEG/G’;7

The algebra (ZA)% is contained in both ZA and ZA, and the set of its
blocks is B
Bl((ZA)%) = {Tx(G,b) | b€ BI(A)/G}.

Moreover, Tr(G, b) is a sum of blocks of A, and we define the subset BI(A, b)
of BI(A) as follows:
Tr(G,b):= Y b
bEBI(A,b)

LEMMA 1.13. Let b be a block of A and B :=Irr(K Ab). Then
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(1) for all x € B, we have Gy C Gy;
(2) we have
T(G,h)= Y T (Gex)= > &)
xX€B/G {QIQNB#0}
Now let GV := Hom(G, K*). We suppose that K = F'. The multiplication
of the characters of KA by the characters of KG defines an action of the

group G on Irr(K A). This action is induced by the operation of GV on the
algebra A, which is defined in the following way:

¢-(aay) :==&(g)aa, foral E€GY,ae A ,geq.

In particular, GV acts on the set of blocks of A. Let b be a block of A.
Denote by & - b the product of £ and b, and denote by (GV), the stabilizer
of bin GV. We set

T (GY,b):= > &b

§EGY /(G
The set of blocks of the algebra (Z A)Gv is given by
BI((ZA)¢") = {Tx(GY,b) | be BI(A)/GV}.
The following lemma is the analogue of Lemma 1.13.

LEMMA 1.14. Let b be a block of A and B :=TIrr(K Ab). Then,
(1) for all x € B, we have (G¥)y, C (GY)y;
(2) we have

TGV, 0)= > Tr(GYe()= D, e
XEB/GV {Q|QNB#0}

Case where G is cyclic. For every orbit ) of GV on BI(A), we denote by
b(Y) the block of (ZA)¢" defined by

b(Y) =) b.
bey
For every orbit ) of G on BI(A), we denote by b()) the block of (ZA)“

defined by
5(37) = Z b.
bey
The following proposition results from Proposition 1.12 and Lemmas 1.13
and 1.14.
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ProproSITION 1.15. If the group G is cyclic, there exists a bijection

BI(A)/G < BI(A)/GY,
Vel
such that
that is,

Tr(G,b) =Tr(GY,b) forallbe and be ).
In particular, the algebras (ZA)C and (ZA)C" have the same blocks.

COROLLARY 1.16. If the blocks of A are stable by the action of GV, then
the blocks of A coincide with the blocks of (ZA)C.

82. Hecke algebras of complex reflection groups

2.1. Generic Hecke algebras

Let p0o be the group of all the roots of unity in C, and let K be a number
field contained in Q(poo). We denote by p(K) the group of all the roots of
unity of K. For every integer d > 1, we set (;:=exp(27i/d) and we denote
by pg the group of all the dth roots of unity.

Let V be a K-vector space of finite dimension r. Let W be a finite
subgroup of GL(V') generated by (pseudo)reflections acting irreducibly on
V. Let us denote by A the set of the reflecting hyperplanes of W. We
set M:=C®V —UpgeaC® H. For zg € M, let P :=1I1(M,x0) and let
B :=1I;(M/W,zp). Then there exists a short exact sequence (see [4]):

{1} = P—-B—-W —{1}.
We denote by 7 the central element of P defined by the loop
[0,1] = M, t — exp(2mit)xzo.

For every orbit C of W on A, we denote by ec the common order of
the subgroups Wy, where H is any element of C and Wy is the subgroup
formed by idy and all the reflections fixing the hyperplane H.

We choose a set of indeterminates u = (uc ;) ced/w)(0<j<ec—1), and we
denote by Z[u,u~!] the Laurent polynomial ring in all the indeterminates
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u. We define the generic Hecke algebra H of W to be the quotient of the
group algebra Z[u,u~!] B by the ideal generated by the elements of the form

(s—wuco)(s—uci) - (s—ucec—1);

where C runs over the set A/WW and s runs over the set of monodromy
generators around the images in M /W of the elements of the hyperplane
orbit C.

We make some assumptions for the algebra H. Note that they have been
verified for all but a finite number of irreducible complex reflection groups
[3, remarks before (1.17), §2]; [11].

ASSUMPTIONS 2.1. The algebra H is a free Z[u,u~1]-module of rank |W|.
Moreover, there exists a linear form t:H — Z[u,u™!] with the following

properties.

(1) The map t is a symmetrizing form on H.

(2) Via the specialization uc j — (2., the form t becomes the canonical sym-
metrizing form on the group algebra ZxW.

(3) If we denote by o+ o* the automorphism of Z[u,u='] consisting of
the simultaneous inversion of the indeterminates, then for all b€ B, we
have

We know that the form ¢ is unique [3, (2.1)]. From now on, let us suppose
that the Assumptions 2.1 are satisfied. Then we have the following result
by Malle [17, (5.2)].

THEOREM 2.2. Let v = (vc,j)(ced/w)(0<j<ec—1) e a set of ZCGA/W ec
indeterminates such that, for every C,j, we have v‘c"](.K)l = (uc,;. Then
the K(v)-algebra K(v)H is split semisimple.

By Tits’s deformation theorem (cf., e.g., [3, (7.2)]), it follows that the
specialization v j — 1 induces a bijection x — xv from the set Irr(K (v)H)
of absolutely irreducible characters of K (v)H to the set Irr(W) of absolutely
irreducible characters of W.

The following result concerning the form of the Schur elements associated
with the irreducible characters of K(v)H is proved in [5, Theorem 4.2.5],
using case-by-case analysis.
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THEOREM 2.3. The Schur element s,(v) associated with the character
v of K(V)H is an element of Zx[v,v~!] of the form

v) =& Ny H Ui (M i)™,

=

where

&y 18 an element of Z ;

o Ny=Tl¢; Ugfjij is a monomial in Z[v,v~'] such that > 5% Ybe; =0 for
allCe A/W;

I, is an index set;

(Vy.i)ier, is a family of K-cyclotomic polynomials in one variable (i.e.,
minimal polynomials of the roots of unity over K );

(Mxl)zel is a family of monomials in Zglv,v7l], and if My; =
[lc,; Uc] , then ged(acj) =1 and Ej €y ac; =0 forallCe A/W; and
o (nyi)ier, is a family of positive integers.

This factorization is unique in K[v,v~l]. Moreover, the monomials
(Mx,i)ielx are unique up to inversion, whereas the coefficient &, is unique
up to multiplication by a root of unity.

Let A:=Zg[v,v" 1], and let p be a prime ideal of Z.

DEFINITION 2.4. Let M = HCJUCC] be a monomial in A such that
ged(ac ;) = 1. We say that M is p-essential for a character x € Irr(W)
if there exists a K-cyclotomic polynomial ¥ such that
e U(M) divides s,(v), and
e U(1)€ep.

We say that M is p-essential for W if there exists a character y € Irr(W)
such that M is p-essential for x.

The following proposition (see [5, Proposition 3.1.3]) gives a characteri-
zation of p-essential monomials, which plays an essential role in the proof
of Theorem 2.11.

PROPOSITION 2.5. Let M = HC]UC ]” be a monomial in A such that
ged(ac ;) =1. We set qar := (M —1)A+pA. Then

(1) the ideal qps is a prime ideal of A,
(2) M is p-essential for x € Irr(W) if and only if s, (v)/&y € qum-
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If M is a p-essential monomial for W, then Theorem 2.11 establishes a
relation between the blocks of the algebra Ag,,H and the Rouquier blocks.
The following results concerning the blocks of A,,,H are proven in [5, Propo-
sitions 3.2.3 and 3.2.5].

PROPOSITION 2.6. Let M = Hc,j vg’cjfj be a monomial in A such that
ged(ac ;) =1 and qpr == (M —1)A+pA. Then

(1) if two irreducible characters are in the same block of Aya™, then they
are in the same block of Aq,, H;

(2) if C is a block of Aga™ and M is not p-essential for any irreducible
character in C, then C is a block of Ag,,H.

2.2. Cyclotomic Hecke algebras
Let y be an indeterminate. We set g := yl#(l,

DEFINITION 2.7. A cyclotomic specialization of H is a Z g -algebra morph-
ism ¢ : Zg[v,v '] — Zkly,y~!] with the following properties:

o ¢:uc— Yy, where nc ; € Z for all C and j;
e for all C € A/W, and assuming that z is another indeterminate, the ele-
ment of Zg[y,y !, 2] defined by

ec—1

Te(y,2) = [] (= = Gy

5=0
is invariant by the action of Gal(K (y)/K(q)).

If ¢ is a cyclotomic specialization of H, the corresponding cyclotomic
Hecke algebra is the Zk[y,y~']-algebra, denoted by H,, which is obtained
as the specialization of the Z [v, v~1]-algebra H via the morphism ¢. It also
has a symmetrizing form ¢4 defined as the specialization of the canonical
form t¢.

REMARK. Sometimes we describe the morphism ¢ by the formula

uej g
The following result is proved in [5, Proposition 4.3.4].

PROPOSITION 2.8. The algebra K(y)Hy is split semisimple.
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For y =1 this algebra specializes to the group algebra KW (the form ¢,
becoming the canonical form on the group algebra). Thus, by Tits’s defor-
mation theorem, the specialization v¢ j — 1 induces the following bijections:

Irr (K (v)H) < Irr (K (y)Hy) < Irr(W),
Xv — X¢ =X

2.3. Rouquier blocks of the cyclotomic Hecke algebras
DEFINITION 2.9. We call the Rouquier ring of K, and we denote by
Ri(y), the Zg-subalgebra of K(y)

Ri(y):=Zkly,y " (" — 1),24].

Let ¢: vc; — y"¢7 be a cyclotomic specialization, and let Hy be the
corresponding cyclotomic Hecke algebra. The Rouquier blocks of H, are the
blocks of the algebra R (y)Hs.

REMARK. If we set ¢ := y/*(5l then the corresponding cyclotomic Hecke
algebra H, can be considered either over the ring Zg [y,y71] or over the
ring Zx[q,q~']. We define the Rougquier blocks of Hs to be the blocks of
Hy defined over the Rouquier ring Rx (y) in K (y). However, in other texts
(e.g., [2]), the Rouquier blocks are determined over the Rouquier ring R (q)
in K(q). Since R (y) is the integral closure of Ry (q) in K(y), [2, Propo-
sition 1.12] establishes a relation between the blocks of Rx (y)H, and the
blocks of R (q)He. Moreover, in the case where H is an Ariki-Koike algebra
(see Section 3.2), they coincide (see [7, Proposition 3.6]).

Set O :=Rxk(y), and let p be a prime ideal of Zg. The ring O is a
Dedekind ring (see, e.g., [5, Proposition 4.4.2]), and hence its localization
Opo at the prime ideal generated by p is a discrete valuation ring. Following
[7, Proposition 2.14], we have the following.

PROPOSITION 2.10. Two characters x,¢ € Irr(W) are in the same Rou-
quier block of Hy if and only if there exist a finite sequence Xo,X1,---,Xn €
Irr(W) and a finite sequence p1,...,pyn of prime ideals of Zx such that
® X0 =X and Xn =1;

e forall j (1 <j<n), the characters xj—1 and x; belong to the same block
of Op,0He.

The above proposition implies that if we know the blocks of the algebra
OpoHy for every prime ideal of Zg, then we know the Rouquier blocks of
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Hy. In order to determine the former, we can use the following theorem [5,
Theorem 3.3.2].

THEOREM 2.11. Let A:=Zk[v,v~!], and let p be a prime ideal of Zy .
Let My, ..., My, be all the p-essential monomials for W such that ¢(M;) =1
for all j=1,....k. Set qo:=pA, q; :=pA+ (M; —1)A for j=1,...,k,
and set Q:={qo,q1,---,qk}. Two irreducible characters x,v € Irr(W) are
in the same block of OyoH, if and only if there exist a finite sequence
X0s X1, -+ Xn € Irr(W) and a finite sequence q;,,...,q;, € Q such that
® Xo=X and Xn =1;

o for alli (1 <i<mn), the characters x;—1 and x; are in the same block of

Ag, K.

Let p be a prime ideal of Zg, and let ¢ : ve j — y"¢7 be a cyclotomic

specialization. If M =] ; vgcj’j is a p-essential monomial for W, then

¢(M) =1& ZQCJTLCJ =0.
C.j

Set m:=3 o4 /W €c- The hyperplane defined in C™ by the relation
Z acvjtcvj = 0’
C.j

where (t¢ j)c,; is a set of m indeterminates, is called a p-essential hyperplane
for W. A hyperplane in C™ is called essential for W if it is p-essential for
some prime ideal p of Zk. Respectively, a monomial is called essential for
W if it is p-essential for some prime ideal p of Zg.

DEFINITION 2.12. Let ¢ : ve ; — y"¢J be a cyclotomic specialization such
that the integers n¢ ; belong to only one essential hyperplane H (resp., to no
essential hyperplane). We say that ¢ is a cyclotomic specialization associated
with the essential hyperplane H (resp., with no essential hyperplane). We call
Rouquier blocks associated with the hyperplane H (resp., with no essential
hyperplane), and denote by BY (resp., BY), the partition of Irr(W) into
Rouquier blocks of Hy.

With the help of the above definition and thanks to Proposition 2.10 and
Theorem 2.11, we obtain the following characterization for the Rouquier
blocks of a cyclotomic Hecke algebra.
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PROPOSITION 2.13. Let ¢ : ve ;= y"¢7 be a cyclotomic specialization. If
the integers nc ; belong to no essential hyperplane, then the Rouquier blocks
of the cyclotomic Hecke algebra Hy coincide with the partition BY. Other-
wise, two irreducible characters x,v € Irr(W) belong to the same Rouquier
block of Hy if and only if there exist a finite sequence xo, X1, - - -, Xn € Irr(W)
and a finite sequence Hy, ..., H,, of essential hyperplanes that the n¢ ; belong
to such that
® Xo =X and Xn =1);

e foralli (1<i<n), the characters x;_1 and x; belong to BHi.

2.4. Functions a and A
Following the notation in [3, (6B)], for every element P(y) € C(y), we call
e valuation of P(y) at y, and denote by val,(P), the order of P(y) at 0 (we
have val,(P) <0 if 0 is a pole of P(y) and val,(P) >0 if 0 is a zero of
P(y)), and
e degree of P(y) aty, and denote by deg, (P), the opposite of the valuation

of P(1/y).
Moreover, if ¢q := y‘”(K”, then

valy(P) := and deg,(P) = — -
,u
For x € Irt(W), we define

Ay, o= Valy (sx(25 (v)) and Ay, = deg, (SX¢ (y)).
The following result is proved in [2, Proposition 2.9].

PROPOSITION 2.14. Let x,v € Irr(W). If x4 and 14 belong to the same
Rouquier block, then

ax¢+AX¢:aw¢+Aw¢.

The values of the functions a and A can be calculated from the generic
Schur elements. In order to explain how, we need to introduce the following
symbols.

DEFINITION 2.15. Let n € Z. We set

if
o nt:={" ! n>0, and (y")T :=nT;
0, ifn<0,
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, ifn <0,
- {n o and (y")” :=n".

0, ifn>0,

Now let us fix x € Irr(WW). Following the notations of Theorem 2.3, the
generic Schur element s, (v) associated to x is an element of Zg[v,v~!] of
the form

(1) Sy (V) = &Ny H Wi (M i)™t

i€l

We fix the factorization (1) for s,(v). The following result is used in [6]
in order to obtain that the functions a and A are constant on the Rouquier
blocks of the cyclotomic Hecke algebras of the exceptional complex reflection
groups.

PROPOSITION 2.16. Let ¢: ve j+— y"¢9 be a cyclotomic specialization.
Then

° valy(:;qu (v))
o deg,(sy,(y))

(N )T+ o(Ny)™ + Zie[x Ny, deg (W) (@(Myi)) ™
SN+ S(NY)™ + 2ier, M deg(Wyi) ((Myi)) ™

§3. Rouquier blocks of the cyclotomic Hecke algebras of G(de,e,r),
> 2

In [13], Kim determined the Rouquier blocks for the cyclotomic Hecke
algebras of G(de,e,r) following the method used in [2] for G(e,e,r). More
specifically, she applied Clifford theory to obtain the blocks of G(de,e,r)
from the blocks of G(de,1,r). However, due to the incorrect determination
of the Rouquier blocks for G(de,1,r) in [2] and further small mistakes in
[13], we will proceed here to some modifications to the results and their
proofs. Moreover, in the next section, the author explains why we have to
distinguish the case where r =2 (more precisely, where r = 2 and e is even).

3.1. Combinatorics

Let A = (A1, A2, ..., \p) beapartition, that is, a finite decreasing sequence of
positive integers A\; > Ay > - > Ap, > 1. The integer [A| :=A1 + Ao+ -+ Ay,
is called the size of A. We also say that \ is a partition of |A|. The integer h
is called the height of A, and we set h) := h. To each partition \ we associate
its B-number, B\ = (61, P2,...,0n), defined as follows:

Gii=h+XM—10:=h+X—2,....,0hb:=h+ A, — h.
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Multipartitions

From now on, let d be a positive integer. Let A = (A, XD A(d=1)) pe
a d-partition (i.e., a family of d partitions indexed by the set {0,1,...,d — 1}).
We set

W =hyw, B9 =By,
and we have
A@ = (A A, Al

The integer

d—1
NEL
a=0

is called the size of \. We also say that A is a d-partition of |\|.

Ordinary symbols

If 8= (061,02,...,0n) is a sequence of positive integers such that
81> B2 >---> [ and if m is a positive integer, then the m-“shifted” of 3
is the sequence of numbers defined by

Blm]=(B1+m,Ba+m,....0h +m,m—1,m—2,...,1,0).

Let A= (A@ XD Xd=1) be a d-partition. We call d-height of \ the
family (RO, A1) ... h(4=1D) and we define the height of \ to be the integer

hy = max{h(“) [(0<a<d-1)}.

DEFINITION 3.1. The ordinary standard symbol of X is the family of num-
bers defined by By = (B(O),B(l), e B(d_l)), where we have, for all cases of
a(0<a<d-1),

B@ .= 3@, — plo)],
The ordinary content of a d-partition of ordinary standard symbol B) is

the multiset
Conty, = BO upBMy...upE-1,

Charged symbols
Assume that we have a given weight system, that is, a family of integers

m:= (m(o),m(l),...,m(dfl)).
Let A= (AQ XD A1) be a d-partition. We call (d, m)-charged
height of A the family (he(® he ... held=D), where

he© = O _ O pe) — p0) (D peld=1)  pd=1) (a1

P
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We define the m-charged height of A to be the integer
hey = max{hc(a) [(0<a<d-—1)}.

DEFINITION 3.2. The m-charged standard symbol of A is the family of
numbers defined by Bey = (Bel®, Be(D | ... Beld=1), where we have, for all
cases of a (0<a<d—-1),

B .= 3@ [hey — bl

REMARK. The ordinary standard symbol corresponds to the weight sys-

tem
m® — () — ... = d=1) — .

The m-charged content of a d-partition of m-charged standard symbol
Becy is the multiset

Contcy = Bel® U BeW U ... U Beld=D,

3.2. Ariki-Koike algebras

The group G(d,1,7) is the group of all monomial r x r matrices with
entries in pg. It is isomorphic to the wreath product pugq!S,, and its field
of definition is K := Q((y). Its irreducible characters are indexed by the
d-partitions of r. If A is a d-partition of r, then we denote by x the corre-
sponding irreducible character of G(d,1,r).

The generic Ariki-Koike algebra is the algebra H,, generated over the
Laurent polynomial ring in d + 1 indeterminates

—1 -1 —1 1
Llug, Uy UL, UT ey UG—1, Uy, T, T

by the elements s,t1,to,...,t,._1 satisfying the relations
o stist; =tyst;s, st; =t;s for j #1;
o tit; 1t =ttt tit; =t;t; for [i — j| > 1; and
o (s—up)(s—ur) - (s—ug-1)=(t; —z)(t; +1)=0.
Let
Juie Gam (0<i<d),
¢ e gt
be a cyclotomic specialization for H4,.. Thanks to Proposition 2.13, in order
to determine the Rouquier blocks of (Hg, ), for any ¢, it suffices to deter-
mine the Rouquier blocks associated with no essential hyperplane and those
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associated with each essential hyperplane for G(d,1,r). Following [7], the
essential hyperplanes for G(d,1,r) are

o kN + My — M; =0, where —r < k <r and 0 < s <t < d such that Cj—Cfi
belongs to a prime ideal of Z[(4], and
e N=0.

We have proved the following (see [7, Propositions 3.12, 3.15, 3.17]).

THEOREM 3.3.

(1) The Rouquier blocks associated with no essential hyperplane are trivial.
(2) Two irreducible characters x and x, belong to the same Rouquier block
associated with the essential hyperplane kN + My — M; =0 if and only
if the following two conditions are satisfied:
o we have X9 = 1@ for all a ¢ {s,t};
o if M= (A ANO) and pt = (u®), u®), then Contcye = Contc,st
with respect to the weight system (0, k).
(3) Two irreducible characters x and x, belong to the same Rouquier block

associated with the essential hyperplane N =0 if and only if |)\(a)\ =
|| for alla=0,1,...,d—1.

Following Proposition 2.13, the above theorem gives us an algorithm for
the determination of the Rouquier blocks of any cyclotomic Ariki-Koike
algebra (see [7, Theorem 3.18)).

3.3. Rouquier blocks for G(de,e,r), r>2

The group G(de,e,r) is the group of all 7 x r monomial matrices with
entries in pge such that the product of all nonzero entries lies in pg.

Following Ariki [1], we define the Hecke algebra of G(de,e,r), r > 2, to
be the algebra Hge ., generated over the Laurent polynomial ring in d + 1
indeterminates

-1 -1 -1 -1
Llxo, Ty 51T ey Ba—1,T g 11 202

by the elements ag,a1,...,a, satisfying the relations

(a0 — wo)(ao — x1) -+ (ao — xg—1) = (a; — z)(a; + 1) =0for j=1,....m;
a1a3a1 = aza1a3, Gja;4+104; = aj410;a;41 for j=2,...,r —1;

ara; = ajar for j=4,...,r;

°

°

® (1104203010203 = A30102a03010492;

°

o a;aj =aja; for 2<i<j<r with j —i>1;
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-1 2 e—2/_—1 1-k .
e aparaz = (27 a1a2)" " azapar + (2 — 1)) 1 _ (2 ara2) "apar = ajagao;
and
® apa; =ajag for j=3,...,7.
Let

o Jmiedam ©0<j<a),
y—q"

be a cyclotomic specialization for Hge . In order to determine the Rouquier

blocks of (Hge )9, we might as well consider the cyclotomic specialization

y — quL‘

. {%’H 2 (0 << d),

Since the integers {(m;)o<j<d,n} and {(em;)o<j<a,en} belong to the same
essential hyperplanes for G(de, e, r), Proposition 2.13 implies that the Rou-
quier blocks of (Hgeer)o coincide with the Rouquier blocks of (Hge,er)¢-
We now consider the generic Ariki-Koike algebra Hg. , generated over
the ring
7 -1 -1 —1 —1
[’LLQ,UO y UL, Uq 5oy Ude—1,Uge_1,T, T ]

by the elements s,tq,to,...,t._1 satisfying the relations described in Sec-
tion 3.2. Let

/) {uchﬁzeq"j (0=j <de,n;:=mjmoda),

.,L,qun

be the “corresponding” cyclotomic specialization for Hge ., that is, the spe-
cialization with respect to the weight system

(m()amla"'7md—1am07m17"'7md—1a"'am07m17"' 7md—1)'

Set H := (Hge,r)g, and let H be the subalgebra of H generated by

e |
S ,tl =S tls,tl,tg,...,trfl.

We have

d—1
[I(s® = ¢lg™) = (&1 = ¢™) (B + 1) = (t: — ¢*") (£ + 1) = 0
=0
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fori=1,...,7—1. Then, by [1, Proposition 1.16], we know that the algebra
(Hde,e,r) is isomorphic to the algebra H via the morphism

ag +— s, ar—ti,a;—t1 (2<j<r).

We have the following result (see [13, Proposition 3.1]).

PROPOSITION 3.4. The algebra H is a free H-module of rank e with basis
{1,s,...,8°71}; that is,

H=H®sHD - ®s* 'H.

By [3, Proposition 1.18], the algebra H is symmetric and H is a symmetric
subalgebra of H. In particular, following Definition 1.10, H is the twisted
symmetric algebra of the cyclic group of order e over H (since s is a unit
in H). Therefore, we can apply Proposition 1.15 and obtain the following
(using the notations of Section 1.3).

PROPOSITION 3.5. If G is the cyclic group of order e and K := Q((ge),
then the block-idempotents of (ZRx (q)H)C coincide with the block-idempo-
tents of (ZRK(q)H)Gv, where Ry (q) is the Rouquier ring of K.

The action of the cyclic group GV of order e on Irr(K (q)H) corresponds
to the action generated by the cyclic permutation by d-packages on the
de-partitions (see, e.g., [17, Section 4.A]):

mg: WO A N@ QA=Y N (ed=d) N (ed=1)y

— ()\(ed—d)’ e A(ed_l)v)\((]) ’)\(d—l) ’)\(ed—Qd)’ . )\(ed—d—l))'

P PRI ey

More generally, the symmetric group &4, acts naturally on the set of
de-partitions of r: if 7 € &4, and v = (V(O), v V(de_l)) is a de-partition
of 7, then 7(v) := (7O (W) p(r(de=1))) The group GV is the cyclic
subgroup of G4, generated by the element

d—1le—1

ra= 11103+ k).

§=0k=1

Recall that H is the cyclotomic Ariki-Koike algebra of G(de,1,r) corre-
sponding to the weight system

(mg,ml,...,md,l,mg,ml,...,md,l,...,mg,ml,...,md,l).
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Following Proposition 2.13, the Rouquier blocks of H are unions of the
Rouquier blocks associated with the essential hyperplanes of the form

Mj+kd:Mj+ld (0§]<d) (0§k<l<e)

In order to show that the Rouquier blocks of H are stable under the action
of GV, it suffices to prove the following lemma.

LEMMA 3.6. Let A\ be a de-partition of r, let j €{0,...,d — 1}, and let
ke{l,...,e—1}. If p= (4,7 + kd)A, then x» and x,, belong to the same
Rouquier block of H.

Proof. Suppose that e = p{*p3?---p%m, where p; are prime numbers such
that ps # p; for s #t. For s € {1,2,...,m}, we set c¢s; := e/p?. Then
ged(es) =1 and, by Bezout’s theorem, there exist integers (bs)i<s<m such
that > ", bscs = 1. Consequently, k= >_"" | kbscs. We set kg := kbscs.

For all s € {1,2,...,m}, the element 1 — (S* belongs to the prime ideal of
Z[(4] lying over the prime number p,. So does 1 — ¢¥s. Now set

lo:=0 and ls ::Zkt(mode).
t=1

We have that the element Cé:ls_ld — é:lsd = g:ls_ld(l —(Z*) belongs to the

prime ideal of Z[(4] lying over the prime number p,. Therefore, the hyper-
plane Mj4;, ,q = Mj4;,q is essential for G(de,1,r). Following the charac-
terization of the Rouquier blocks associated with that hyperplane by The-
orem 3.3 and the fact that the ordinary content is stable under the action
of a transposition, we obtain that the Rouquier blocks of ‘H are stabilized
by the action of os:= (j + ls—1d, 7 + lsd). Set

0:=0100920 00,100, 00,_10:--009007].

Then the characters x) and x,() belong to the same Rouquier block of H.
It is easy to check that o(\) = p. U

Now the following result is immediate.

PrOPOSITION 3.7. If X is a de-partition of r, then the characters xx
and Xr,(n) belong to the same Rouquier block of H. Therefore, the blocks of
Rk (q)H are stable under the action of GV.

Thanks to the above result, Proposition 3.5 now reads as follows.
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COROLLARY 3.8. The block-idempotents of (ZRy(q)H)C coincide with
the block-idempotents of R (q)H.

Before we state our main result on the determination of the Rouquier
blocks of H, we will introduce the notion of “d-stuttering de-partition,”
following [13].

DEFINITION 3.9. Let X\ be a de-partition of r. We say that \ is d-stuttering
if it is fixed by the action of GV, that is, if it is of the form

A= ()\(O)’ T 7)\(d71)7)‘(0)7"'7)\(d71),...,A(O)a...,)\(dil))a

where the first d partitions are repeated e times.
We are now ready to prove the main result.

THEOREM 3.10. Let A be a de-partition of r, and let x) be the corre-

sponding irreducible character of G(de,1,r). We define Irr(K(q)H)x to be
the subset of Irr(K (q)H) with the property

K(QH o _
ResK(q)ﬂ X\ = Z ) X-
X€lrr(K(q)H)x

Then

(1) if A is d-stuttering and x is a block of Rk (q)H by itself, then there
are e irreducible characters (X))’(EIrr(K(q)H)y each of which is a block of
Ri(q)H by itself;

(2) the other blocks of Ry (q)H are in bijection with the blocks of R (q)H
via the map of Proposition 1.15; that is, the corresponding block-
idempotents of Ri(q)H coincide with the remaining block-idempotents
of Ri(q)H.

Proof. We will use here the notations of Propositions 1.12 and 1.15.

If A is a d-stuttering partition, then it is the only element in its orbit 2
under the action of GV. We have that |Q||Q| = |G| = e, whence there exist
e elements in Q =Irr(K (q)H) . If x € Q, then its Schur element sy is equal
to the Schur element sy of x. If x» is a block of R (q)H by itself, then,
by Propositions 2.10 and 1.8, s is invertible in R (¢) and so is sg. Thus,
X is a block of Ry (q)H by itself.

If A is not a d-stuttering partition and if b is the block containing y»,
then, in order to establish the desired bijection, we have to show that the
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block b of R (q)H that contains a character in Irr(K (q)H), is fixed by the
action of G, that is, that b= Tr(G,b). Thanks to Lemma 3.11, for all prime
divisors p of e, there exists a de-partition A(p) of  such that x)(,) belongs
to b and the order of G;(/A ) is not divisible by p. By Proposition 1.12,

we know that for each x € Irr(K (q)H) (), we have ]G;A(p) |G| = e. Thus,

|G| is divisible by the largest power of p dividing e. Since b = Tr(G,b),
the elements of Irr(K (q)H)y(,) belong to blocks of R (q)H conjugate of b
by G, whose stabilizer is Gj. By Lemma 1.13(1), we obtain that, for every
prime number p, |Gj| is divisible by the largest power of p dividing e. Thus,
Gy =G and Tr(G,b) =b.

It remains to show that if \ is a d-stuttering partition and x, is not a
block of Rx(q)H by itself, then there exists a partition x such that x, and
X belong to the same block of Rx(q)H and p is not d-stuttering. Then the
second case described above covers our needs.

If X is a d-stuttering partition, then the description of the Schur elements
for H (see, e.g., [20, Corollary 6.5]) implies that the essential hyperplanes
of the form

Mj+kd:Mj+ld (0§]<d) (0§]€<l<6)

are not essential for y). If now x, is not a block of R (q)H by itself, then,
by Proposition 2.13, there exists a de-partition p # A such that y, and
X belong to the same Rouquier block associated with another essential
hyperplane H for G(de, 1,r) such that the integers {(n;)o<j<de,en} belong
to H.

If H is N =0, then, by Theorem 3.3, we have |A@|= |u(®]| for all
a=0,1,...,de — 1. Since X\ # p, there exists s € {0,1,...,de — 1} such that
M) £ (9 If v is the partition obtained from A by exchanging A®) and
18), then y, and Y, belong to the same block of Ri(q)H and v is not
d-stuttering.

If H is of the form kN + My — M; = 0, where —r < k <rand 0 < s <t < de,
then A(@ = (@) for all a # s,t. If s# tmodd or e > 2, then p cannot be d-
stuttering. Suppose now that s =tmodd and e = 2. As mentioned above,
the hyperplane M, = M; is not essential for x), whence k # 0. Since the
integers {(n;)o<j<de,en} belong to H and n, = n;, we must have n =0. If
p is d-stuttering, then u(®) = u®, whence we deduce that |u(®)| = |u®| =
IABD] = |A®)|. Let v be the de-partition obtained from A by replacing A(*)
with #®. Then v is not d-stuttering and the characters y, and y, belong
to the same Rouquier block associated with the essential hyperplane N = 0.
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Since n = 0, Proposition 2.13 implies that y, and x, belong to the same
block of R (q)H. H

LEMMA 3.11. If X is not a d-stuttering partition of r and p is a prime
divisor of e, then there exists a de-partition A(p) of r such that x\ and x ()
belong to the same block of R (q)H and the order of G;Mm is not divisible
by p.

Proof. It XA = (MO Xd=D (&) \@d=1)  N(ed=d)  \led=1))
then, for ¢ =0,1,...,e — 1, we define the d-partition \; as follows:

A i= (A \Gd+D) G d=1))

Then A = (Mg, A1,...,Ae—1). Since A is not d-stuttering, there exists m €
{0,1,...,e—1} such that A\g # Ay,. We denote by A(p) the partition obtained
from A by exchanging A, and A, /.
and X (p) belong to the same block of R k(q)H. Moreover, by construction,

Due to Lemma 3.6, the characters

the de-partition \(p) is not fixed by the generator of the unique subgroup
of order p of GV, which proves that the order of its stabilizer is prime to

p- U

Functions a and A

e The description of the Rouquier blocks of H by Theorem 3.10,

e the relation between the Schur elements of 7 and the Schur elements of
‘H given by Proposition 1.12, and

e the invariance of the integers a, and A, on the Rouquier blocks of H,
resulting from [2, Proposition 3.18] and [7, Proposition 3.21], imply the
following.

PROPOSITION 3.12. The valuations ay and the degrees Ay of the Schur
elements are constant on the Rouquier blocks of H.

§4. Rouquier blocks of the cyclotomic Hecke algebras of G(de, e, 2)

If the integer e is odd, then the Hecke algebra of the group G(de,e,2)
can be viewed as a symmetric subalgebra of a Hecke algebra of the group
G(de,1,2), and all the results of the previous section hold.

If e is even, this cannot be done because there exist three orbits of
reflecting hyperplanes under the action of the group. Following [1, Proposi-
tion 1.16], Malle shows [16, Proposition 3.9] that the Hecke algebra of the
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group G(de,e,2) can be viewed as a symmetric subalgebra of a Hecke alge-
bra of the group G(de,2,2), and thus we can apply Clifford theory in order
to obtain the blocks of the former from the blocks of the latter.

4.1. Rouquier blocks for G(2d,2,2)
Let d > 1. The group G(2d,2,2) has 4d irreducible characters of degree
1,

and d? — d irreducible characters of degree 2,

XX (0<k#1<d),

: 1,2 1,2
with x.," = x5 -

The generic Hecke algebra of the group G(2d,2,2) is the algebra Hy
generated over the Laurent polynomial ring in d + 4 indeterminates

—1 —1 -1 -1 —1 -1 -1
Z[$07$0 s L1, Ty Y0, Y9 SYLLY1L 520,29 571,21 a-"azd—bzd_l]

by the elements s,t,u satisfying the relations

e stu=tus = ust,

o (s—wo)(s—x1)=(t—yo)(t—y1) = (u—z0)(u—21) - (u—24-1)=0.
The following theorem (see [16, Theorem 3.11]) gives a description of the

generic Schur elements for G(2d,2,2).

THEOREM 4.1. Let us denote by ®1 the first Q-cyclotomic polynomial
(i.e., ®1(q) = q—1). The generic Schur elements for Hq are given by

(I)l(xle z) (I)l y]yl ] H q)l Zkzl (1)1(1'1371 YY1 ]Zkzl 1))
=0,!

for the linear characters x;ji, and

d—1

2o ] (®lzezn)) - 1(zz,)

m=0,m#k,l

1
X H(q)l(XiXiliYiniliZkZl_l) ) ‘I)l(Xiijiylfiyi_lZle_l))7
i=0

with Xi2 =y, Yj2 =Y, Z,% := 2y, for the characters Xllf of degree 2.
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The field of definition of G(2d,2,2) is K := Q((24). Following Theo-
rem 2.2, if we set

IOV — (Z1) iy for i =0, 1, y}“(’()‘ = (~=1)"Jy; for j=0,1,

and

(K

Z]LN )l :Cd_k’z] for ]{;:071’...,d—1,

then the algebra K(Xy, X1,Yo0, V1,20, 21, .., 24-1)Hq is split semisimple.

Let J be the prime ideal of Z[(24] lying over 2. The description of the
generic Schur elements by Theorem 4.1 implies that the essential monomials
for G(2d,2,2) are
o XpX[ ! (J-essential);

e Yoy ! (J-essential);
° Zkal, where 0 < k <[ < d are such that Cclf — Ccll belongs to a prime ideal

p of Z[C2q] (p-essential);

° Xin__liyjyl__ljZkZl_l, where 0 <4,7 <1 and 0 <k <[ <d are such that
¢k — ¢! belongs to a prime ideal p of Z[(ag] (p-essential).

Let ¢ be a cyclotomic specialization for Hg, that is, a Zk-algebra morph-
ism of the form

¢ Xy yh, yj'—>ybj, Z, > y°k.
Set q := y'“(K)‘. Then ¢ can be described as follows:
¢ ai— (—1)'q%, oy (=174, oz (gt

Due to Proposition 2.8, Tits’s deformation theorem implies that the spe-
cialization y +— 1 induces a bijection

Irr (K (y)(Ha)g) < Irr(G(2d,2,2)),
X¢ > X-

For x € Irr(G(2d,2,2)), let sy, be the corresponding cyclotomic Schur ele-
ment. As in Section 2.4, we set

valy(sy, (v))
Uyy = valq(sx¢(y)) = W
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and
deg, (s
Ay =y o, () = 20,

Then, by Proposition 2.14, we have that if two irreducible characters x4
and 14 belong to the same Rouquier block of (Hg)e, then

CLX¢+AX¢:CL¢,¢+A¢¢.

Thanks to the formulas of Proposition 2.16, the following result derives
immediately from the description of the generic Schur elements by Theo-
rem 4.1.

PROPOSITION 4.2. Let x € Irr(G(2d,2,2)). If x is a linear character x;jk,

then
d—1

Ay +AX¢ :d(ai — a1—; +bj — blfj —|-2Ck) — 2201.
=0

If x is a character X,lf of degree 2, then

d—1
ayy + Ay, = d(ck + 1) —22 Cm-
m=0

Following Proposition 2.13, in order to determine the Rouquier blocks
of the cyclotomic Hecke algebras of G(2d,2,2), it suffices to determine the
Rouquier blocks associated with its essential hyperplanes.

THEOREM 4.3. For the group G(2d,2,2), we have the following.

(1) The nontrivial Rouquier blocks associated with no essential hyperplane
are
{Xki: X} for all0<k <l<d.

(2) The nontrivial Rouquier blocks associated with the J-essential hyper-
plane Ay = Ay are

{X0jk, X1k} for all0<j§ <1 and 0<k <d,
{Xh> X} forall0<k<l<d.

(3) The nontrivial Rouquier blocks associated with the J-essential hyper-
plane By = By are

{Xiok, Xitk} for all0<i<1 and 0<k <d,
(Xb X3 forall0<k<l<d.
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(4) The nontrivial Rouquier blocks associated with the p-essential hyper-
plane Cr, =C; (0<k<l<d) are

{Xijk> xaji}  for all 0 <1, j <1,
{Xhom> Xiems Xim> Xim s Jor all 0 <m < d with m ¢ {k,1},

{X}ChXZl}y
IxLoxX2Y  forall0<r<s<dwithrs¢{k,l}.

(5) The nontrivial Rouquier blocks associated with the p-essential hyper-
plane A; —A1_;+B;j —B1_;+C,—C;=0 (0<4,j<1) (0<k<i<d)
are

{Xijkv)(l—i,l—j,laX}lglaX%l}v
{Xte: X2} for all 0 <r < s <d with (r,s) # (k).

Proof. Following Definition 2.12, in each case we need to determine the
Rouquier blocks of a cyclotomic Hecke algebra obtained via a specialization
associated with the corresponding essential hyperplane. We recall that, due
to Proposition 1.8, if a hyperplane is essential for an irreducible character
X, then x is not a Rouquier block by itself. Moreover, Proposition 2.6(1)
implies that the Rouquier blocks associated with an essential hyperplane
are unions of the Rouquier blocks associated with no essential hyperplane.

(1) Let ¢ be any cyclotomic specialization associated with no essential
hyperplane. Due to Proposition 1.8, each linear character is a Rouquier
block by itself, whereas any character of degree 2 is not. Now, by Propo-
sition 2.14, we have that if two irreducible characters x4 and ¢ belong
to the same Rouquier block of (Hg)g, then ay, + Ay, = ay, + Ay,. The
formulas of Proposition 4.2 imply that the character x},;, (0 <k <[ <d)
can be in the same block only with the character le.

(2) Let ¢ be any cyclotomic specialization associated with the J-essential
hyperplane Ay = Aj. Since this is not an essential hyperplane for the
characters of degree 2, Proposition 2.6 implies that {x};, x%,} is a Rou-
quier block of (Hg)g4 for all 0 <k <1< d. Now, the hyperplane Ay = A4,
is J-essential for all characters of degree 1, and thus, by Proposition 1.8,
the linear characters do not form blocks by themselves. Due to Proposi-
tion 2.14, the formulas of Proposition 4.2 imply that the character xo;x
(0<j<1,0<k<d) can be in the same block only with the character

X1jk-
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(3) For the J-essential hyperplane By = Bj, we use the same method as in
the previous case.

(4) Let ¢ be a cyclotomic specialization associated with the p-essential
hyperplane Cj, = C}, where 0 < k <[ < d. Since the Rouquier blocks
associated with an essential hyperplane are unions of the Rouquier
blocks associated with no essential hyperplane, the characters x., and
X2, are in the same Rouquier block of (Hg)y for all 0 <r < s <d.

The hyperplane Cj, = C} is p-essential for the linear characters

Xijks Xij1  forall 0<i,j <1,
and the characters of degree 2
Xhs X Xos Xim for all 0 <m < d with m ¢ {k.1}.

Due to Proposition 2.14, the formulas of Proposition 4.2 imply that

e the character x;jir (0 <14,j <1) can be in the same block only with
the character x;j;, and

e the character xi (0 <m < dand m ¢ {k,l}) can be in the same
block only with the characters Xim, Xllma Xzzm-

Let m € {0,1,...,d — 1} \ {k,I}. We have that the characters x}, = and

X2, are in the same Rouquier block of (Hg)s. The same holds for the

characters Xllm and Xlzm‘ Therefore, in order to obtain the desired result,

it is enough to show that {x% X%, } is not a Rouquier block of (Hq)s-

Following [16, Table 3.10], there exists an element 77 of H,4 such that

Xhn (T1) = X (T1) = @0 + 1.

Let O be the Rouquier ring of K. Suppose that {X,lcm,xim} is a block
of Opo(Hq)s. Then, by Corollary 1.7, we must have

Sk (1) | 02T _
s oty =0t (5 5 ) €9

Since ¢ is associated with the hyperplane Cy = C}, we have that

¢(zo+21) ¢ 9O,

1 1

and thus we obtain that
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Using the formulas of Theorem 4.1, we can easily calculate that the
above element does not belong to Oye.

(5) Let ¢ be a cyclotomic specialization associated with the p-essential
hyperplane A; — A1_; + B; — B1_; + C, — C; =0, where 0 <14,j <1
and 0 < k <l < d. This hyperplane is p-essential for the following char-
acters:

1 2
Xijks X1—i,1—j,l and Xkl O Xki-

Let O be the Rouquier ring of K. If the hyperplane is essential for only
three characters, then, due to Proposition 1.8, these three characters are
in the same block of Op0(Hg)e. Otherwise, using the same argument
as in the previous case, we can prove that all four characters are in
the same block of Op0(Ha)s. Now, by Proposition 2.10, the Rouquier
blocks of (H4)e are unions of the blocks of Opo(Ha)e and Oyo(Ha)e-
Therefore, the nontrivial Rouquier blocks of (Hg), are

{Xghs X1—i 105 Xot> Xat
It X2 forall 0 <r < s<dwith (r,s) # (k,1).

O

We are now going to prove the following desired result about the functions
a and A.

PROPOSITION 4.4. Let ¢ : x; — (—1)ig%,y; — (=1)7¢%, 21, kg% be a
cyclotomic specialization for Hg. If the irreducible characters x4 and g
belong to the same Rouquier block of (Hq)gs, then

Uy = Ay, and AX¢:A¢¢.

Proof. Thanks to Proposition 2.13, it suffices to show that the valuations
ay, and the degrees A, of the Schur elements are constant on the Rouquier
blocks associated with an essential hyperplane H (resp., no essential hyper-
plane), when the integers a;,bj,c; belong to the hyperplane H (resp., no
essential hyperplane).

First, due to the description of the Schur elements by Theorem 4.1 and
the formulas of Proposition 2.16, we can deduce that the Schur elements of
the characters x}; and x2, (0 <k < <d) have the same valuation and the
same degree for any cyclotomic specialization ¢.

For the same reasons, we have that
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e if ag = ay, then

Uxoie = Ox1jk and A Alek foral 0<7<1,0<k <d,

Xojk —

e if by = by, then

Qyion = Qg and Avior = Axiy, forall 0<i<1,0<k<d,
o if o, =¢; (0<k<l<d), then
Uxiin = Oxiji and Axijrn = Ay forall 0<id, 5 <1,
a1z =a and Axi}i :Axllr,f for all m € {0,1,...,d — 1} \ {k,1}.

Now let us suppose that a; —aj—;+b; —b1—j+cp—¢; =0, with 4, j € {0,1},
k,1€{0,1,...,d—1}, and k <l. We have to show that

=A =A_12.

Axije = Axa—i1—j1 = ax}cf and A X1—i,1—4,0 Xk

Xijk
Due to Proposition 2.14, it suffices to show that
Axigre = Oxa—in—ju = ax};f‘

Using the notations of Proposition 2.16, Theorem 4.1 implies that

Uy = (@i —a1—3)" + (bj —b1-5)~

d—1
+ [(Ck — Cm)_ + (ai —aj—;+ bj — blfj +cr — Cm)_],
m=0,m#k
Ax1—in—j1 = (al—i - ai)i + (bl—j - bj)i
d—1
+ [(Cl —Cm)i +(a1_i—ai+b1_]’ —bj+cl —Cm)f],
m=0,m#l
d—1

axllc,ZQ = Z [(Ck - Cm)_ + (Cl - CM)_]

m=0,m#k,l
1

+(1/2) ) [(an — ar—p + by — bi_p +cp — 1)~
h=0

+(ap—ai—p+b1_p—bp+c—cp) ]
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Since a; — a1—; +bj — bi—; + ¢, — ¢; = 0, the above relations give

d—1
i :(ai—al Z) (b —bi_ ]) + Z Ck_cm +(Cl_cm)_]v
m=0, m#k
d—1
i iyga = (@i —a) "+ (b1 =b) "+ Y (@ —em)” + (e —em) ],
m=0, m#l
d—1
axif_ Z [(cx —em)™ + (a1 —cm) |+ D,
m=0,m#k,l
where

[ G-t ) iti=d
(a1-i —ai)” 4+ (bi—j = bj)” + (a —cx)”, ifi#]

Obviously, if ¢ = j, then @12 = Ay and if ¢ # j, then a’x}f =Gy, _;1 -
Therefore, it is enough to show that ay,,, =ay,_,,_;,, that is, that

(ai —a1—)" + (bj —b1—j)” + (s —a)”
=(a1-i—a;))” + (bi—; —bj)” +(a —cx)".

Since n~ — (—n)” =n, forallne€Z and a; —a1—;+bj —b1—j +cx — =0,
the above equality holds. []
4.2. Rouquier blocks for G(2pd,2p,2)
Let p,d > 1. We denote by Hapgop2 the generic Hecke algebra of

G(2pd, 2p,2) generated over the Laurent polynomial ring in d 4+ 4 indeter-
minates

Z[XO7X()_17X17X1_17Yb7}/0_17Y17Y1_17ZO)Zo_lu217Z1_17‘“)Zd—luzd__ll]a

by the elements S, T, U satisfying the relations
o (S—=Xo)(S—X1)=(T=Yo)(T-Y1)=(U—20)(U—~21)--- (U= Za-1)=0,
e STU=UST, TUS(TS)P~* =U(ST)P.
Let ‘
Xi— (—=1)q% (0<i<1),
0: Y (-1)¢%  (0<j <),
Zy, > Chiger (0<k<d)
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be a cyclotomic specialization for Hapq2p 2. In order to determine the Rou-
quier blocks of (Hapd,2p2), we might as well consider the cyclotomic spe-
cialization
X (=1)igrs  (0<i<1),
¢: QY (~1)g? (0<j<1),
Zk»—>(§qpck (0<k<d).
Since the integers {a;, bj, c;} and {pa;, pb;j, pcy} belong to the same essential
hyperplanes for G(2pd,2p,2), Proposition 2.13 implies that the Rouquier
blocks of (Hapd,2p,2)9 coincide with the Rouquier blocks of (Hapg,2p.2)e-
We now consider the generic Hecke algebra H,q of G(2pd, 2,2) generated
over the ring

-1 -1 -1 -1 -1 -1 -1
Z[gjO)xO Yy L1, Ly Y0, Yy HY1, Y1 520,20 »<1,°1 a"'azpd—thd_l]

by the elements s,t,u satisfying the relations described in the beginning of
Section 4.1. Let

zi— (—1)gP%  (0<i<1),
¢ qyi— ()¢ (0<5 <),
2k = g (0 <k <pd,ey = crmodd)

be the “corresponding” cyclotomic specialization for Hpg. Set H := (Hpq)q,
and let H be the subalgebra of H generated by s,t¢, and u”. We have

d—1

(s = ") (s +¢") = (t — ™) (t + ¢*") = [ [ (w* = Cfg"*) = 0.
k=0

Then (as stated in [16, Proposition 3.9]) [1, Proposition 1.16] implies that
the algebra (Hapa,2p.2)e is isomorphic to the algebra H via the morphism

S s, T—t, U uP.

Under Assumptions 2.1, the algebra H is of rank (2pd)?, whereas the
algebra H is of rank (2pd)?/p. The following is immediate.

PROPOSITION 4.5. The algebra H is a free H-module with basis {1,u, ...,
uP~1Y; that is,
H=HeuHa- - &u’ 'H.
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Again under Assumptions 2.1, the algebra H is symmetric and H is a
symmetric subalgebra of H. In particular, following Definition 1.10, H is
the twisted symmetric algebra of the cyclic group of order p over H (since u
is a unit in H). Therefore, we can apply Proposition 1.15 and obtain (using
the notation of Section 1.3) the following.

PROPOSITION 4.6. If G is the cyclic group of order p and K := Q((2pd),
then the block-idempotents of (ZR(q)H)® coincide with the block-idempo-
tents of (ZRx (q)H)C", where Ry (q) is the Rouquier ring of K.

The action of the cyclic group GV of order p on Irr(K (q)H) corresponds
to the action

Xigk = Xightd (0<4,5<1) (0<k <pd),

1,2 1,2
Xp1 = Xeragra (0<k<I<pd),

where all the indexes are considered mod pd. With the help of the following
lemma, we will show that the Rouquier blocks of H are stable under the
action of GV. Here the results of Theorem 4.3 will be used as definitions.

LEMMA 4.7. Let k1, ko, ks be three distinct elements of {0,1,...,pd—1}.
If the blocks of Rk (q)H are unions of the Rouquier blocks associated with the
(not necessarily essential) hyperplanes Cy, = Cy, and Cy, = Cy,, then they
are also unions of the Rouquier blocks associated with the (not necessarily
essential) hyperplane Cy, = Cy,.

Proof. We only need to show that

(a) the characters x; gk, and X; i, are in the same block of Rx(q)H for
all 0<4,5 <1, and

(b) the characters X,fm and X};m are in the same block of R (q)H for all
0 <m < pd with m & {ky,ks}.

Since the blocks of Rk (q)H are unions of the Rouquier blocks associated

with the hyperplanes Cj, = Cj, and Cy, = Cj,, Theorem 4.3 yields that

(1) the characters x; gk, and x;;r, are in the same block of Rx(q)H for
all 0<i,j <1

(2) the characters x; i, and x;jk, are in the same block of Ry (q)H for
all 0< 4,7 <1;

(3) the characters Xifm and Xllgfm are in the same block of Rk (¢)H for all
0 <m < pd with m ¢ {k1,ks}; and
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(4) the characters Xi22m and Xlqum are in the same block of Rk (¢)H for all
0 <m < pd with m ¢ {ka, ks}.

We immediately deduce (a) for all 0 <4,j <1, and (b) for all 0 <m < pd

with m ¢ {k1,ke,k3}. Finally, (3) implies that the characters X]1€’12,k3 and

Xllcfk;g are in the same block of Rk (¢)H, whereas by (4), Xi’sz and X,1€’12k3

are also in the same block of Rk (¢)H. Thus, the characters X/lg’lz k, a0d X,if ks
belong to the same Rouquier block of H.

THEOREM 4.8. The blocks of R (q)H are stable under the action of GV.

Proof. Following Proposition 2.13, the Rouquier blocks of H are unions
of the Rouquier blocks associated with all the essential hyperplanes of the
form

Chimd =China (0<h<d,0<m<n<p).

Recall that the hyperplane Cpimg = Ching is actually essential for
G(2pd,2,2) if and only if the element ngmd — I};j”d belongs to a prime
ideal of Z[(apq), that is, if and only if the element (" — ¢ belongs to a
prime ideal of Z[(ap4].
Suppose that p= ptl1 pgz --plr, where the p; are distinct prime numbers.
For s € {1,2,...,r}, we set hs:=p/p’. Then gcd(hs) =1 and, by Bezout’s
theorem, there exist integers (gs)1<s<r such that Y ._; gshs = 1. The ele-
ment 1 — Cpshs belongs to all the prime ideals of Z[(2,4] lying over the prime

number pg. Let h € {0,1,...,d — 1}, and let m € {0,1,...,p —2}. Set
lop:=m and ls:=(ls—1+ gshs)modp, foralls (1<s<r).

We have that the element (5" — L= L=1(1 — ¢9=h<) belongs to all the
prime ideals of Z[(2pq] lying over the prime number p,. Therefore, the hyper-
plane Ch41, ,a = Chi.4 is essential for G(2pd, 2,2) for all s (1 < s <r). Since
lo=m and [, =m+1, Lemma 4.7 implies that the Rouquier blocks of H are
unions of the Rouquier blocks associated with the (not necessarily essential)

hyperplane
Chimd = Chy(m11)ds

following their description by Theorem 4.3. Since this holds for all m such
that 0 <m < p— 2, Lemma 4.7 again implies that the Rouquier blocks of
‘H are unions of the Rouquier blocks associated with all the hyperplanes of
the form

Chimd = China (0<m<n<p),
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for all A(0 < h < d). We deduce that

(1) the characters (X jh+md)o<m<p belong to the same block of Rx(q)H,
forall 0<i,j<1land 0<h<d;

(2) the characters (X}Limd,h+nd)0ém<n<p belong to the same block of
Ric(q)H, for all 0 < h < d; and

(3) the characters (Xilzﬁmd,h’+nd)0§mvn<p belong to the same block of
Ri(q)H, for all 0 < h < h' < d.

Hence, the blocks of Ry (q)H are stable under the action of GV. U
Following Theorem 4.8, Proposition 4.6 now gives the following.

COROLLARY 4.9. If G is the cyclic group of order p and K := Q((2pa), then
the block-idempotents of (ZR(q)H)C coincide with the block-idempotents
of Rk (q)H.

Now, let x € Irr(K (¢)H). Using the notation of Proposition 1.12, we have
that ||| = p. Since || = p, we obtain that |Q2] = 1, and thus e(%) is fixed
by the action of G. Therefore, the block-idempotents of Ry (q)H are also
fixed by the action of G. Consequently, we obtain the following.

PROPOSITION 4.10. The block-idempotents of Ry (q)H coincide with the
block-idempotents of Ry (q)H.

Thanks to the above result, in order to determine the Rouquier blocks
of H, it suffices to calculate the Rouquier blocks of H and restrict all the
characters to H. The Rouquier blocks of H can be obtained with the use of
Theorem 4.3.

Now,

e the description of the Rouquier blocks of H by Proposition 4.9,

e the relation between the Schur elements of H and the Schur elements of
‘H given by Proposition 1.12, and

e the invariance of the integers a, and A, on the Rouquier blocks of H,
resulting from Proposition 4.4, imply the following.

PROPOSITION 4.11. The valuations ay and the degrees Ay of the Schur
elements are constant on the Rouquier blocks of H.
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