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NONARCHIMEDEAN GEOMETRY OF WITT VECTORS

KIRAN S. KEDLAYA

Abstract. Let R be a perfect Fp-algebra equipped with the trivial norm.
Let W (R) be the ring of p-typical Witt vectors over R equipped with the

p-adic norm. At the level of nonarchimedean analytic spaces (in the sense of

Berkovich), we demonstrate a close analogy between W (R) and the polynomial

ring R[T ] equipped with the Gauss norm, in which the role of the structure

morphism from R to R[T ] is played by the Teichmüller map. For instance, we

show that the analytic space associated to R is a strong deformation retract

of the space associated to W (R). We also show that each fiber forms a tree

under the relation of pointwise comparison, and we classify the points of fibers

in the manner of Berkovich’s classification of points of a nonarchimedean disk.

Some results pertain to the study of p-adic representations of étale fundamental
groups of nonarchimedean analytic spaces (i.e., relative p-adic Hodge theory).
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§0. Introduction

There now exist several approaches to nonarchimedean analytic geometry,

including rigid analytic geometry (Tate), formal geometry (Raynaud), and
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adic geometry (Huber, Fujiwara-Kato). However, the approach exhibiting

the closest links with classical topology is that of Berkovich [2]. Berkovich

overcomes the lack of connectivity of nonarchimedean topologies by con-

sidering spaces of multiplicative seminorms, using an analogue of the usual

Gel’fand transform relating commutative Banach algebras to spaces of con-

tinuous functions on compact topological spaces.

Much is known about the topology of Berkovich analytic spaces. For

instance, Berkovich showed that smooth analytic spaces over a field are

locally contractible (see [4], [5]). More recently, Payne [24] showed that the

analytification of an algebraic variety over a field can be viewed as an inverse

limit of finite polyhedral complexes; separately, Hrushovski and Loeser [15]

have used model-theoretic techniques to show that such analytifications are

locally contractible and retract onto finite CW-complexes. One can also

relate homotopy types of analytic spaces to degenerations; for instance, the

analytification of a semistable curve over a complete discretely valued field

has the same homotopy type as the graph of the special fiber of a minimal

proper regular model over the valuation subring. This relationship, and its

link to mixed Hodge structures, has been further pursued by Berkovich [6]

and Nicaise [23].

In this paper, we consider degenerations in mixed characteristic from the

point of view of Witt vectors. Recall that for p a fixed prime number, the

p-typical Witt vector functor converts perfect Fp-algebras into p-adically

complete algebras. Let R be a perfect Fp-algebra equipped with the trivial

norm, and equip the associated Witt vector ringW (R) with the p-adic norm.

Let M(R) and M(W (R)) denote the resulting Berkovich spaces. There is

a natural multiplicative map R→W (R) given by Teichmüller lifting; this

map is not a ring homomorphism, but it nonetheless induces a restriction

map μ :M(W (R))→M(R) as if it were a homomorphism.

We establish several results that liken the relationship between M(R)

and M(W (R)) to the relationship between M(R) and M(R[T ]) when R[T ]

carries the Gauss norm (i.e., between a base space and a disk bundle over the

base). We first construct a continuous section λ :M(R)→M(W (R)) giving

a maximal lifting of a seminorm on R to W (R); this identifies M(R) as a

retract of M(W (R)). We then refine this calculation to show (Theorem 7.8)

that M(R) is a strong deformation retract of M(W (R)) and that any sub-

set of M(R) has the same homotopy type as its inverse image under the

projection μ. We finally describe the geometry of the fibers of the projection

map μ: each fiber may be naturally viewed as a tree in both a topological
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fashion (as an inverse limit of finite contractible 1-dimensional simplicial

complexes) and a combinatorial fashion (as a partially ordered set in which

any two elements dominating a common third element are comparable).

The motivation for this work is to describe p-adic Hodge theory (the

study of continuous representations of Galois groups of finite extensions of

the p-adic field Qp) in a fashion that permits consideration also of étale

fundamental groups of analytic spaces. A preview of such a description

is given in [20], together with an application to the construction of local

systems on Rapoport–Zink period spaces; that preview already includes a

few of the results given here, including the definition of the maps λ and μ.

A related development is a reformulation of p-adic Hodge theory by Fargues

and Fontaine [11], in which one works with coherent sheaves on an object

constructed from a ring of Witt vectors, which behaves formally like an

analytic curve.

§1. Nonarchimedean analytic spaces

We begin by setting notation and terminology concerning nonarchime-

dean analytic spaces, as in [2].

Definition 1.1. Consider the following conditions on an abelian group

G and a function α :G→ [0,+∞).

(a) For all g,h ∈G, we have α(g− h)≤max{α(g), α(h)}.
(b) We have α(0) = 0.

(b′) For all g ∈G, we have α(g) = 0 if and only if g = 0.

We say that α is a seminorm if it satisfies (a) and (b) and a norm if

it satisfies (a) and (b′). These would typically be called nonarchimedean

seminorms and norms, but we will use no other kind in this paper.

If α,α′ are two seminorms on the same abelian group G, we say that α

dominates α′, and we write α≥ α′ or α′ ≤ α, if there exists c ∈ (0,+∞) for

which α′(g)≤ cα(g) for all g ∈G. If α and α′ dominate each other, we say

that they are equivalent ; in this case, α is a norm if and only if α′ is.
Let G,H be two abelian groups equipped with seminorms α,β. We say

that a homomorphism φ :G→H is bounded if α dominates β ◦ φ. We say

that φ is isometric if α= β ◦ φ.

Definition 1.2. Let α be a seminorm on an abelian group G. For any

subgroup H of G, α induces a quotient seminorm on G/H defined by

g+H �→ inf
{
α(g+ h) : h ∈H

}
.
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This defines a norm if H is closed; for instance, the quotient seminorm on

G/ker(α) is a norm.

The group of Cauchy sequences in G carries a seminorm defined by

(x0, x1, . . .) �→ lim
i→∞

α(xi).

Passing to the quotient by the kernel of this seminorm gives the separated

completion Ĝ of G. The map G→ Ĝ given by x �→ x,x, . . . is an isometry

and hence injective if α itself is a norm; in that case, we call Ĝ simply the

completion of G.

Definition 1.3. Let A be a ring. Consider the following conditions on a

multiplicative seminorm α on the additive group of A.

(c) We have α(1)≤ 1, and for all g,h ∈A, we have α(gh)≤ α(g)α(h).

(c′) We have (c), and for all g ∈A we have α(g2) = α(g)2.

(c′′) We have (c), and for all g,h ∈A, we have α(gh) = α(g)α(h).

We say that α is submultiplicative if it satisfies (c), power-multiplicative if

it satisfies (c′), and multiplicative if it satisfies (c′′). We make some quick

observations about these definitions.

(i) For α a submultiplicative seminorm, α(1) = 1 unless α is identically

zero.

(ii) Any power-multiplicative seminorm α satisfies α(gn) = α(g)n for all

g ∈A and all nonnegative integers n.

(iii) Any multiplicative seminorm is power-multiplicative.

(iv) If α is a submultiplicative seminorm and α′ is a power-multiplicative

seminorm, then α≥ α′ if and only if α(a)≥ α′(a) for all a ∈A.

Example 1.4. For any abelian group G, the trivial norm on G sends 0

to 0 and any nonzero g ∈G to 1. For any nonzero ring A, the trivial norm

on A is submultiplicative in all cases, power-multiplicative if and only if A

is reduced, and multiplicative if and only if A is an integral domain. (The

trivial norm on the zero ring is multiplicative by virtue of the fact that we

do not force α(1) = 1.)

Definition 1.5. For A a ring equipped with a submultiplicative semi-

norm | · |, we write

oA =
{
x ∈A : |x| ≤ 1

}
,

mA =
{
x ∈A : |x|< 1

}
,

κA = oA/mA.
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If A is a field and | · | is a multiplicative norm, then κA is also a field. (The

field κA is normally called the residue field of A, but we will use this term

mostly for something else; see Definition 1.9.)

Definition 1.6. Let A be a ring equipped with a submultiplicative

(semi)norm | · |. For r ≥ 0, the r-Gauss (semi)norm | · |r on A[T ] (for

the generator T , when this needs to be specified) is the submultiplicative

(semi)norm defined by the formula

(1.6.1)
∣∣∣∑

i

xiT
i
∣∣∣
r
=max

i

{
|xi|ri

}
;

this is multiplicative if | · | is multiplicative (see Lemma 1.7). We refer to

the 1-Gauss (semi)norm also simply as the Gauss (semi)norm (or Gauss

extension).

Lemma 1.7. Let A be a ring equipped with a multiplicative seminorm | · |.
Then for any r ≥ 0, the r-Gauss seminorm on A[T ] is multiplicative.

Proof. This is evident in case r = 0, so assume that r > 0. Let a =∑
j ajT

j , b =
∑

k bkT
k be any two elements of A[T ]. Choose the smallest

indices j, k for which |aj |rj , |bk|rk are maximized, and put i = j + k. The

coefficient of T i in ab is then equal to ajbk plus the sum of aj′bk′ over all

pairs (j′, k′) 	= (j, k) for which j′ + k′ = j + k. For each such pair, either

j′ < j, in which case

|aj′ |rj
′
< |aj |rj , |bk′ |rk

′ ≤ |bk|rk,

or k′ < k, in which case

|aj′ |rj
′ ≤ |aj |rj , |bk′ |rk

′
< |bk|rk.

In both cases, we conclude that |aj′bk′ |< |ajbk|, so the coefficient of T i in

ab has norm |ajbk|. This forces |ab|r = |a|r|b|r, as desired.

Remark 1.8. For each z ∈ A, one has a r-Gauss seminorm on A[T ] for

the generator T − z. This seminorm can also be constructed by equip-

ping A[T ] with the s-Gauss norm for some s ≥ max{r, |z|}, forming the

r-Gauss extension to A[T ][U ], and then passing to the quotient norm on

A[T ][U ]/(U − T + z)∼=A[T ].
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Definition 1.9. Let A be a ring equipped with a submultiplicative norm

| · |. The Gel’fand spectrum M(A) of A is the set of multiplicative semi-

norms α on A dominated by | · |, topologized as a closed subspace of the

product
∏

a∈A[0, |a|] (see Definition 1.3(iv)). In particular, M(A) is com-

pact by Tikhonov’s theorem. A subbasis of the topology on M(A) is given

by the sets {α ∈M(A) : α(f) ∈ I} for each f ∈ A and each open interval

I ⊆R. For any bounded homomorphism φ :A→B between rings equipped

with submultiplicative norms, restriction along φ defines a continuous map

φ∗ :M(B)→M(A); this map is a homeomorphism when B = Â.

For α ∈ M(A), the seminorm α induces a multiplicative norm on the

integral domain A/α−1(0) and hence also on Frac(A/α−1(0)). The comple-

tion of this latter field is the residue field of α, denoted H(α). (Note that

H(α) itself has a “residue field” κH(α) in the sense of Definition 1.5.)

Theorem 1.10. Let A be a nonzero ring equipped with a submultiplicative

norm | · |. Then M(A) 	= ∅.

Proof. Replace A by its completion, and then apply [2, Theorem 1.2.1].

Definition 1.11. Let A be a ring equipped with a submultiplicative

norm | · |. Let | · |sup :
∏

α∈M(A)H(α)→ [0,+∞] denote the supremum of the

norms on the H(α). Let P be the inverse image of [0,+∞) under | · |sup;
then | · |sup defines a power-multiplicative norm on P . The diagonal map

A→
∏

α∈M(A)H(α) then factors through a bounded homomorphism A→
P , called the Gel’fand transform of A.

Lemma 1.12. Let A be a ring equipped with a submultiplicative norm | · |.
Then the restriction of | · |sup to A along the Gel’fand transform computes

the spectral seminorm |a|sp = lims→∞ |as|1/s on A.

Proof. See [2, Theorem 1.3.1].

Remark 1.13. Let A be a ring equipped with a submultiplicative norm

| · |. Let I ⊂ A be the kernel of the spectral seminorm. Choose a closed

subset X of M(A). Let S be the multiplicative subset of a ∈A/I for which

inf{α(a) : α ∈ X} > 0. Put B = S−1(A/I), equipped with the supremum

norm over X ; then the map A→B is a bounded homomorphism inducing

a homeomorphism of M(B) with a closed subset of M(A) containing X .

In many (but not all) cases, this closed subset equals X ; for instance, this

occurs for the sets described in Definition 1.14 below. This is related to the
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nonarchimedean analogues of the notions of holomorphically convex and

meromorphically convex sets (see [2, Section 2.6]).

The following examples of the previous construction occur when com-

paring nonarchimedean analytic geometry with formal geometry or rigid

analytic geometry (as explained in [3, Section 1.6]).

Definition 1.14. Let A be a ring equipped with a submultiplicative

norm | · |. A Weierstrass subspace of M(A) is a closed subspace of the form

U =
{
α ∈M(A) : α(fi)≤ pi (i= 1, . . . , n)

}
for some f1, . . . , fn ∈A and some p1, . . . , pn > 0. A Laurent subspace ofM(A)

is a closed subspace of the form

U =
{
α ∈M(A) : α(fi)≤ pi, α(gj)≥ qj (i= 1, . . . ,m; j = 1, . . . , n)

}
for some f1, . . . , fm, g1, . . . , gn ∈ A and some p1, . . . , pm, q1, . . . , qn > 0; the

Laurent subspaces form a basis of closed neighborhoods for the topology of

M(A). A rational subspace of M(A) is a closed subspace of the form

U =
{
α ∈M(A) : α(fi)≤ piα(g) (i= 1, . . . , n)

}
for some f1, . . . , fn, g ∈ A which generate the unit ideal in Â and some

p1, . . . , pn > 0; we may assume without loss of generality that fn = g, pn = 1.

The intersection of rational subspaces is rational [7, Proposition 7.2.3/7];

consequently, any Laurent subspace is rational.

We will say that a continuous map between Gel’fand spectra is strongly

continuous if the inverse image of any Weierstrass (resp., Laurent, ratio-

nal) subspace is a finite union of Weierstrass (resp., Laurent, rational) sub-

spaces. For instance, the restriction map along a bounded homomorphism

is strongly continuous.

Remark 1.15. It is easy to see that a Weierstrass or Laurent subspace of

M(Â) remains Weierstrass or Laurent when viewed as a subset of M(A).

This is also true for rational subspaces, but the argument is a bit less imme-

diate. Let

U =
{
α ∈M(Â) : α(fi)≤ piα(g) (i= 1, . . . , n)

}
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be a rational subspace of M(Â) for some f1, . . . , fn, g ∈ Â which generate

the unit ideal and some p1, . . . , pn > 0. Choose u1, . . . , un, v ∈ Â for which

u1f1 + · · ·+ unfn + vg = 1. For α ∈ U , we then have

1≤max
{
α(u1f1), . . . , α(unfn), α(vg)

}
≤max

{
|u1|p1, . . . , |un|pn, |v|

}
α(g).

Choose ε ∈ (0,1) so that εmax{|u1|p1, . . . , |un|pn, |v|}< 1; then α(g)≥ ε for

all α ∈ U . Choose f ′
1, . . . , f

′
n, g

′ ∈A with

|f1 − f ′
1|< p1ε, . . . , |fn − f ′

n|< pnε, |g− g′|< ε.

On one hand,

|u1f ′
1 + · · ·+ unf

′
n + vg′ − 1| ≤ εmax

{
|u1|p1, . . . , |un|pn, |v|

}
< 1,

so f ′
1, . . . , f

′
n, g

′ still generate the unit ideal in Â. On the other hand,

U =
{
α ∈M(Â) : α(f ′

i)≤ piα(g
′) (i= 1, . . . , n)

}
,

so U is a rational subspace of M(A). (Note that we cannot hope to ensure

that f ′
1, . . . , f

′
n, g

′ generate the unit ideal in A itself.)

Definition 1.16. Let A,B,C be rings equipped with submultiplicative

norms | · |A, | · |B , | · |C . Let A→B and A→C be bounded homomorphisms.

Define the product seminorm | · |B⊗C on B
⊗

AC by taking |f |B⊗C to be

the infimum of maxi{|bi|B|ci|C} over all presentations
∑

i bi ⊗ ci of f . Let

B
⊗̂

AC be the separated completion of B
⊗

AC for the product seminorm.

It is sometimes difficult to tell whether B
⊗̂

AC is nonzero; we get around

this using the following definition. By a splitting of ι :A→B, we will mean

a bounded homomorphism π :B →A of A-modules with π ◦ ι= idA. We say

that ι is split if it admits a splitting; this implies that | · |A is equivalent to

the restriction of | · |B .
Lemma 1.17. Let A,B,C be rings equipped with submultiplicative norms

| · |A, | · |B, | · |C . Let A→B and A→ C be bounded homomorphisms. Then

| · |B⊗C induces a submultiplicative norm on B
⊗̂

AC. In addition, if ι :A→B

is split, then so is C →B
⊗̂

AC.

Proof. From the presentation 1 = 1⊗ 1, we read off that |1|B⊗C ≤ 1. For

f =
∑

i bi ⊗ ci, f
′ =

∑
j b

′
j ⊗ c′j ∈ B

⊗
AC, we may write ff ′ =

∑
i,j(bib

′
j)⊗

(cic
′
j) and deduce that

|ff ′|B⊗C ≤max
i,j

{
|bib′j |B|cic′j |C

}
≤max

i

{
|bi|B|ci|C

}
max

j

{
|b′j |B|c′j |C

}
.
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Taking the infimum over all presentations of f and f ′ yields |ff ′|B⊗C ≤
|f |B⊗C |f ′|B⊗C , so | · |B⊗C is a submultiplicative norm on B

⊗̂
AC.

Suppose further that π :B →A is a splitting of ι. By tensoring π over A

with C, we obtain a bounded projection B
⊗

AC → C of C-modules with

C →B
⊗

AC →C being the identity. By continuity, we obtain a projection

B
⊗̂

AC →C with the same effect, so C →B
⊗̂

AC is split.

Remark 1.18. Keep in mind that | · |B⊗C need not be multiplicative

even if | · |A, | · |B, | · |C are multiplicative. For example, if K is a quadratic

extension of the p-adic field Qp, then K
⊗

Qp
K ∼=K

⊗̂
Qp

K splits as a direct

sum of two copies of K.

Lemma 1.19. Let A,B be rings equipped with submultiplicative norms

| · |A, | · |B. Let φ : A→ B be a split homomorphism. Then the map φ∗ is

surjective.

Proof. For any α ∈ M(A), the homomorphism H(α) → B
⊗̂

AH(α)

is split by Lemma 1.17; in particular, the target is nonzero and carries

a submultiplicative norm. By Theorem 1.10, there exists some β ∈
M

(
B

⊗̂
AH(α)

)
. The seminorms α and β ◦ φ on A then coincide.

Lemma 1.20. Let A,B,C be rings equipped with submultiplicative norms.

Then the map M
(
B

⊗̂
AC

)
→M(B)×M(A) M(C) is surjective.

Proof. Choose β ∈M(B), γ ∈M(C) having the same image α in M(A).

Using the existence of Schauder bases for Banach modules over nonar-

chimedean fields, it can be shown that the completed tensor product of any

two nonzero Banach modules over H(α) is nonzero (see [19, Lemma 1.3.11]).

In particular, D =H(β)
⊗̂

H(α)H(γ) is nonzero, so by Theorem 1.10, there

exists some δ ∈M(D). The restrictions of δ to H(β),H(γ) give back β,γ,

so the same is true of the restrictions to B,C.

§2. Nonarchimedean geometry of polynomial rings

To illustrate the results we have concerning the nonarchimedean geometry

of Witt vectors, we first describe the analogous statements relating the

nonarchimedean analytic spaces associated to a ring R and the polynomial

ring R[T ].

Hypothesis 2.1. Throughout Section 2, let R be a ring equipped with a

submultiplicative norm | · |, and equip R[T ] with the Gauss norm.
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Theorem 2.2. For α ∈M(R), let λ(α) ∈M(R[T ]) be the Gauss exten-

sion of α. For β ∈M(R[T ]), let μ(β) ∈M(R) be the restriction of β along

R→R[T ].

(a) The maps λ and μ are strongly continuous and monotonic.

(b) For all α ∈M(R), (μ ◦ λ)(α) = α.

(c) For all β ∈M(R[T ]), (λ ◦ μ)(β)≥ β.

Proof. The map μ is defined as a restriction and hence is strongly con-

tinuous. For f =
∑m

i=0 fiT
i ∈R[T ] and ε > 0, we have

{
α ∈M(R) : λ(α)(f)> ε

}
=

m−1⋃
i=0

{
α ∈M(R) : α(fi)> ε

}
,

{
α ∈M(R) : λ(α)(f)< ε

}
=

m−1⋂
i=0

{
α ∈M(R) : α(fi)< ε

}
,

so λ is continuous. Similarly, the inverse image of a Weierstrass (resp., Lau-

rent) subspace of M(R[T ]) is a finite union of Weierstrass (resp., Laurent)

subspaces of M(R). Now let

U =
{
β ∈M(R[T ]) : β(fi)≤ piβ(g) (i= 1, . . . , n)

}
be a rational subspace of M(R[T ]) for some f1, . . . , fn, g ∈R[T ] generating

the unit ideal in the completion of R[T ] and some p1, . . . , pn > 0. Write fi =∑m
j=0 fijT

j and g =
∑m

j=0 gjT
j ; then the fij and gj together must generate

the unit ideal (in fact, only the fi0 and g0 are needed). We may write

λ−1(U) =
{
α ∈M(R) : max

i,j

{
α(fij)/pi

}
≤max

j

{
α(gj)

}}
=

m⋃
l=0

{
α ∈M(R) : α(fij)≤ piα(gl), α(gj)≤ α(gl)

(i= 1, . . . , n; j = 0, . . . ,m)
}
,

which is a finite union of rational subspaces of M(R). Since monotonicity

is evident, this yields (a).

Of the remaining assertions, (b) is trivial, while (c) holds because (λ ◦
μ)(β)(fiT

i)≥ β(fiT
i) for any fi ∈R and any nonnegative integer i.

The following construction is described by Berkovich [2, Remark 6.1.3(ii)].
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Lemma 2.3. For any β ∈M(R[T ]) and any t ∈ [0,1], the function H(β, t) :

R[T ]→ [0,+∞) defined by

(2.3.1) H(β, t)(f) =max
i

{
tiβ

( 1

i!

di

dT i
(f)

)}
is a multiplicative seminorm on R[T ] dominated by the Gauss norm.

Proof. It is evident that (2.3.1) defines a seminorm dominated by the

Gauss norm. Submultiplicativity follows from the Leibniz rule in the form

(2.3.2)
1

i!

di

dT i
(gh) =

∑
j+k=i

1

j!

dj

dT j
(g)

1

k!

dk

dT k
(h).

To check multiplicativity, we must check that for g,h ∈ R[T ], we have

H(β, t)(gh)≥H(β, t)(g)H(β, t)(h). Choose the minimal indices j, k achiev-

ing the maxima in (2.3.1) for f = g,h. Then in (2.3.2) for i = j + k, the

maximum β-norm among the summands on the right-hand side of (2.3.2)

is achieved only by the pair (j, k) (as in the proof of Lemma 1.7). Since β

is multiplicative, we obtain

tiβ
( 1

i!

di

dT i
(gh)

)
= tjβ

( 1

j!

dj

dT j
(g)

)
tkβ

( 1

k!

dk

dT k
(h)

)
,

proving the desired result.

When β is a Gauss seminorm, we can describe H(β, t) explicitly.

Lemma 2.4. Let β ∈M(R[T ]) be the r-Gauss seminorm for the generator

T − x for some x ∈R and some r ∈ [0,1]. Then for t ∈ [0,1], H(β, t) is the

max{t, r}-Gauss seminorm for the generator T − x. In particular, H(β,1)

is the Gauss norm.

Proof. We first check the claim for t≥ r. Let γ be the t-Gauss seminorm

for the generator T − x. Write f ∈ R[T ] as
∑

j fj(T − x)j with fj ∈ R, so

that γ(f) =maxj{tj |fj |}. Since t≥ r, we have

tiβ
( 1

i!

di

dT i
(f)

)
= timax

j≥i

{
β

((
j

i

)
fj(T − x)j−i

)}
≤max

j≥i

{
tirj−i|fj |

}
≤ γ(f).
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It follows that γ(f)≥H(β, t)(f). In contrast, for each nonnegative integer i,

(2.4.1) tiβ
( 1

i!

di

dT i
(f)

)
≥ ti|fi|

because the constant term of dif/dT i is i!fi. It follows that H(β, t)(f) =

γ(f).

In case t < r, on one hand we have H(β, t) ≥ β by taking i = 0 on

the right-hand side of (2.3.1), and on the other hand we have H(β, t) ≤
H(β, r) = β because the right-hand side of (2.3.1) is monotone in t. Hence,

H(β, t) = β.

Theorem 2.5. The map H :M(R[T ])× [0,1]→M(R[T ]) is continuous

and has the following additional properties.

(a) For β ∈M(R[T ]), H(β,0) = β.

(b) For β ∈M(R[T ]), H(β,1) = (λ ◦ μ)(β).
(c) For β ∈M(R[T ]) and t ∈ [0,1], μ(H(β, t)) = μ(β).

(d) For β ∈M(R[T ]) and s, t ∈ [0,1], H(H(β, s), t) =H(β,max{s, t}).

Proof. The continuity of H is evident from (2.3.1), since the maximum on

the right-hand side runs over only finitely many terms. Of the other prop-

erties, (a) and (c) are evident from (2.3.1). To check (b), let γ ∈M(R[T ])

be the Gauss norm. For β ∈M(R[T ]), β ≤ γ and so H(β,1)≤H(γ,1) = γ

by Lemma 2.4; on the other hand, taking t= 1 in (2.4.1) yields H(β,1)≥ γ.

(We can also deduce (b) from Lemma 2.4 using Remark 2.8 below.)

To check (d), observe that

H
(
H(β, s), t

)
=max

j

{
tj max

k

{
skβ

(
1

k!

dk

dT k

( 1

j!

dj

dT j
(f)

))}}
=max

j,k

{
tjskβ

((
j + k

j

)
1

(j + k)!

dj+k

dT j+k
(f)

)}
=max

i

{
β
( 1

i!

di

dT i
(f)

)
max
j+k=i

{
tjskβ

((
j + k

j

))}}
.

Since β is a norm, tjskβ(
(
j+k
j

)
) ≤ max{s, t}i, with equality if s ≥ t and

(j, k) = (0, i), or if s≤ t and (j, k) = (i,0). This proves (d).

Corollary 2.6. Each subset of M(R) has the same homotopy type as

its inverse image under μ.
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Remark 2.7. From Theorem 2.5, (b) and (d), it follows that for α ∈
M(R) and t ∈ [0,1], H(λ(α), t) = λ(α). This can also be seen more directly:

note that H(λ(α), t)≥ λ(α) from (2.3.1), while the reverse inequality follows

from Theorem 2.5(c) plus Theorem 2.2(c).

Remark 2.8. One can give an alternate proof of Lemma 2.3 using

Lemma 2.4, as follows. Let β̃ ∈M(R[U ][T ]) be the restriction of β along

R[U ][T ]→R[T,U ]/(U − T )∼=R[T ]. By Lemma 2.4, H(β̃, t) is the t-Gauss

seminorm for the generator T −U . The restriction of H(β̃, t) along R[T ]→
R[U ][T ] is H(β, t), so the latter is a multiplicative seminorm.

One can go further and take this construction as the definition of H(β, t),

modifying the proof of Theorem 2.5 accordingly. We will not write out

the details explicitly, but they will be shadowed in the context of Witt

vectors where no good analogue of (2.3.1) is available (see, e.g., the proof

of Theorem 7.8).

Remark 2.9. One may viewM(R[T ]) as a closed cylinder of radius 1 over

M(R) and view λ as the section taking each point of M(R) to the generic

point of its fiber. In this language, Theorem 2.5 states that M(R[T ]) can

be uniformly contracted onto the image of λ; in particular, each fiber of

μ is contractible. We further elucidate the structure of the fibers of μ by

studying the domination relation (see Theorem 2.11 and Remark 2.29).

Definition 2.10. For β ∈ M(R[T ]), the set of s ∈ [0,1] for which

H(β, s) = β is nonempty (because it contains 0) and closed (by continu-

ity), so it has a greatest element. This element is called the radius of β and

is denoted r(β); this terminology is justified by the fact that the r-Gauss

norm has radius r (see also Remark 2.16).

Theorem 2.11. For β,γ ∈M(R[T ]) satisfying μ(β) = μ(γ) and β ≥ γ,

β =H(γ, r(β)).

Proof. Put α = μ(β) = μ(γ) and put K =H(α); then identify β,γ with

the corresponding points in M(K[T ]). These identifications are compatible

with the formation of H(·, t); in particular, they do not change the radius

of β. It thus suffices to check the case R =K, for which we rely on some

analysis of M(K[T ]) (see Lemma 2.22 below).

Corollary 2.12. For β,γ ∈M(R[T ]) satisfying μ(β) = μ(γ) and β ≥ γ,

we have r(β)≥ r(γ), with equality if and only if β = γ.
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Proof. For t ∈ [0, r(γ)], by Theorem 2.11 and Theorem 2.5(d), we have

H(β, t) =H
(
H(γ, r(β)), t

)
=H

(
H(γ, t), r(β)

)
=H

(
γ, r(β)

)
= β,

so r(β)≥ r(γ). If equality holds, then γ =H(γ, r(γ)) =H(γ, r(β)) = β.

In order to complete the proof of Theorem 2.11, we must study M(K[T ])

when K is a complete nonarchimedean field. In case K is algebraically

closed, this was done by Berkovich [2, Section 1.4] (see also [1, Proposi-

tion 1.1]). The general case can be found in [22, Section 2.2], where it is

treated by reduction to the algebraically closed case. We give here some

direct arguments in terms of the map H .

Hypothesis 2.13. For the remainder of Section 2, let K be a field com-

plete for a multiplicative norm α, let o be the valuation subring of a com-

pleted algebraic closure C of K, and equip both K[T ] and C[T ] with the

Gauss norms.

Remark 2.14. It is not hard to check that M(K[T ]) is the quotient

of M(C[T ]) by the action of the group Aut(C/K) of continuous automor-

phisms of C over K (see [2, Proposition 1.3.5]). We will not use this fact

explicitly, but it is useful to keep in mind.

Definition 2.15. For z ∈ o and r ∈ [0,1], let β̃z,r be the r-Gauss norm

on C[T ] for the generator T − z, and let βz,r denote the restriction of β̃z,r
to K[T ]. If z′ ∈ o satisfies α(z′ − z) ≤ r, then β̃z′,r = β̃z,r; consequently, if

r > 0, we always have βz,r = βz′,r for some z′ ∈ o which is integral over K

(since such z′ are dense in o).

Remark 2.16. If the norm on K is nontrivial, then the seminorm β̃z,r
can be identified with the supremum norm over the closed disk in C of

center z and radius r. Although this fact can be proved directly, it will be

convenient for us not to deduce it until after making our principal arguments

(see Corollary 2.25).

Lemma 2.17. For z ∈ o and r, s ∈ [0,1], βz,r ≥ βz,s if and only if r ≥ s.

Proof. If r ≥ s, then evidently βz,r ≥ βz,s. It remains to show that if r > s,

then βz,r 	= βz,s. It suffices to do this when s > 0, as when s= 0 we can argue

that βz,r > βz,r′ ≥ βz,0 for any r′ ∈ (0, r).

Suppose, then, that s > 0. Choose z′ ∈ o integral over K with α(z −
z′) ≤ s, so that βz,r = βz′,r, βz,s = βz′,s. Let P (T ) =

∏m
i=1(T − zi) be the
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minimal polynomial of z′ over K; then β̃z′,r(T −zi)≥ β̃z′,s(T −zi) for each i,

with strict inequality when zi = z′. Hence, βz,r(P ) = β̃z′,r(P ) > β̃z′,s(P ) =

βz,s(P ), so βz,r 	= βz,s, as desired.

Corollary 2.18. For z ∈ o and r ∈ [0,1], r(βz,r) = r.

Proof. By Lemma 2.4, we have H(βz,r, s) = βz,max{r,s} for s ∈ [0,1]. The

claim then follows from Lemma 2.17.

Lemma 2.19. For z, z′ ∈ o and r ∈ [0,1], the following are equivalent.

(a) We have βz,r = βz′,r.

(b) We have βz,r ≥ βz′,r.

(c) We have βz,r ≥ βz′,0.

(d) There exists τ ∈Aut(C/K) for which α(τ(z)− z′)≤ r.

Proof. It is clear that (d) =⇒ (a) =⇒ (b) =⇒ (c), so it suffices to check

that (c) =⇒ (d). For this, we may reduce to the case r > 0 (using the

completeness of C and the compactness of Aut(C/K)). Assume (c); then

choose y ∈ o integral over K with α(y − z) ≤ r, so that β̃y,r = β̃z,r. Let

P (T ) =
∏m

i=1(T − yi) be the minimal polynomial of y over K, with the

roots ordered so that the sequence α(yi − z′) is nondecreasing.
If (d) fails, then α(yi − z′)> r for i= 1, . . . ,m. Since α(yi − z′)≥ α(y1 −

z′), we have α(yi − z′) = max{α(yi − z′), α(y1 − z′)} ≥ α(yi − y1). Hence,

max{r,α(y1 − yi)} ≤ α(yi − z′) with strict inequality for i= 1, so

βz,r(P ) = βy,r(P ) = β̃y1,r(P )

=

m∏
i=1

max
{
r,α(y1 − yi)

}
<

m∏
i=1

α(z′ − yi) = βz′,0(P ),

a contradiction. Thus, (d) holds, as desired (see also [22, Lemma 2.2.5]).

The key to the proof of Theorem 2.11 is the following calculation in the

spirit of Remark 2.8.

Lemma 2.20. For β ∈M(K[T ]) and s ∈ (r(β),1], there exists z ∈ o for

which H(β, s) = βz,s.

Proof. Let S be the set of s ∈ [0,1] for which we can find z ∈ o (depending

on s) satisfying H(β, s) = βz,s. The set S is nonempty because 1 ∈ S; it is

up-closed becauseH(βz,r, s) = βz,max{r,s} by Lemma 2.4 andH(H(β, r), s) =

H(β,max{r, s}) by Theorem 2.5(d). Put r = inf S. To prove the lemma, it

suffices to check that r(β)≥ r.
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Let C′ be a completed algebraic closure of H(β), fix a continuous embed-

ding of C into C′, and let x ∈C′ be the image of T under the map K[T ]→
H(β). For s ∈ [0,1], let γx,s denote the s-Gauss norm on H(β)[T ] for the

generator T − x, so that H(β, s) is the restriction of γx,s to K[T ]. By

Lemma 2.19 and the stability of C under Aut(C′/H(β)), for z ∈ o, H(β, s) =

βz,s if and only if there exists τ ∈Aut(C/K) for which α(τ(z)− x)≤ s. It

follows that for s ∈ [0, r), γx,s(T −z) =max{s,α(z−x)} is independent of s.

Since every element of K[T ] factors in C[T ] as a scalar times a product of

linear polynomials, the restriction of γx,s to K[T ] is constant over s ∈ [0, r).

Hence, r(β)≥ r, as desired.

From the proof of Lemma 2.20, we also read off the following observation.

Corollary 2.21. Suppose that β ∈M(K[T ]) is such that β 	= βz,r for

all z ∈ o and all r ∈ [0,1]. Then for each y ∈K[T ], for any sufficiently small

s ∈ (r(β),1] (depending on y), H(β, s)(y) = β(y).

With this, we may now complete the proof of Theorem 2.11.

Lemma 2.22. Theorem 2.11 holds for R=K.

Proof. If r(β) = 1, then β = H(β,1) = H(γ,1) by Theorem 2.5(b). If

r(γ) = 1, then by Theorem 2.5(b) again, β ≥ γ = H(γ,1) = H(β,1) ≥ β,

and so β =H(γ,1). It is thus safe to assume that r(β), r(γ)< 1.

For each s ∈ (max{r(β), r(γ)},1], by Lemma 2.20 we have H(β, s) = βz,s,

H(γ, s) = βz′,s for some z, z′ ∈ o. Since β ≥ γ implies that H(β, s)≥H(γ, s),

we have βz,s ≥ βz′,s, but by Lemma 2.19, this forces βz,s = βz′,s. Hence,

H(β, s) =H(γ, s).

If r(γ) > r(β), by taking the limit as s → r(γ)+, we deduce that γ =

H(β, r(γ)) > H(β, r(β)) = β, a contradiction. Hence, r(β) ≥ r(γ), and by

taking the limit as s→ r(β)+, we deduce that β =H(γ, r(β)), as desired.

(For an alternate proof, see [22, Lemma 2.2.12].)

Corollary 2.23. For any β,γ ∈M(K[T ]) with β ≥ γ, there exist β̃, γ̃ ∈
M(C[T ]) restricting to β,γ, respectively, for which β̃ ≥ γ̃.

Proof. For each finite extension K ′ of K, the map K[T ]→K ′[T ] is split,
so by Lemma 1.19, the restriction map M(K ′[T ])→M(K[T ]) is surjective.

It follows that M(C[T ])→M(K[T ]) is also surjective. (See Remark 2.14

for a more precise statement.)
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We may thus choose γ̃ ∈ M(C[T ]) extending γ and then put β̃ =

H(γ̃, r(β)). This seminorm restricts to β by Theorem 2.11. (For an alternate

proof, see [22, Lemma 2.2.9].)

Lemma 2.24. Assume that the norm on K is nontrivial. For z ∈ o and

r ∈ [0,1], let D(z, r) be the set of βx,0 ∈ M(K[T ]) for which βz,r ≥ βx,0.

Then D(z, r) =D(z, s) if and only if r = s.

Proof. It suffices to deduce a contradiction under the assumption that

D(z, r) =D(z, s) for some r > s > 0. Pick z′ ∈ o integral over K with α(z−
z′) < s, so that D(z, r) = D(z′, r) and D(z, s) = D(z′, s). Since D(z, r) =

D(z, s), for any βx,0 ∈ D(z, r), we have βz′,s ≥ βx,0, and hence (by

Lemma 2.19) α(τ(z′)− x)≤ s for some τ ∈Aut(C/K). Consequently, there

are only finitely many points in M(C[T ]) of the form β̃x,s which are domi-

nated by β̃z,r.

Pick u ∈ o with α(u) ∈ (s, r). For x,x′ ∈ o with α(z′ − x), α(z′ − x′) ≤
α(u), declare x,x′ to be equivalent if β̃x,t = β̃x′,t for some t ∈ [0, α(u)). The

resulting equivalence classes may be put in bijection with κC by mapping

the class of x to the residue class of (z′ − x)/u. Since κC is algebraically

closed and hence infinite, this yields the desired contradiction.

Corollary 2.25. Assume that the norm on K is nontrivial. For z ∈ o

and r ∈ [0,1], βz,r = supD(z, r).

Proof. Put γz,r = supD(z, r); it is clear that βz,r ≥ γz,r. By Corollary 2.18,

r(βz,r) = r. By Theorem 2.11, βz,r =H(γz,r, r).

Suppose that βz,r 	= γz,r; by Corollary 2.12, s = r(γz,r) must be strictly

less than r. Pick s′ ∈ (s, r). By Lemma 2.20, we can write H(γz,r, s
′) =

βz′,s′ for some z′ ∈ o which is integral over K. Since βz′,s′ ≥ γz,r ≥ βz,0, by

Lemma 2.17, βz′,s′ = βz,s′ .

By Lemma 2.24, we can find βz′′,0 ∈ D(z, r) with βz′′,0 /∈ D(z, s′) =
D(z′, s′). Hence, H(γz,r, s

′) = βz′,s′ 	≥ βz′′,0, contradicting the fact that

βz′,s′ ≥ γz,r = supD(z, r) ≥ βz′′,0. This contradiction forces βz,r = γz,r, as

desired.

For completeness, we add a classification result formulated in the style of

Berkovich (see Remark 2.9).

Theorem 2.26. Each element of M(K[T ]) is of exactly one of the fol-

lowing four types.
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(i) A point of the form βz,0 for some z ∈ o. Such a point has radius 0 and

is minimal.

(ii) A point of the form βz,r for some z ∈ o and some r ∈ (0,1] which is the

norm of an element of o. Such a point has radius r and is not minimal.

(iii) A point of the form βz,r for some z ∈ o and some r ∈ (0,1] which is

not the norm of an element of o. Such a point has radius r and is not

minimal.

(iv) The infimum of a decreasing sequence βzi,ri for which the sets D(zi, ri)

have empty intersection. Such a point has radius infi{ri} > 0 and is

minimal.

Proof. By Corollary 2.18, r(βz,r) = r. Consequently, types (i)–(iii) are

mutually exclusive. Moreover, βz,r cannot be of type (iv), since βzi,ri ≥ βz,r
implies that βz,0 ∈ D(zi, ri). Consequently, no point can be of more than

one type.

It remains to check that any point β ∈ M(K[T ]) not of the form βz,r
is of type (iv) and is minimal of the claimed radius. Choose a sequence

1 ≥ r1 > r2 > · · · with infimum r(β). By Lemma 2.20, for each i, we have

H(β, ri) = βzi,ri for some zi ∈ o. The sequence βz1,r1 , βz2,r2 , . . . is decreasing

with infimum β; the sequence D(zi, ri) is also decreasing. For each z ∈ o,

there exists i for which βz,ri 	= βzi,ri ; for such i we have βz,0 /∈ D(zi, ri)

by Lemma 2.19. Hence, the D(zi, ri) have empty intersection; this forces

infi{ri} > 0 because o is complete. Hence, β is of type (iv); it is minimal

by Theorem 2.11 plus Lemma 2.20. Since β = infi{βzi,ri} and r(βzi,ri) = ri
by Corollary 2.18, we have r(β)≥ infi{ri}; the reverse inequality also holds

because ri = r(βzi,ri)≥ r(β) by Corollary 2.12.

This classification can be used to describe the residual extensions

and norm groups of points in M(K[T ]). (For similar results, see [22,

Lemma 2.2.18] or [27, Section 3].)

Corollary 2.27. Let β be a point of M(K[T ]), classified according to

Theorem 2.26. Let |α×|, |β×| denote the groups of nonzero values assumed

by α,β, respectively.

(i) For β of type (i), κH(β) is algebraic over κK , and |β×|/|α×| is a torsion

group.

(ii) For β of type (ii), κH(β) is finitely generated over κK of transcendence

degree 1, and |β×|/|α×| is a finite group.
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(iii) For β of type (iii), κH(β) is a finite extension of κK , and |β×|/|α×| is
a finitely generated abelian group of rank 1.

(iv) For β of type (iv), κH(β) is algebraic over κK , and |β×|/|α×| is a

torsion group.

Proof. Recall that for L/K a finite extension of complete nonarchimedean

fields, κL is a finite extension of κK and |L×|/|K×| is a finite group. More

precisely, by a theorem of Ostrowski (see [25, Theorem 6.2]),

(2.27.1)
[L :K]

[κL : κK ]#(|L×|/|K×|)

{
= 1 (char(κK) = 0),

∈ {1, p, p2, . . .} (char(κK) = p > 0).

Consequently, in cases (ii) and (iii), it is enough to check the claims after

replacing K by a finite extension; in cases (i) and (iv), we may replace K

by C itself. We make these assumptions hereafter.

In cases (i)–(iii), we may now assume that β = βz,r with z ∈ oK . In

case (i), H(β) =K; in case (ii), κH(β)
∼= κK(x) for x the class of (T − z)/u

for any u ∈K of norm r, and |β×|/|α×| is trivial; in case (iii), κH(β) = κK
and |β×|/|α×| is free on the generator r.

In case (iv), the norm α must be nontrivial. By Corollary 2.21, for each

y ∈K[T ], any sufficiently small s ∈ (r(β),1] satisfies H(β, s)(y) = β(y). If we

choose s ∈ |α×|, we deduce that |β×|/|α×| is trivial. If we choose s /∈ |α×|,
then for any z ∈K[T ] with β(z)≤ β(y), by case (iii), there must exist λ ∈K

for which H(β, s)(z − λy)<H(β, s)(y). This implies that

β(z − λy)≤H(β, s)(z − λy)<H(β, s)(y) = β(y),

so z/y and λ have the same image in κH(β). Hence, κH(β) = κK .

Remark 2.28. In (i) and (iv) of Corollary 2.27, it is not guaranteed that

κH(β) is finite over κK or that |β×|/|α×| is a finite group. We illustrate this

with an example of a point of type (i) for which |β×|/|α×| is infinite; the

other claims can be seen by similar arguments.

Let F be an algebraically closed field of characteristic 0, and take K =

F ((U)) equipped with the U -adic norm (for any normalization). We may

then identify C with the completion of the field of Puiseux series in U

over F . Inside C, take z =
∑∞

n=1U
n+1/n!, and put β = βz,0 ∈ M(K[T ]).

We may establish by induction that for each positive integer m, |U |1/m! ∈
|β×|: this is apparent for m = 1, and given that this holds for m − 1, we

have F ((U1/(m−1)!))⊆H(β) and β
(
T −

∑m−1
n=1 Un+1/n!

)
= |U |m+1/m!. Con-

sequently, |β×|/|α×| ∼=Q/Z is not finite.
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Remark 2.29. Theorem 2.11 implies that as a partially ordered set under

domination, M(K[T ]) carries the structure of a tree. One can capture the

tree structure in other ways, for instance, by exhibiting M(K[T ]) as an

inverse limit of finite contractible simplicial complexes (see, e.g., [1, Propo-

sition 1.19]). (This construction is the simplest meaningful case of the main

result of [24].)

The geometry of M(K[T ]), including the tree interpretation, has been

deployed in a number of apparently unrelated fields. Here are some repre-

sentative (but not exhaustive) examples.

• Favre and Jonsson ([12], [14], [13]) use the tree structure to study plurisub-

harmonic singularities of functions of two complex variables. Some prog-

ress has been made in extending to more variables by Boucksom, Favre,

and Jonsson [8].

• Kedlaya ([18], [21]) uses the tree structure to study the local structure of

irregular flat meromorphic connections on algebraic and algebraic vari-

eties. A related development in p-adic cohomology is [22].

• Temkin [27] uses the tree structure to establish local uniformization in

positive characteristic up to an inseparable morphism.

• Numerous applications have been found in the theory of dynamical sys-

tems. A good starting point for this line of inquiry is Baker and Rumely [1].

• A development closely related to the previous one is the use of nonar-

chimedean potential theory in Arakelov theory, for example, in the study

of equidistribution questions. This is pursued thoroughly in the work of

Chambert-Loir and his collaborators (see, e.g., [10]).

§3. Witt vectors

We now introduce the ring of Witt vectors over a perfect ring of character-

istic p. These behave a bit like power series in the variable p with coefficients

in the given ring, with the role of the structure morphism (the injection of

the coefficient ring into the series ring) played by the Teichmüller map.

The latter map is multiplicative but not additive; nonetheless, we can use

it to define raising and lowering operators λ,μ analogous to the ones from

Section 2. (We previously considered these operators in [20].)

Hypothesis 3.1. For the remainder of the paper, let R denote an Fp-

algebra which is perfect, that is, for which the pth power map is a bijection.

Unless otherwise specified, equip R with the trivial norm.
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Remark 3.2. If R is an Fp-algebra which is not necessarily perfect, we can

form the perfect closure Rperf as the limit of the direct system R→R→ · · ·
in which each arrow is the pth power map. We obtain a natural map R→
Rperf by mapping to the initial term of the direct system; the corresponding

map M(Rperf)→M(R) is easily seen to be a homeomorphism.

Definition 3.3. A strict p-ring is a (commutative unital) ring S which

is p-torsion-free and p-adically complete and separated, and for which S/pS

is a perfect Fp-algebra.

Lemma 3.4. Let S be a strict p-ring with S/pS ∼=R.

(a) Given x ∈ R, let xn ∈ S be any lift of xp
−n

. Then the sequence xp
n

n

converges p-adically to a limit [x] (the Teichmüller lift of x), which is

the unique lift of x admitting a pnth root in S for each nonnegative

integer n.

(b) The resulting Teichmüller map [·] :R→ S is multiplicative.

(c) Each x ∈ S admits a unique representation
∑∞

i=0 p
i[xi] with xi ∈R.

Proof. By the binomial theorem, a ≡ b (mod pm) implies that ap ≡ bp

(mod pm+1). Consequently,

xp
m+1

m+1
∼= xp

m

m (mod pm+1),

so the xp
m

m converge to a limit [x]. Similarly, for each nonnegative integer n,

the xp
m

m+n converge to a pnth root of [x]. If x′ is another lift of x admitting

a pnth root x′n for each nonnegative integer n, then

xp
m

m
∼= (x′m)p

m
= x′ (mod pm+1),

so [x] = x′. This proves (a).
Given (a), the product of two Teichmüller lifts admits a pnth root for

each nonnegative integer n and so must also be a Teichmüller lift; this

yields (b). Since [x] is always a lift of x, (c) follows (see also [26, Section II.4,

Proposition 8]).

Theorem 3.5. There exists a unique (up to unique isomorphism) strict

p-ring W (R) for which W (R)/(p)∼=R. Moreover, the correspondence R �
W (R) is covariantly functorial in R.

Sketch of proof. For n= 0,1, . . . , put

Wn(X0, . . . ,Xn) =
n∑

i=0

piXpn−i

i .
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Given that Φ ∈ Z[X,Y ], there exists a unique sequence φ0, φ1, . . . with φn ∈
Z[X0, . . . ,Xn, Y0, . . . , Yn] such that

Wn(φ0, . . . , φn) = Φ
(
Wn(X0, . . . ,Xn),Wn(Y0, . . . , Yn)

)
(3.5.1)

(n= 0,1, . . .);

using the sequences associated to the polynomials X − Y,XY , we define

subtraction and multiplication rules on the set of sequences x0, x1, . . . with

values in R. This yields a strict p-ring W (R) with W (R)/(p) ∼= R; more

precisely, the sequence x0, x1, . . . corresponds to the element
∑∞

i=0 p
i[xi

p−i
].

(See [26, Section II.6] for further details.)

Definition 3.6. The ring W (R) of Theorem 3.5 is called the ring of

p-typical Witt vectors with coefficients in R; unless otherwise specified, we

equip W (R) with the p-adic norm normalized with |p|= p−1. Since its con-

struction is functorial in R, W (R) carries an automorphism φ which cor-

responds to (and lifts) the p-power Frobenius map on R, called the Witt

vector Frobenius.

Remark 3.7. The addition and multiplication of general elements of

W (R) are somewhat complicated to express explicitly. One important con-

sequence of (3.5.1) is that if we write x=
∑∞

i=0 p
i[xi], y =

∑∞
i=0 p

i[yi], x−y =∑∞
i=0 p

i[zi], then zi is a polynomial in xj
pj−i

, yj
pj−i

for j = 0, . . . , i, which has

integer coefficients, is homogeneous of degree 1 for the weighting in which

xj , yj have degree 1, and belongs to the ideal generated by xj
pj−i − yj

pj−i

for j = 0, . . . , i (because it vanishes whenever x= y). (See also Lemma 3.8

below.)

Lemma 3.8. For x ∈R, write [x+1]−1 =
∑∞

i=0 p
i[Pi(x

p−i
)] with Pi(T ) ∈

Fp[T ] as in Remark 3.7. Then Pi(T )≡ T (mod T 2).

Proof. Since [x + 1] − 1 vanishes when x = 0, the polynomial Pi(T ) is

divisible by T . To obtain the congruence modulo T 2, note that

Pi(T )≡ p−i
(
(T + 1)p

i − 1−
i−1∑
j=0

pjPj(T )
pi−j

)
(mod p).

The coefficient of T on the right-hand side equals 1 (from p−i(T +1)p
i
) plus

a multiple of p (from all other terms). This proves the claim.
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Remark 3.9. Suppose that x1, . . . , xn generate the unit ideal in R. Then

[x1], . . . , [xn] generate an ideal in W (R) containing an element congruent to

1 modulo p. However, any such element is a unit, so the ideal generated is

the unit ideal.

There are two different meaningful types of polynomial extensions of a

Witt ring W (R): the usual polynomial extension of the ring W (R) itself,

and the Witt ring of the perfection of the polynomial extension of the base

rings. These rings enjoy the following relationship.

Lemma 3.10. Equip W (R)[T ] with the Gauss extension of the p-adic

norm.

(a) The isometric homomorphism ψ :W (R)[T ]→W (R[T ]perf) which maps

W (R) to W (R[T ]perf) via the functoriality of Witt vectors, and which

sends T to [T ], is split.

(b) The map ψ∗ is a quotient map of topological spaces.

Proof. Via ψ, we may identify W (R[T ]perf) with the p-adic completion

of
⋃∞

n=1W (R)[T p−n
]. Under this identification, we obtain a splitting by

omitting all nonintegral powers of T . Hence, ψ is split, yielding (a).

Since ψ is split, ψ∗ is surjective by Lemma 1.19. Let U ⊆M(W (R)[T ])

be a subset whose inverse image V in M(W (R[T ]perf)) is open. Let U ′, V ′

be the complements of U,V , respectively. Then V ′ is closed and hence com-

pact because M(W (R[T ]perf)) is compact. Since U ′ = ψ∗(V ′), U ′ is quasi-

compact and hence closed because M(W (R)[T ]) is Hausdorff. Hence, U is

open; this proves that ψ∗ is a quotient map, yielding (b).

Remark 3.11. Define the map δ :W (R)→W (R) by the formula

δ(s) = p−1
(
φ(s)− sp

) (
s ∈W (R)

)
.

The map δ is an example of a p-derivation on W (R), in that it has the

following properties.

(a) We have δ(1) = 0. (In this example, we also have δ([r]) = 0 for all r ∈R.)

(b) For all s1, s2 ∈W (R), δ(s1 + s2) = δ(s1) + δ(s2)− P (s1, s2), where the

polynomial P (X,Y ) ∈ Z[X,Y ] is given by P (X,Y ) = p−1((X + Y )p −
Xp − Y p).

(c) For all s1, s2 ∈W (R), δ(s1s2) = sp1δ(s2) + sp2δ(s1) + pδ(s1)δ(s2).

Such maps were introduced (with a slightly different sign convention) by

Joyal [16] and later exploited heavily by Buium [9] to transfer some concepts
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from the theory of differential equations into arithmetic geometry. We had

hoped to use the p-derivation δ to construct an analogue of the formula

(2.3.1), but so far we have not found any such analogue. We will thus be

forced to work more indirectly (see Definition 5.2 and Theorem 5.11).

§4. Raising and lowering for Witt vectors

The raising and lowering operators for Witt vectors are defined as follows.

Lemma 4.1. For α a submultiplicative (resp., power-multiplicative, mul-

tiplicative) seminorm on R bounded by the trivial norm, the function λ(α) :

W (R)→ [0,1] given by

λ(α)
( ∞∑
i=0

pi[xi
p−i

]
)
=max

i

{
p−iα(xi)

p−i}
is a submultiplicative (resp., power-multiplicative, multiplicative) seminorm

on W (R) bounded by the p-adic norm.

We will mostly apply this result when α is power-multiplicative, in which

case we may use the simpler formula

λ(α)
( ∞∑
i=0

pi[xi]
)
=max

i

{
p−iα(xi)

}
.

Proof. For x, y ∈ R and i a nonnegative integer, write [x] − [y] =∑∞
j=0 p

j [zj
p−j

]. By Remark 3.7, zj is a polynomial in x, y which has integer

coefficients and is homogeneous of degree pj . This remains true after tak-

ing pith powers, so we may deduce that α(zj
pi)≤max{α(xpi)pj , α(ypi)pj}.

Consequently,

λ(α)
(
pi([x]− [y])

)
= λ(α)

( ∞∑
j=0

pi+j [(zj
pi)p

−i−j
]
)
=max

j

{
p−i−jα(zi

pi)p
−i−j}

≤ p−imax
{
α(xp

i
)p

−i
, α(yp

i
)p

−i}
=max

{
λ(α)(pi[x]), λ(α)(pi[y])

}
.

Similarly, λ(α)(pi([x] + [y]))≤max{λ(α)(pi[x]), λ(α)(pi[y])}.
We next establish that λ(α) is a seminorm. Let x =

∑∞
i=0 p

i[xi], y =∑∞
i=0 p

i[yi] be two general elements of W (R), and write x− y =
∑∞

i=0 p
i[zi].
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For each nonnegative integer n, we will exhibit an equality of the form

(4.1.1) x− y =
(n−1∑
i=0

pi[zi]
)
± pnw1 ± · · · ± pnwk

for some nonnegative integer k = k(n) and some w1, . . . ,wk ∈ W (R) with

the property that

λ(α)
(n−1∑
i=0

pi[zi]
)
, λ(α)(pnw1), . . . , λ(α)(p

nwk)

(4.1.2)
≤max

{
λ(α)(x), λ(α)(y)

}
.

From this, it will follow at once that λ(α)(x− y)≤max{λ(α)(x), λ(α)(y)}
and hence that λ(α) is a seminorm.

Suppose that for some nonnegative integer n, we are given w1, . . . ,wk sat-

isfying (4.1.1) and (4.1.2). Then condition (4.1.2) is preserved by modifying

(4.1.1) in the following ways.

(1) Given a term ±pnwj in (4.1.1), replace it with the sum of two terms,

one of which is ±pn times a Teichmüller element.

(2) Given two terms of the form ±pn[w] and ±pn[w′], replace them with

their sum. This maintains (4.1.2) by our earlier argument.

Moreover, the number of summands in (4.1.1) among ±pnw1, . . . ,±pnwk

which are not divisible by pn+1 never increases and, in fact, always decreases

in step (2) unless one of the two terms is itself divisible by pn+1. Conse-

quently, using these operations, we can always arrive at the situation where

one of the summands in (4.1.1) among ±pnw1, . . . ,±pnwk equals pn[zn] and

the others are divisible by pn+1. This yields a sum of the desired form with

n replaced by n+1, completing the proof that λ(α) is a seminorm. This in

turn implies that

λ(α)(xy)≤max
i,j

{
λ(α)(pi[xi]p

j [yj ])
}
≤ λ(α)(x)λ(α)(y),

so λ(α) is submultiplicative.

Suppose now that α is multiplicative. To check that λ(α) is multiplica-

tive, it is enough to check that λ(α)(xy)≥ λ(α)(x)λ(α)(y) in case λ(α)(x),

λ(α)(y) > 0. Choose the minimal indices j, k for which λ(α)(pj [xj ]),

λ(α)(pk[yk]) attain their maximal values. For

x′ =
∞∑
i=j

pi[xi], y′ =
∞∑
i=k

pi[yi],
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on one hand, we may write x′y′ =
∑∞

i=j+k p
i[zi] with zj+k = xjyk. By

submultiplicativity, λ(α)(x′y′) ≥ λ(α)(x)λ(α)(y) ≥ λ(α)(x′)λ(α)(y′) ≥
λ(α)(x′y′), so λ(α)(x′y′) = λ(α)(x)λ(α)(y). On the other hand, we have

λ(α)(x − x′) < λ(α)(x), λ(α)(y − y′) < λ(α)(y), so λ(α)(xy − x′y′) <

λ(α)(x)λ(α)(y) = λ(α)(x′y′). Putting everything together, we deduce

that λ(α) is multiplicative. Similarly, if α is power-multiplicative, we see

that λ(α) is power-multiplicative by taking x = y in the preceding

argument.

Corollary 4.2. For α a submultiplicative (resp., power-multiplicative,

multiplicative) seminorm on R bounded by the trivial norm, the function

Λ(α) :W (R)→ [0,1] given by

Λ(α)
( ∞∑
i=0

pi[xi
p−i

]
)
= sup

i

{
α(xi)

p−i}
is a submultiplicative (resp., power-multiplicative, multiplicative) seminorm

on W (R) bounded by the trivial norm.

Proof. For x ∈W (R), we have

Λ(α)(x) = lim
c→+∞

λ(αc)(x)1/c.

The claims then follow from Lemma 4.1.

Remark 4.3. Although Λ(α) may seem like a more natural analogue

of the Gauss extension than λ(α), the proof of the continuity of λ (The-

orem 4.5) does not apply to Λ (see Remark 4.6). We thus work primarily

with λ hereafter.

Lemma 4.4. For β a power-multiplicative (resp., multiplicative) semi-

norm on W (R) bounded by the p-adic norm, the function μ(β) :R→ [0,1]

given by

μ(β)(x) = β([x])

is a power-multiplicative (resp., multiplicative) seminorm bounded by the

trivial norm.

Proof. Given x, y ∈R, choose any x, y ∈W (R) lifting them. For (z, z) =

(x,x), (y, y), (x+ y,x+ y), for any ε > 0, for n sufficiently large, we have

max
{
ε,μ(β)(z)

}
=max

{
ε, β

(
φ−n(z)p

n)}
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because φ−n(zp
n
) converges p-adically to [z] by Lemma 3.4(a). Since β is a

power-multiplicative (resp., multiplicative) seminorm, we deduce that μ(β)

is one as well. (An alternate proof can be obtained using Remark 3.7.)

We now have the following analogue of Theorem 2.2.

Theorem 4.5. Equip R with the trivial norm, and equip W (R) with the

p-adic norm. Define λ :M(R)→M(W (R)), μ :M(W (R))→M(R) as in

Lemmas 4.1 and 4.4.

(a) The functions λ,μ are strongly continuous and monotonic.

(b) For all α ∈M(R), (μ ◦ λ)(α) = α.

(c) For all β ∈M(W (R)), (λ ◦ μ)(β)≥ β.

Proof. For x =
∑∞

i=0 p
i[xi] ∈ W (R) and ε > 0, choose j > 0 for which

p−j < ε; then λ(α)(pi[xi])< ε for all α ∈M(R) and all i≥ j. We thus have

{
α ∈M(R) : λ(α)(x)> ε

}
=

j−1⋃
i=0

{
α ∈M(R) : α(xi)> piε

}
,

{
α ∈M(R) : λ(α)(x)< ε

}
=

j−1⋂
i=0

{
α ∈M(R) : α(xi)< piε

}
,

so λ is continuous. Similarly, the inverse image of a Weierstrass (resp., Lau-

rent) subspace of M(W (R)) is a finite union of Weierstrass (resp., Laurent)

subspaces of M(R). Now let

U =
{
β ∈M

(
W (R)

)
: β(xi)≤ qiβ(y) (i= 1, . . . , n)

}
be a rational subspace of M(W (R)) for some x1, . . . , xn, y ∈W (R) gener-

ating the unit ideal and some q1, . . . , qn > 0. Write xi =
∑∞

j=0 p
j [xij ] and

y =
∑∞

j=0 p
j [yj ]; then the xij and yj together must generate the unit ideal

(in fact, only the xi0 and y0 are needed). Moreover, by Remark 1.15, we

can choose some nonnegative integer m so that for x′i =
∑m

j=0 p
j [xij ] and

y′ =
∑m

j=0 p
j [yj ], we also have

U =
{
β ∈M

(
W (R)

)
: β(x′i)≤ qiβ(y

′) (i= 1, . . . , n)
}
.

We may then write



138 K. S. KEDLAYA

λ−1(U) =
{
α ∈M(R) : max

i,j:j≤m

{
p−jα(xij)/qi

}
≤max

j≤m

{
p−jα(yj)

}}
=

m⋃
l=0

{
α ∈M(R) : p−jα(xij)≤ qip

−lα(yl), p
−jα(yj)≤ p−lα(yl)

(i= 1, . . . , n; j = 0, . . . ,m)
}
,

which is a finite union of rational subspaces of M(R). Hence, λ is strongly

continuous.

For x ∈R and ε > 0, we have{
β ∈M

(
W (R)

)
: μ(β)(x)> ε

}
=

{
β ∈M

(
W (R)

)
: β([x])> ε

}
,{

β ∈M
(
W (R)

)
: μ(β)(x)< ε

}
=

{
β ∈M

(
W (R)

)
: β([x])< ε

}
,

so μ is continuous. Similarly, the inverse image of a Weierstrass (resp.,

Laurent, rational) subspace of M(W (R)) is a Weierstrass (resp., Laurent,

rational) subspace of M(R), using Remark 3.9 in the rational case. Since

monotonicity is evident, this yields (a).

The equality (b) is evident from the definitions. The inequality (c) follows

from the definition of λ and the observation that (λ◦μ)(β)(pn[x])≥ β(pn[x])

for any x ∈R and any nonnegative integer n.

Remark 4.6. The proof of continuity of λ in Theorem 4.5 does not apply

to Λ, because we cannot avoid writing {α ∈ M(R) : Λ(α)(x) < ε} as an

infinite intersection of open sets. Similarly, we make no statement (beyond

closure) concerning the inverse image under λ of a subspace of M(W (R))

of the form {β ∈M(W (R)) : β(x) = 0}, because the inverse image is defined

by the vanishing of infinitely many elements of R.

Example 4.7. Here is a simple example to illustrate that λ ◦μ need not

be the identity map. Put R = Fp[X]perf , so that W (R) is isomorphic to

the p-adic completion of
⋃∞

n=1Zp[[X]p
−n

] (compare Lemma 3.10). The ring

W (R)/([X]− p) is isomorphic to the completion of
⋃∞

n=1Zp[p
p−n

] for the

unique multiplicative extension of the p-adic norm; let β ∈ M(W (R)) be

the induced seminorm.

Note that μ(β)(X) = β([X]) = p−1 and that μ(β)(y) = 1 for y ∈ F×
p . These

imply that μ(β)(y) ≤ p−p−n
whenever y ∈ Fp[X

p−n

] is divisible by X
p−n

,

so μ(β)(y) = 1 whenever y ∈ F×
p +X

p−n

Fp[X
p−n

]. We conclude that μ(β)

equals the X-adic norm on R with the normalization μ(β)(X) = p−1. In

particular, we have a strict inequality (λ ◦ μ)(β)> β.
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Remark 4.8. The corresponding results from [20, Section 2] are stated

with M(W (R)) replaced by the slightly smaller space M(W (R)[p−1]), with

the arguments unchanged. Note, however, that extending λ(α) toW (R)[p−1]

requires that λ(α)(px) = p−1λ(α)(x), and this holds only if α is power-

multiplicative. We will thus mostly restrict to this case in what follows.

This is no serious loss for our purposes, because replacing a seminorm on R

with its spectral seminorm does not change the spectrum.

§5. Gauss norms

For α a submultiplicative seminorm on R bounded by the trivial norm,

the submultiplicative seminorm λ(α) on W (R) behaves like a (p−1)-Gauss

seminorm for the generator p. One would like analogues of Gauss seminorms

for other generators, but unlike in the polynomial case, these cannot be

constructed by using automorphisms of W (R) to move generators around.

Instead, we use the approach of Remark 1.8: we pass to a polynomial ring

equipped with an appropriate Gauss norm and then return to W (R) by

taking a suitable quotient. The main difficulty in this approach is to transfer

multiplicativity to the quotient norm; this requires construction of some

good coset representatives.

Hypothesis 5.1. Throughout Section 5, equip R with a power-multiplica-

tive seminorm α bounded by the trivial norm, and write R̂ for the separated

completion with respect to α. (The restriction to the power-multiplicative

case is made in light of Remark 4.8.) Choose π =
∑∞

i=0 p
i[πi] with α(π0)≤

p−1 and π1 a unit in R; we write π as shorthand for π0. (In the language

of [11], any such π is primitive of degree 1.)

Definition 5.2. For t ∈ [0,1], define the submultiplicative seminorm

H(α,π, t) on W (R) as the quotient norm on W (R)[T ]/(T − π) ∼= W (R)

induced by the (t/p)-Gauss extension of λ(α) toW (R)[T ]. In case π = p− [u]

for u ∈R with α(u)≤ p−1, we denote H(α,π, t) also by H(α,u, t).

We will show shortly that H(α,π, t) is multiplicative whenever α is (The-

orem 5.11(a)). For this, we will need some convenient coset representatives

for the ideal (T − π) in W (R)[T ].

Definition 5.3. We say that x ∈W (R) is stable (or α-stable, in case we

need to specify α) if x has the form
∑∞

i=0 p
i[xi] with either α(xi) = 0 for

all i ≥ 0, or α(x0) > p−iα(xi) for all i > 0. For instance, any Teichmüller

element is stable.
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Remark 5.4. The term stable is chosen because of the following fact:

for any stable x ∈ W (R) with reduction x and any β ∈ μ−1(α), we have

β(x) = λ(α)(x) = α(x). Namely, this is immediate unless α(x)> 0, in which

case

β(x− [x])≤ λ(α)(x− [x])< λ(α)([x]) = α(x) = β([x]).

Lemma 5.5. Assume that R = R̂. For any x ∈ W (R), there exists y =∑∞
i=0 p

i[yi] ∈W (R) with x≡ y (mod π) and α(y0)≥ α(yi) for all i > 0. In

particular, y is stable.

Proof. Note that p−1(π − [π]) is a unit in W (R); let w be its inverse.

We construct x0, x1, . . . ∈W (R) congruent to x modulo π, as follows. Take

x0 = x. Given xi, write xi =
∑∞

j=0 p
j [xij ] with xij ∈R, and put

xi+1 = xi − p−1w(xi − [xi0])π = [xi0]− p−1w(xi − [xi0])[π].

Let N be the least nonnegative integer for which α(xN0) > α(π)N+1, or

∞ if no such integer exists. We check that Λ(α)(xi)≤ α(π)i for i≤N , by

induction on i. The case i= 0 is immediate. Given the claim for some i≤N ,

we have

Λ(α)(xi+1 − [xi0])≤ α(π)Λ(α)(xi)≤ α(π)i+1.

If i < N , this implies that Λ(α)(xi+1)≤ α(π)i+1, completing the induction.

In addition, if i=N <∞, then Λ(α)(xN+1 − [xN0])< Λ(α)([xN0]), and so

xN+1 has the desired form. If N =∞, then the series
∑∞

i=0 p
−1w(xi− [xi0])

converges (p, [π])-adically to a limit z satisfying x = πz, so we may take

y = 0.

Definition 5.6. Assume that R= R̂. ThenW (R) is (p, [π])-adically com-

plete, so any sum
∑∞

i=0 xiπ
i with xi ∈W (R) converges to some limit x. We

say that the sequence x0, x1, . . . forms a presentation of x (with respect to

π, or with respect to u in case π = p − [u]). For x ∈ W (R), H(α,π, t)(x)

may be computed as the infimum of

max
i

{
(t/p)iλ(α)(xi)

}
over all presentations x0, x1, . . . of x.

A presentation x0, x1, . . . is stable (or α-stable) if each xi is stable. Any

x ∈W (R) admits a stable presentation (see Lemma 5.7 below). This will

imply that the infimum defining H(α,π, t)(x) is always achieved (see The-

orem 5.11(b) below).
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Lemma 5.7. If R= R̂, then every element of W (R) admits a stable pre-

sentation.

Proof. Given x,x0, . . . , xi−1 ∈ W (R), apply Lemma 5.5 to construct a

stable xi congruent to
(
x−

∑i−1
j=0 xjπ

j
)
/πi modulo π. This process yields a

stable presentation x0, x1, . . . of x.

Corollary 5.8. For each x ∈W (R) and each ε > 0, there exist a non-

negative integer j and some stable elements x0, . . . , xj ∈W (R) such that

λ(α)
(
x−

j∑
i=0

xiπ
i
)
< ε.

Proof. Apply Lemma 5.7 to construct a stable presentation y0, y1, . . . of

x in W (R̂). Choose j with p−j−1 < ε; then for each i ∈ {0, . . . , j}, choose
xj ∈W (R) with λ(α)(yj − xj)< ε.

Remark 5.9. It is unclear whether one can improve Lemma 5.7 to achieve

a presentation using only Teichmüller elements rather than arbitrary stable

elements. We suspect that this cannot be done, for reasons similar to those

given in the erratum to [17].

Lemma 5.10. Assume that R = R̂. Let x0, x1, . . . , y0, y1, . . . be presen-

tations of some x, y ∈ W (R) for which xy 	= 0. Then for all but finitely

many t ∈ [0,1], there exists a unique pair of indices j, k maximizing

(t/p)j+kλ(α)(xjyk).

Proof. Since xy 	= 0, there must exist some indices h, i for which xhyi 	= 0.

Then for t ∈ (0,1], the maximum of (t/p)j+kλ(α)(xjyk) can only be achieved

by pairs (j, k) for which either j + k ≤ h+ i or ph+i−j−k ≥ λ(α)(xhyi). This

limits (j, k) to a finite set independent of t; for any two pairs in that set,

there is at most one value of t for which both pairs of indices achieve the

maximum. By excluding each such value, we obtain the desired result.

Theorem 5.11. Choose t ∈ [0,1], and assume that α is power-

multiplicative (resp., multiplicative).

(a) The function H(α,π, t) is a power-multiplicative (resp., multiplicative)

seminorm on W (R) bounded by λ(α).

(b) Assume that R= R̂. For any stable presentation x0, x1, . . . of x ∈W (R),

H(α,π, t)(x) =maxi{(t/p)iλ(α)(xi)}.
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(c) For t ∈ [0, pα(π)] with pα(π) > 0 and c ∈ [1,1 − logp(pα(π))],

H(α,π, t) =H(α1/c, π, p(t/p)1/c)c.

(d) For t ∈ [pα(π),1] with t > 0, we have H(α,π, t) = λ(α1/c)c for c= 1−
logp t. In particular, H(α,π,1) = λ(α). (For t= 0, we obtain the same

conclusion by interpreting λ(α1/c)c for c=+∞ as the restriction of α

along W (R)→R.)

Proof. We may assume throughout that R= R̂. Given x, y ∈W (R), apply

Lemma 5.7 to construct stable presentations x0, x1, . . . , y0, y1, . . . of x, y. We

verify that

(5.11.1) H(α,π, t)(xy)≥max
j+k

{
(t/p)j+kλ(α)(xjyk)

}
(t ∈ [0,1]).

Suppose the contrary; then xy 	= 0. We must have a presentation z0, z1, . . .

of xy for which

(5.11.2) max
i

{
(t/p)iλ(α)(zi)

}
<max

j,k

{
(t/p)j+kλ(α)(xjyk)

}
for some t ∈ [0,1]. Let S be the set of t ∈ (0,1] for which there are unique

indices j, k maximizing (t/p)j+kλ(α)(xjyk). By Lemma 5.10, the comple-

ment of S in [0,1] is finite. Since (5.11.2) holds for some t and both sides of

(5.11.2) are continuous in t, (5.11.2) must hold for some t ∈ S. Choose some

such t, and put s= (log p)/(log(p/t)), so that (t/p)is = p−i. We then have

xjykπ
j+k =

∞∑
i=0

ziπ
i −

∑
(j′,k′) 
=(j,k)

xj′yk′π
j′+k′ ,

but

λ(αs)(xjykπ
j+k)>max

i

{
λ(αs)(ziπ

i)
}
, max

(j′,k′) 
=(j,k)

{
λ(αs)(xj′yk′π

j′+k′)
}
.

This gives a contradiction, and (5.11.1) follows.

To deduce (a), note that from the definition, H(α,π, t) is evidently a

submultiplicative seminorm bounded by λ(α). If α is multiplicative, then

H(α,π, t) is multiplicative because (5.11.1) implies that H(α,π, t)(xy) ≥
H(α,π, t)(x)H(α,π, t)(y). Similarly, if α is power-multiplicative, then so is

H(α,π, t). To deduce (b), apply (5.11.1) with y = y0 = 1 and yi = 0 for i > 0.

Suppose that t ∈ [0, pα(π)] with pα(π) > 0 and c ∈ [1,1 − logp(pα(π))].

Since c ≤ 1 − logp(pα(π)), we have α1/c(π) ≤ p−1, so H(α1/c, π, p(t/p)1/c)
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is well defined. Since c≥ 1, any α-stable element is also α1/c-stable (as in

Remark 5.4), so we may apply (b) to deduce (c).

To deduce (d), note thatH(α,π,1)≤ λ(α) from the definition ofH(α,π, t)

as a quotient norm, whereas H(α,π,1) ≥ λ(α) from (b). Given this, if

t ∈ [pα(π),1] with t > 0 and c = 1 − logp t, then in particular c ∈ [1,1 −
logp(pα(π))], so (c) implies that H(α,π, t) =H(α1/c, π,1)c = λ(α1/c)c. This

yields (d) for t > 0; the case t= 0 follows by continuity.

Corollary 5.12. For any x ∈ W (R) with λ(α)(x) 	= 0, the function

vx(r) =− logH(α,π, e−r)(x) on [0,+∞) is continuous, concave, nondecreas-

ing, and piecewise affine with nonnegative integer slopes.

Proof. This is apparent from Theorem 5.11(b) and the existence of stable

presentations in case R= R̂ (Lemma 5.7).

As an application of Corollary 5.12, we exhibit a computation which is

not straightforward using stable presentations.

Lemma 5.13. For u,u′ ∈R with α(u), α(u′)≤ p−1 and t ∈ [0,1],

H(α,u, t)(p− [u′]) = max
{
t/p,H(α,u,0)(p− [u′])

}
.

Proof. Consider the functions

f(r) =− logH(α,u, e−r)(p− [u′]),

g(r) =− logmax
{
e−r/p,H(α,u,0)(p− [u′])

}
.

Note that f and g take the same value log p at r = 0 and tend to the same

(possibly infinite) limit as r→∞. In case α(u−u′) = p−1, [u]− [u′] is stable,
so [u]− [u′],1,0,0, . . . is a stable presentation of p− [u′] with respect to u.

By Theorem 5.11(b), H(α,u, t)(p− [u′]) = p−1 for all t ∈ [0,1], so f = g.

In case α(u−u′)< p−1, we have H(α,u,1)([u]− [u′]) = λ(α)([u]− [u′])<
p−1. Consequently, we have H(α,u,1)(p− [u′]) = t/p for t close to 1. This

means that in a right neighborhood of r = 0, f(r) and g(r) are both affine

with slope 1. By Corollary 5.12, both functions are continuous, concave,

nondecreasing, and piecewise affine with nonnegative integer slopes; hence,

each function either persists with slope 1 forever or becomes constant after

some point. Given this information plus the fact that f and g have the same

limiting value, the two functions are forced to coincide.
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Remark 5.14. Note that H(α,π,0) is the quotient norm on W (R)/(π)

induced by λ(α). In particular, if α is a multiplicative norm, then

H(α,π,0)(x) = 0 if and only if x is divisible by π.

Note also that any β ∈M(W (R)) with μ(β) = α and β(π) = 0 must equal

H(α,π,0). Namely, it suffices to check this assuming that R = R̂. Given

x ∈ W (R), apply Lemma 5.7 to construct a stable presentation x0, x1, . . .

of x. By Theorem 5.11(b) and Remark 5.4, H(α,π,0)(x) = β(x0) = β(x).

Remark 5.15. One consequence of Remark 5.14 is that if α is a mul-

tiplicative norm and u,u′ ∈ R are such that H(α,u,0)(p − [u′]) = 0, then

p− [u′] = y(p− [u]) for some unit y ∈W (R). This implies that H(α,u, t) =

H(α,u′, t) for all t ∈ [0,1]; it does not imply that u= u′ (see Example 6.11),

but it does limit the possibilities for u′, as in Remark 6.7 below.

We will need the following variant of Lemma 5.5.

Lemma 5.16. For any x ∈ W (R) and any ε > 0, there exists y =∑∞
i=0 p

i[yi] ∈W (R) with x ≡ y (mod π) and β(yi) ≤max{β(y0), ε} for all

i > 0 and all β ∈M(R).

Proof. Define x= x0, x1, . . . as in the proof of Lemma 5.5, and again write

xi =
∑∞

j=0 p
j [xij ]. Take n to be a nonnegative integer for which α(π)n ≤ ε,

and put y = xn. For β ∈M(R), let N be the least nonnegative integer for

which β(xN0)> β(π)N+1, or∞ if no such integer exists. By arguing as in the

proof of Lemma 5.5, we see that if n≤N , then Λ(β)(y)≤ β(π)n ≤ α(π)n ≤ ε;

if instead n >N , then β(xi0) = Λ(β)(xi+1) = β(xN0) for i=N , but also for

i > N by induction on i.

§6. Newton polygons and factorizations

The development of the basic algebra of polynomials over a complete

nonarchimedean field is often phrased in the language of Newton polygons.

One can develop a similar device to deal with the ring of Witt vectors

over a perfect valuation ring; we use these to develop an analogue of the

factorization of a polynomial over an algebraically closed field into linear

constituents. This observation is due to Fargues and Fontaine [11] (see

Remark 6.10).

Hypothesis 6.1. Throughout Section 6, let o be the valuation ring of

a perfect field of characteristic p complete under a multiplicative norm α.

Equip W (o) with the norm λ(α), which is also multiplicative by Lemma 4.1.
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Definition 6.2. Let W †(Fraco) denote the set of x =
∑∞

i=0 p
i[xi] ∈

W (Fraco) for which p−iα(xi) → 0 as i → ∞. For T the set of nonzero

Teichmüller lifts in W (o), we may identify W †(Fraco) with the comple-

tion of T−1W (o) for the unique multiplicative extension of λ(α). We define

stable elements of W †(Fraco) using the same definition as in W (o) (see

Definition 5.3).

For x=
∑∞

i=0 p
i[xi] ∈W †(Fraco) nonzero, the Newton polygon of x is the

lower boundary of the convex hull of the set

∞⋃
i=0

{
(a, b) ∈R2 : a≥− logα(xi), b≥ i

}
,

minus any segments of slope less than (logp)−1. The multiplicity of r ∈
[−(log p)−1,0) in the Newton polygon of x is the height of the segment of

the Newton polygon of slope r, or 0 if no such segment exists.

Lemma 6.3. For x, y ∈ W †(Fraco) nonzero and r ∈ [−(log p)−1,0), the

multiplicity of r in the Newton polygon of xy is the sum of the multiplicities

of r in the Newton polygon of x and y.

Proof. The argument is similar to the proofs that λ(α) and H(α,u, t) are

multiplicative (Lemma 4.1 and Theorem 5.11(a)), so we omit the details

(see also [17, Lemma 2.1.7]).

Corollary 6.4. The units in W †(Fraco) are precisely the nonzero stable

elements, which are in turn the elements with no slopes in their Newton

polygons.

Proof. Any nonzero element x of W †(Fraco) can be written uniquely

as [y]z with y ∈ o nonzero and z ∈ 1 + pW †(Fraco). If x is stable, then

λ(α)(z − 1)< 1, so z is a unit, as then is x. Conversely, if x is a unit, then

by Lemma 6.3 the multiplicity of each r ∈ [−(log p)−1,0) in the Newton

polygon of x is zero, so x must be stable.

Lemma 6.5. For u ∈ o with α(u) ≤ p−1, the ideal (p − [u]) in W (o) is

prime.

Proof. If xy is divisible by p− [u], thenH(α,u,0)(xy) = 0. SinceH(α,u,0)

is multiplicative by Theorem 5.11(a), this forces either H(α,u,0)(x) = 0 or

H(α,u,0)(y) = 0. Without loss of generality, suppose that H(α,u,0)(x) = 0;

then by Remark 5.14, x is divisible by p− [u].
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Lemma 6.6. Suppose that x ∈W (o) is nonzero and not stable.

(a) There exists an isometric embedding o→ o0 of complete perfect valua-

tion rings of characteristic p such that in W (o0), x is divisible by p− [u]

for some u ∈ o0 with α(u)≤ p−1.

(b) If Fraco is algebraically closed, we may take u ∈ o.

Proof. In both cases, we may assume that x is not divisible by p, because

otherwise u = 0 works. By rescaling α, we may reduce to the case where

−(log p)−1 has nonzero multiplicity in the Newton polygon of x. In this case,

to prove (a), we will construct u so that α0(u) = p−1, for α0 the extended

norm on o0.

Let S be the completion of W †(Fraco)[p−1] for the unique multiplicative

extension of λ(α). Then κS is a Laurent polynomial ring over κo generated

by the class of x[x−1]− 1. It follows that x is not a unit in S.

Equip S/(x) with the quotient norm. Since S/(x) is nonzero, M(S/(x)) 	=
∅ by Theorem 1.10. Choose β ∈M(S/(x)); it corresponds to an element of

μ−1(α) with β(p) = p−1 and β(x) = 0. (Note that the condition on β(p)

would not have been guaranteed had we used W †(Fraco) instead of S.)

Restrict β to S and then to W (o); then use the isomorphism W (o)[T ]/(T −
p)∼=W (o) to further restrict β to W (o)[T ].

Since the restriction map ψ∗ : M(W (o[T ]perf)) → M(W (o)[T ]) of

Lemma 3.10 is surjective, we can extend β to β0 ∈ M(W (o[T ]perf)). Put

α0 = μ(β0), let o0 be the valuation ring of H(α0), and take u to be the

image of [T ] in o0. Since β0(x) = 0, x is divisible by p − [u] in W (o0) by

Remark 5.14. This proves (a).

To prove (b), keep notation as above, but suppose by way of contradiction

that u /∈ o. Since Fraco is algebraically closed, the restriction of the norm

on o0 to o[T ] defines a point of M(o[T ]) whose radius r is positive. This

in turn implies that if we equip o0[T ]
perf with the r-Gauss norm for the

generator T − u, then the map o0[T ]
perf → o0⊗̂o0 taking o to o⊗ 1 and T

to 1⊗ u is isometric.

Choose a nonnegative integer n for which p−pn−1 < r. For i = 0, . . . , pn,

let oi be a copy of o0 in which ui denotes the element corresponding to u.

Restrict α0 along the map o0
⊗̂

o · · ·
⊗̂

oopn → o0 to obtain a seminorm α′,
and let o′ be the valuation ring of H(α′).

For 0≤ i < j ≤ pn, we have H(α′, u0,0)(p− [ui]) =H(α′, u0,0)(p− [uj ]) =

0, so [(uj/ui)
p−n

] maps to a pnth root of unity in H(H(α′, u0,0)). If this root

were 1, then by Remark 5.14, [(uj/ui)
p−n

]− 1 would be divisible by p− [u0]
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in W (o′), which would imply that α′((uj/ui)p
−n −1)≤ p−1 and α′(uj−ui)≤

p−pnα(u)< r; however, this would contradict the description of α from the

preceding paragraph. It follows that [(uj/ui)
p−n

] maps to a nontrivial pnth

root of unity in H(H(α′, u0,0)), but by the pigeonhole principle, this cannot

hold simultaneously for all i, j. The resulting contradiction forces u ∈ o; this

yields (b).

Remark 6.7. By a similar argument to the proof of Lemma 6.6(b), one

may show the following. For u ∈ o with α(u)≤ p−1, for each ε > 0, the set

of u′ ∈ o with H(α,u,0)(p− [u′]) = 0 is contained in finitely many residue

classes modulo elements of norm at most ε. More precisely, if p−pn−1 < ε,

there are at most pn such classes.

Theorem 6.8. Assume that Fraco is algebraically closed. For x ∈W (o)

nonzero and not stable, we can write x= y(p− [u1]) · · · (p− [un]) for some

nonzero stable y ∈ W (o) and some u1, . . . , un ∈ o with α(u1), . . . , α(un) <

p−1.

Proof. We may divide out powers of p as needed to reduce to the case

where x is not divisible by p. Let n be the sum of all multiplicities in

the Newton polygon of x; this is a nonnegative integer. We check that for

m = 0, . . . , n, we can find u1, . . . , um ∈ o such that x is divisible by (p −
[u1]) · · · (p− [um]). This proceeds by induction on m, with empty base case

m= 0. For the induction step, since m< n, by Lemma 6.3, the sum of all

multiplicities in the Newton polygon of xm = x/((p− [u1]) · · · (p− [um])) is

nonzero, so xm cannot be stable. We may thus apply Lemma 6.6 to construct

um+1 of the desired form.

Given u1, . . . , un as above, put y = x/((p − [u1]) · · · (p − [un])) ∈ W (o1).

By Lemma 6.3, the Newton polygon of y has no slopes, so y is stable. This

gives the desired factorization.

Remark 6.9. For a fixed choice of u ∈ o with α(u)≤ p−1, one can also

define Newton polygons which keep track of the seminorms H(α,u, t), either

by examining stable presentations or by taking the concave duals of the

graphs of the functions vr(x) from Corollary 5.12. We leave it to the reader

to formulate and verify the multiplicativity property in this case.

By analogy with the theory of Newton polygons for polynomials over a

complete nonarchimedean field, one may expect that for x ∈W (o) nonzero,

we can use the Newton polygon to read off some information about the

factors occurring in the representation x= y(p− [u1]) · · · (p− [un]) given by
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Theorem 6.8. Again, this is equivalent to a statement about the function

vr(x), which may be deduced from Lemma 5.13: the right slope of vr(x) at

r counts the number of indices i for which H(α,u,0)(p− [ui])< e−r/p.

Remark 6.10. A similar analysis of elements of W (o), including a some-

what more constructive proof of Theorem 6.8, appears in the development

of p-adic Hodge theory given by Fargues and Fontaine [11].

As an application of Theorem 6.8, we can produce an example of distinct

u,u′ ∈ o with α(u) = α(u′) = p−1 for which p− [u] and p− [u′] generate the

same ideal in W (o), as promised in Remark 5.15. This example is crucial in

p-adic Hodge theory, as in [20] or [11].

Example 6.11. Suppose that there exists x ∈ o with α(x) = p−p/(p−1).

Put

π =

p−1∑
j=0

[1 + x]j/p ∈W (o),

and write π =
∑∞

i=0 p
i[πi]. Then α(π0) = p−1 and α(π1) = 1, so by Theo-

rem 6.8 we can write π = (p − [u])y for some u ∈ o with α(u) = p−1 and

some unit y ∈ W (o). Note that π(1 − [1 + x]1/p) = 1 − [1 + x], so 1 and

[1 + x] have the same image in W (o)/(p− [u]) =W (o)/(π). Consequently,

H(α,u,0)(p − [u′]) = 0 for u′ = u(1 + x)γ for any γ ∈ Z, and by continu-

ity also for any γ ∈ Zp if we use the binomial series to define (1 + x)γ . By

Remark 5.14, p− [u] and p− [u′] generate the same ideal in W (o).

§7. Restriction of Gauss norms

We are now ready to construct a strong deformation retract between

the spectra of R and W (R). We cannot directly imitate the construction

for polynomial rings, for lack of an analogue of (2.3.1) (see Remark 3.11).

We thus instead follow the approach suggested in Remark 2.8. Given an

element of M(W (R)), we express it as the restriction from a larger Witt

ring of a seminorm of the form H(α,u,0) and then define the homotopy

by restricting the corresponding seminorms H(α,u, t). Before embarking on

this construction, we read off a key continuity property from the construc-

tion of the seminorms H(α,u, t).

Theorem 7.1. Equip R with a power-multiplicative norm α bounded

above by the trivial norm, equip W (R) with the power-multiplicative norm
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λ(α), and choose π =
∑∞

i=0 p
i[πi] with α(π0)≤ p−1 and π1 a unit in R. Then

the map

H(·, π, ·) :M(R)× [0,1]→M
(
W (R)

)
defined by Theorem 5.11(a) is continuous.

Proof. To check continuity, we must check that for each x ∈W (R) and

each ε > 0, the sets{
(γ, t) ∈M(R)× [0,1] :H(γ,π, t)(x)> ε

}
,{

(γ, t) ∈M(R)× [0,1] :H(γ,π, t)(x)< ε
}

are open. Pick (γ0, t0) in one of these sets. By Corollary 5.8, we can find

γ0-stable elements x0, . . . , xj ∈W (R) such that

λ(γ0)
(
x−

j∑
i=0

xiπ
i
)
< ε/2.

We may further ensure that each nonzero xi satisfies λ(γ0)(xi)> 0.

Given some nonzero xi, write xi =
∑∞

k=0 p
k[xik]. Choose an integer h

for which γ0(xi0)> p−h. Then the set of γ ∈M(W (R)) for which γ(xi0)>

p−h and p−kγ(xik) < γ(xi0) for k = 1, . . . , h − 1 is open and contains γ0.

Consequently, there is an open neighborhood U of γ0 in M(W (R)) such

that x0, . . . , xj are γ-stable for each γ ∈ U .

For (γ, t) ∈ U × [0,1], applying Theorem 5.11(b) over the ring oH(γ) yields

max
{
ε/2,H(γ,π, t)(x)

}
=max

{
ε/2,max

i

{
(t/p)iγ(xi0)

}}
.

There thus exist an open neighborhood V of γ0 and an open interval I

containing t0 for which for each pair (γ, t) ∈ V × I , H(γ,π, t)(x) and

H(γ0, π, t0)(x) are either both greater than ε or both less than ε. This yields

the desired result.

Corollary 7.2. With notation as in Theorem 7.1, the map H(·, π,0)
induces a homeomorphism M(R) → M(W (R)/(π)), whose inverse is

induced by μ. Moreover, any subset of M(R) is Weierstrass (resp., Laurent,

rational) if and only if its image in M(W (R)/(π)) is Weierstrass (resp.,

Laurent, rational).
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Proof. The first statement is immediate from Theorems 4.5 and 7.1 and

Remark 5.14. For the second statement, observe that from the proof of The-

orem 4.5(a), the image of a Weierstrass (resp., Laurent, rational) subspace

of M(R) is again such a subspace. We establish the converse only for a

rational subspace, because the other cases behave similarly; we may also

assume that R is complete under α. Let

U =
{
γ ∈M

(
W (R)/(π)

)
: γ(fi)≤ piγ(g) (i= 1, . . . , n)

}
be the rational subspace defined by some fi, g ∈W (R) generating the unit

ideal in W (R)/(π) and some pi > 0. Apply Remark 1.15 to find ε > 0 for

which γ(g)> ε for all γ ∈ U . By Lemma 5.16, we can find f1
′
, . . . , fn

′
, g′ ∈R

such that for all γ ∈M(W (R)/(π)),

γ(fi − [fi
′
])≤ p−1max

{
γ(fi), piε

}
, γ(g− [g′])≤ p−1max

{
γ(g), ε

}
.

(More precisely, apply Lemma 5.16 with x = f1, . . . , fn, g, and let f ′
1, . . . ,

f ′
n, g

′ be the resulting values of y; then reduce modulo p.) By Remark 1.15,

[f1
′
], . . . , [fn

′
], [g′] also generate the unit ideal in W (R)/(π), so f1

′
, . . . , fn

′
,

g′, π generate the unit ideal in R; the same is then true without π.

For γ ∈M(W (R)/(π)) corresponding to β ∈M(R), γ(g)≥ ε if and only

if β(g′)≥ ε, in which case γ(g) = β(g′). Also, in this case, γ(fi)≤ piγ(g) if

and only if β(fi
′
) ≤ piγ(g) = piβ(g

′). Consequently, U corresponds to the

rational subspace{
β ∈M(R) : β(fi

′
)≤ piβ(g

′) (i= 1, . . . , n)
}
,

as desired.

Remark 7.3. Corollary 7.2 defines a remarkable section of the projection

μ: it is a homeomorphism of topological spaces, but one of the underlying

rings is of characteristic p, while the other is not. We plan to explore the

relationship between these rings in subsequent work.

To use Theorem 7.1 to define the desired homotopy, we argue as in

Remark 2.8. However, we must overcome a technical complication that does

not occur there, because the analogous construction here is not a priori well

defined.

Lemma 7.4. Define ψ : W (R)[T ] → W (R[T ]perf) as in Lemma 3.10.

Choose β1, β2 ∈ M(W (R[T ]perf)) with β1(p − [T ]) = β2(p − [T ]) = 0 and

ψ∗(β1) = ψ∗(β2). Then for all t ∈ [0,1], the restrictions of H(μ(β1), [T ], t)

and H(μ(β2), [T ], t) to W (R) coincide.
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Proof. By Lemma 1.20, for S = W (R[T ]perf)
⊗

W (R)W (R[T ]perf), there

exists β3 ∈M(S) restricting to β1, β2 on the tensorands. (For β = ψ∗(β1),

one can also argue directly that H(β1)
⊗̂

H(β)H(β2) 	= 0 using the fact that

H(βi) is the completion of an algebraic extension of H(β).) We may iden-

tify S with a dense subring of W (R[T1, T2]
perf) by identifying [T ]⊗ 1 with

[T1] and 1⊗ [T ] with [T2]; we may then extend β3 to W (R[T1, T2]
perf) by

continuity.

For i= 1,2,3, put αi = μ(βi), let oi be the valuation ring of H(αi), and

extend βi to a multiplicative seminorm on W (oi). Then β3(p− [T1]) = β3(p−
[T2]) = 0, so by Remark 5.15, we have H(α3, T1, t) = H(α3, T2, t) for all

t ∈ [0,1]. Since H(α3, Ti, t) restricts to H(αi, Ti, t), this proves the claim.

Definition 7.5. Define ψ :W (R)[T ]→W (R[T ]perf) as in Lemma 3.10.

Given β ∈ M(W (R)), restrict β along W (R)[T ] → W (R)[T ]/(p − T ) ∼=
W (R), and then apply Lemma 3.10(b) to extend β to β1 ∈M(W (R[T ]perf)).

By Lemma 7.4, for t ∈ [0,1], the restriction of H(μ(β1), T , t) to W (R) is

independent of the choice of β1; we call this restriction H(β, t). It is a mul-

tiplicative seminorm by Theorem 5.11(a); its formation is evidently com-

patible with restriction along bounded homomorphisms.

Remark 7.6. For β ∈M(W (R)), let β̃ be the spectral seminorm associ-

ated to the product seminorm on W (R)[T ]/(T − p)
⊗

W (R)[T ]W (R[T ]perf)

using β on the first factor; this equals the supremum over all extensions of

β to W (R[T ]perf) (see Definition 1.11). Consequently, by Lemma 7.4, we

may compute H(β, t) by restricting the spectral seminorm associated to the

quotient norm on

W (R[T ]perf)[U ]/(U − p+ [T ])

induced by the (t/p)-Gauss extension of λ(μ(β̃)).

Remark 7.7. One consequence of Remark 7.6 is monotonicity: for β,β′ ∈
M(W (R)) and t, t′ ∈ [0,1] with β ≥ β′ and t≥ t′, we haveH(β, t)≥H(β′, t′).
This is not evident from Definition 7.5 because Lemma 3.10 does not guaran-

tee that β,β′ admit extensions β1, β
′
1 to W (R[T ]perf) which satisfy β1 ≥ β′

1.

We obtain the following analogue of Theorem 2.5.

Theorem 7.8. The map H : M(W (R)) × [0,1] → M(W (R)) given in

Definition 7.5 is continuous and has the following additional properties.

(a) For β ∈M(W (R)), H(β,0) = β.

(b) For β ∈M(W (R)), H(β,1) = (λ ◦ μ)(β).
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(c) For β ∈M(W (R)) and t ∈ [0,1], μ(H(β, t)) = μ(β).

(d) For β ∈M(W (R)) and s, t ∈ [0,1], H(H(β, s), t) =H(β,max{s, t}).

Proof. Let α be the T -adic norm on R[T ]perf for the normalization α(T ) =

p−1. Equip W (R[T ]perf)/(p− [T ]) with the quotient norm induced by λ(α).

We then obtain a continuous map

M
(
W (R[T ]perf)/(p− [T ])

)
× [0,1]→M

(
W (R)

)
by applying first μ × id (which is continuous by Theorem 4.5) and then

H(·, T , ·) (which is continuous by Theorem 7.1) and then restricting along

the inclusion W (R)→W (R[T ]perf).

By Lemma 7.4, we have a commutative diagram

M
(
W (R[T ]perf)/(p− [T ])

)
× [0,1]

M
(
W (R)

)
× [0,1]

H M
(
W (R)

)
in which the diagonal arrow is continuous and the vertical arrow is a quotient

map by Lemma 3.10(b). This yields the continuity of H . We deduce (a)

from Remark 5.14, (b) from Theorem 5.11(d), and (c) from Remark 5.4 (or,

more precisely, by noting that μ(H(β, t))(x) =H(β, t)([x]) and that because

Teichmüller elements are stable, the latter equals β([x]) = μ(β)(x)).

To establish (d), we may follow the construction of Definition 7.5 to

reduce to the case where R= o is the valuation ring of a perfect field com-

plete for a multiplicative norm γ, and β(p − [u]) = 0 for some u ∈ o with

γ(u) ≤ p−1. By Remark 5.14 again, this ensures that β =H(γ,u,0). This

formula defines an extension of β to W (o1) whenever o1 is the valuation

ring of a complete field extension of Fraco; we may thus reduce to the case

where Fraco is algebraically closed.

In this case, by Theorem 6.8, any nonzero element of W (o) factors as

a stable element times a product of finitely many terms each of the form

p− [u′] for some u′ ∈ o with γ(u′)≤ p−1. To establish (d), we thus need only

check that the functions

f(r) =− logH
(
H(β, s), e−r

)
(p− [u′]),

g(r) =− logH(β,max{s, e−r})(p− [u′])
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are identically equal. By Lemma 5.13, f and g are both continuous, concave,

nondecreasing, and piecewise linear with slopes in {0,1}. Moreover, they

take the same value at r = 0 (namely, log p) and have the same limiting

value as r → ∞ (because H(H(β, s),0) = H(β, s) by (a)). Consequently,

they must coincide.

Corollary 7.9. Each subset of M(R) has the same homotopy type as

its inverse image in M(W (R)) under μ.

We have the following analogue of Lemma 2.4.

Lemma 7.10. For α ∈M(R) and s, t ∈ [0,1], H(H(α,u, s), t) =H(α,u,

max{s, t}).
Proof. Put β = H(α,u,0), and set notation as in Definition 7.5. Then

β1(p − [u]) = β1(p − [T ]) = 0, so H(α,u, s) = H(β, s) by Remark 5.15. By

Theorem 7.8(d),

H
(
H(α,u, s), t

)
=H

(
H(β, s), t

)
=H(β,max{s, t}) =H(α,u,max{s, t}),

as desired.

We also have the following analogue of Theorem 2.11. Again, this depends

on an analysis of the fibers of μ, which we carry out in Section 8.

Definition 7.11. For β ∈ M(W (R)), the set of s ∈ [0,1] for which

H(β, s) = β is nonempty (because it contains 0) and closed (by continu-

ity), so it has a greatest element. As in Definition 2.10, we call this greatest

element the radius of β, and denote it by r(β).

Theorem 7.12. Suppose that β,γ ∈M(W (R)) are such that β ≥ γ and

μ(β) = μ(γ). Then β =H(γ, r(β)).

Proof. Put α = μ(β) = μ(γ), let o be the valuation ring of H(α), and

identify β,γ with the corresponding points in μ−1(α) ⊆ M(W (o)). These

identifications are compatible with the formation of H(·, t); in particular,

they do not change the radius of β. It thus suffices to check the case R= o

(see Lemma 8.12 below).

Corollary 7.13. For β,γ ∈M(W (R)) satisfying μ(β) = μ(γ) and β ≥
γ, we have r(β)≥ r(γ), with equality if and only if β = γ.

Proof. For t ∈ [0, r(γ)], by Theorems 7.8(d) and 7.12, we have

H(β, t) =H
(
H(γ, r(β)), t

)
=H

(
H(γ, t), r(β)

)
=H

(
γ, r(β)

)
= β,

so r(β)≥ r(γ). If equality holds, then γ =H(γ, r(γ)) =H(γ, r(β)) = β.
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§8. Structure of fibers

We conclude with a description of the fibers of the map μ :M(W (R))→
M(R) similar to the description of M(K[T ]) given in Section 2. This will

allow us to establish Theorem 7.12, thus giving a combinatorial interpreta-

tion of the fibers of μ.

Hypothesis 8.1. Throughout Section 8, retain Hypothesis 6.1. In addi-

tion, let õ be the valuation ring of the completion of an algebraic closure of

Fraco, equipped with the unique multiplicative extension α̃ of α, and equip

W (õ) with the multiplicative norm λ(α̃).

Definition 8.2. For u ∈ õ with α̃(u)≤ p−1 and t ∈ [0,1], let β̃u,t ∈ μ−1(α̃)

be the seminorm H(α̃, u, t) of Theorem 5.11. Let βu,t be the restriction of

β̃u,t to W (o).

Before studying the βu,t, we must work out some facts about the β̃u,t
which are not quite as obvious as their counterparts for K[T ].

Lemma 8.3. For u,u′ ∈ õ with α̃(u), α̃(u′)≤ p−1 and t ∈ (0,1], the follow-

ing conditions are equivalent.

(a) We have β̃u,t = β̃u′,t.

(b) We have β̃u,t ≥ β̃u′,t.

(c) We have β̃u,t ≥ β̃u′,0.

(d) We have t/p≥ β̃u′,0(p− [u]).

Proof. Clearly (a) =⇒ (b) =⇒ (c) =⇒ (d); it remains to check that (d) =⇒
(a). If t≥max{pα̃(u), pα̃(u′)}, then β̃u,t = β̃u′,t by Theorem 5.11(d), so (a)

always holds. We may thus assume that t <max{pα̃(u), pα̃(u′)} hereafter.

By (d), we have β̃u′,0([u]− [u′])≤ t/p. That is, there exists y ∈W (õ) for

which

λ(α̃)
(
[u]− [u′] + y(p− [u′])

)
≤ t/p.

Note that we cannot have α̃(u) 	= α̃(u′), because then [u] − [u′] would be

stable and we would derive the contradiction max{α̃(u), α̃(u′)}= λ(α̃)([u]−
[u′]) = β̃u′,0([u] − [u′]) ≤ t/p. We must thus have α̃(u) = α̃(u′). For y the

reduction of y modulo p, we cannot have α̃(1+y)< 1, or else we would derive

the contradiction max{α̃(u), α̃(u′)}= α̃(u−(1+y)u′)≤ t/p. We deduce that

1 + y is a unit in W (õ).

Put y′ = y/(1 + y); then

[u]− [u′] + y′(p− [u]) = (1 + y)−1
(
[u]− [u′] + y(p− [u′])

)
,
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so λ(α̃)([u]− [u′]+ y′(p− [u]))≤ t/p, and hence β̃u,0(p− [u′])≤ t/p. In other

words, condition (d) is symmetric in u and u′.
This means that to prove that (d) =⇒ (a), it is sufficient to check that

(d) =⇒ (b). Given (d), for x ∈W (o), apply Lemma 5.7 to construct a stable

presentation x0, x1, . . . of x with respect to u. By Theorem 5.11(b), β̃u,t(x) =

maxi{(t/p)iλ(α̃)(xi)}. Applying β̃u′,0 to the identity x=
∑

i xi(p− [u])i then

gives β̃u,t(x)≥ β̃u′,0(x). Lemma 7.10 and Remark 7.7 then give

β̃u,t =H(β̃u,t, t)≥H(β̃u′,0, t) = β̃u′,t,

yielding (b) and completing the proof.

Lemma 8.3 allows us to replace the center u of the norm β̃u,t with a

nearby value, as was critical in the analysis of M(K[T ]).

Corollary 8.4. For u,u′ ∈ õ with α̃(u), α̃(u′) ≤ p−1 and t ∈ (0,1], if

λ(α)([u]− [u′])≤ t/p, then β̃u,t = β̃u′,t.

Proof. Since β̃u,t ≤ λ(α), this follows from Lemma 8.3.

Corollary 8.5. For u ∈ õ with α̃(u) ≤ p−1 and t ∈ (0,1], there exists

u′ ∈ õ which is integral over o such that α̃(u′)≤ p−1, λ(α̃)([u]− [u′])< t/p,

and β̃u,t = β̃u′,t.

Proof. By Remark 3.7, [u] − [u′] =
∑∞

i=0 p
i[Pi] for some polynomials Pi

in up
−i
, (u′)p

−i
such that Pi is homogeneous of degree pi and divisible by

up
−i − (u′)p

−i
. It follows that

(8.5.1) λ(α̃)([u]− [u′])≤max
i

{
p−iα̃(u− u′)p

−i}
.

We can make the right-hand side smaller than t/p by ensuring that α̃(u−
u′)< (tpi−1)p

i
for each of the finitely many nonnegative integers i for which

p−i ≥ t/p; this is possible because the integral closure of o in õ is dense. By

Corollary 8.4, we obtain the desired result.

Remark 8.6. Define the function d(u,u′) = pβ̃u′,0(p − [u]). If d(u,u′),

d(u′, u′′)≤ t, then Lemma 8.3 gives β̃u′,t = β̃u,t = β̃u′′,t, and hence d(u,u′′)≤ t.

In other words, the function d satisfies the strong triangle inequality

d(u,u′′) ≤ max{d(u,u′), d(u′, u′′)}. Lemma 8.3 also implies the symmetry

property d(u,u′) = d(u′, u). This almost implies that d is an ultrametric

distance function, but not quite: we can have d(u,u′) = 0 even when u 	= u′.
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(That is, d is a pseudometric rather than a true metric.) Nonetheless, the

function d will play a role in the following arguments similar to that played

by the usual distance function on K in the analysis of M(K[T ]).

We can now give an analogue of Lemma 2.17.

Lemma 8.7. For u ∈ õ with α̃(u)≤ p−1 and s, t ∈ [0,1], βu,s ≥ βu,t if and

only if s≥ t.

Proof. If s≥ t, then evidently βu,s ≥ βu,t. It remains to show that if s > t,

then βu,s 	= βu,t; it is enough to check this when t > 0. By Corollary 8.5, we

can choose u′ ∈ õ integral over o with α̃(u′) ≤ p−1 for which βu,t = βu′,t,

and hence βu,s = βu′,s by Lemma 7.10. Let P (T ) =
∏m

i=1(T − ui) be the

minimal polynomial of u′ over o. Then β̃u′,s(p− [ui]) ≥ β̃u′,t(p− [ui]) with

strict inequality when ui = u′. If we put y =
∏m

i=1(p − [ui]) ∈ W (o), then

βu,s(y) = β̃u′,s(y)> β̃u′,t(y) = βu,t(y), so βu,s 	= βu,t, as desired.

Corollary 8.8. For u ∈ õ with α̃(u)≤ p−1 and t ∈ [0,1], r(βu,t) = t.

Proof. This follows from Lemma 8.7 plus Lemma 7.10.

We also have an analogue of Lemma 2.19.

Lemma 8.9. For u,u′ ∈ õ with α̃(u), α̃(u′)≤ p−1 and t ∈ [0,1], the follow-

ing are equivalent.

(a) We have βu,t = βu′,t.

(b) We have βu,t ≥ βu′,t.

(c) We have βu,t ≥ βu′,0.

(d) There exists τ ∈Aut(õ/o) for which t/p≥ β̃u′,0(p− [τ(u)]).

Proof. Assume first that t > 0. By Lemma 8.3, we have (d) =⇒ (a) =⇒
(b) =⇒ (c), so it remains to check that (c) =⇒ (d). Assume (c); then apply

Corollary 8.5 to construct v ∈ õ integral over o with α̃−1(v) = p−1 for which

λ(α̃)([u]− [v])< t/p and β̃u,t = β̃v,t. Let P (T ) =
∏m

i=1(T−vi) be the minimal

polynomial of v over o, with the roots ordered so that the sequence ti =

pβ̃u′,0(p− [vi]) is nondecreasing.

If (d) fails, then also t/p < β̃u′,0(p− [τ(v)]), so ti > t for i= 1, . . . ,m. We

exploit transitivity as in Remark 8.6: since ti ≥ t1, by Lemma 8.3 we have

β̃u′,ti = β̃vi,ti and β̃u′,ti = β̃v1,ti , so β̃vi,ti = β̃v1,ti . By Lemma 8.3 again,

(8.9.1) max
{
t/p, β̃v1,0(p− [vi])

}
≤ ti/p.

This inequality becomes strict for i= 1.
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If we put y =
∏m

i=1(p− [vi]) ∈W (o), then by Lemma 5.13 and (8.9.1),

βu,t(y) = β̃v1,t(y) =
m∏
i=1

β̃v1,t(p− [vi])

=

m∏
i=1

max
{
t/p, β̃v1,0(p− [vi])

}
<

m∏
i=1

(ti/p) =
m∏
i=1

β̃u′,0(p− [vi]) = βu′,0(y),

a contradiction. Hence, (d) holds, as desired.

Suppose now that t = 0. Note that each condition for t = 0 implies the

corresponding condition for all t > 0. For (a)–(c), the converse implication

is clear; the converse implication also holds for (d) by the completeness of

õ and the compactness of Aut(õ/o). We may thus reduce the claim to the

case t > 0 treated above.

We are now ready to make the decisive step, analogous to Lemma 2.20.

Lemma 8.10. For β ∈ μ−1(α) and s ∈ (r(β),1], there exists u ∈ o with

α̃(u)≤ p−1 for which H(β, s) = βu,s.

Proof. Let S be the set of s ∈ [0,1] for which βu,s ≥ β for some u ∈ õ with

α̃(u)≤ p−1. The set S is up-closed and nonempty; let t be its infimum. As

in the proof of Lemma 2.20, it suffices to check that r(β)≥ t.

By proceeding as in Definition 7.5, we can construct an isometric embed-

ding o→ o1 of complete valuation rings of characteristic p, with the norm

on o1 denoted by α1, and an element v ∈ o1 with α1(v) = p−1, for which

β is the restriction of the seminorm H(α1, v,0). There is no harm in fur-

ther enlarging o1 so that Fraco1 becomes algebraically closed; we may then

identify õ with a subring of o1.

For u ∈ o, if α̃(u) < p−1, then by Lemma 5.13, H(α1, v, s)(p − [u]) is

constant on [0,1]. If instead α̃(u) = p−1, then for s ∈ [0, t) we have H(β, s) 	=
βu,s, so by Lemma 8.9, s/p < H(α1, v,0)(p− [u]). By Lemma 5.13, for s ∈
[0, t],

H(α1, v, s)(p− [u]) =max
{
s/p,H(α1, v,0)(p− [u])

}
=H(α1, v,0)(p− [u])}.

For each nonzero x ∈W (o), by Theorem 6.8 we have x= y(p− [u1]) · · · (p−
[un]) for some stable y ∈W (õ) and some u1, . . . , un ∈ õ with α̃(ui) ≤ p−1.
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For s ∈ [0, t],

H(β, s)(x) =H(α1, v, s)(x) = λ(α̃)(y)
n∏

i=1

H(α1, v,0)(p− [ui])

is independent of s. Hence, H(β, s) = β for s ∈ [0, t], and so r(β) ≥ t, as

desired.

Corollary 8.11. Suppose that β ∈ μ−1(α) is such that β 	= βu,t for all

u ∈ õ with α̃(u) ≤ p−1 and all t ∈ [0,1]. Then for each y ∈ W (o), for any

sufficiently small s ∈ (r(β),1], β(y) =H(β, s)(y).

With this analysis, we obtain Theorem 7.12 as follows.

Lemma 8.12. Theorem 7.12 holds in case R= o.

Proof. If r(β) = 1, then β = H(β,1) = H(γ,1) by Theorem 7.8(b). If

r(γ) = 1, then by Theorem 7.8(b) again, β ≥ γ = H(γ,1) = H(β,1) ≥ β,

and so β =H(γ,1). It is thus safe to assume that r(β), r(γ)< 1.

For each s ∈ (max{r(β), r(γ)},1], by Lemma 8.10 we have H(β, s) =

βu,s, H(γ, s) = βu′,s for some u,u′ ∈ õ with α̃(u), α̃(u′) ≤ p−1. Since β ≥ γ

implies that H(β, s)≥H(γ, s) by Remark 7.7, we have βu,s ≥ βu′,s, but by

Lemma 8.9, this forces βu,s = βu′,s. Hence, H(β, s) =H(γ, s).

If r(γ) > r(β), by taking the limit as s → r(γ)+, we deduce that γ =

H(β, r(γ)) = H(β, r(β)) = β, a contradiction. Hence, r(β) ≥ r(γ), and by

taking the limit as s→ r(β)+, we deduce that β =H(γ, r(β)), as desired.

We derive the following corollary analogous to Corollary 2.23.

Corollary 8.13. For any β,γ ∈ μ−1(α) with β ≥ γ, there exist β̃, γ̃ ∈
μ−1(α̃) restricting to β,γ, respectively, for which β̃ ≥ γ̃.

Proof. Extend γ as in the proof of Theorem 7.8(d); then put β̃ =

H(γ̃, r(β)). This restricts to β by Theorem 7.12.

To obtain an analogue of Corollary 2.25, we must make the function

d(u,u′) from Remark 8.6 more explicit.

Lemma 8.14. Consider u,u′ ∈ õ with α̃(u), α̃(u′)≤ p−1.

(a) If u = 0 or α̃(u′ − u) > p−p/(p−1)max{α̃(u), α̃(u′)}, then d(u,u′) =
pα̃(u′ − u).
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(b) If u 	= 0 and there exists a nonnegative integer i for which α̃(u′/u−1) ∈
(p−pi+1/(p−1), p−pi/(p−1)), then

d(u,u′) = p1−iα̃(u)α̃(u′/u− 1)p
−i ∈ (p−i−1/(p−1)α̃(u), p−(i−1)−1/(p−1)α̃(u)).

(c) If u 	= 0 and there exists a positive integer i for which α̃(u′/u − 1) =

p−pi/(p−1), then d(u,u′) ≤ p−(i−1)−1/(p−1)α̃(u), with equality unless

α̃(u) = p−1 and α̃(1− up
i
(u′/u− 1)1−p)< 1.

Proof. Part (a) is clear when u= 0, so we may assume that u 	= 0 through-

out. Write

(8.14.1) [u′/u]− 1 =

∞∑
j=0

pj
[
Pj

(
(u′/u− 1)p

−j)]
for Pj(T ) ∈ Fp[T ] as in Lemma 3.8. By Lemma 3.8, Pj(T ) is divisible by T

but not by T 2; consequently, if α̃(u′/u− 1)< 1, then

α̃
(
Pj((u

′/u− 1)p
−j
)
)
= α̃(u′/u− 1)p

−j
,

and so

(8.14.2) λ(α̃)([u′]− [u]) =max
j

{
p−jα̃(u)α̃(u′/u− 1)p

−j}
.

In case (a), the maximum in (8.14.2) is achieved only by the index j = 0; in

case (b), the maximum is achieved only by j = i. In these cases, the right-

hand side of (8.14.1) is dominated under λ(α̃) by a single term which is a

power of p times a Teichmüller element, so this term also dominates under

β̃u,0. This yields the desired results in these cases.

In case (c), the maximum in (8.14.2) is achieved only by the indices j =

i− 1, i. We modify the presentation of [u′/u]− 1 by replacing pi[Pi((u
′/u−

1)p
−i
)] with pi−1[uPi((u

′/u − 1)p
−i
)]. We then observe that d(u,u′) ≤

p−(i−1)−1/(p−1)α̃(u) with equality unless

α̃
(
(u′/u− 1)p

−i − u(u′/u− 1)p
−i+1)

< p−1/(p−1),

which yields the desired result.

Corollary 8.15. For u ∈ õ with α̃(u) ≤ p−1 and 0 < s < t ≤ 1, there

are infinitely many points of μ−1(α̃) of the form β̃u′,s which are dominated

by β̃u,t.
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Proof. Suppose first that u = 0; then for any u′ ∈ õ, we have β̃u,0(p −
[u′]) = α̃(u′) because β̃u,0(p) = 0. Choose s′ ∈ (s, t) for which s′/p occurs as

the norm of some element of õ. As in the proof of Lemma 2.24, we can

find an infinite subset S of õ such that α̃(u′) = α̃(u′ − u′′) = s′/p for all

distinct u′, u′′ ∈ S. We then have β̃u,t ≥ β̃u′,s for all u′ ∈ S by Lemma 8.3.

Moreover, for u′, u′′ ∈ S distinct, [u′] − [u′′] is stable, so β̃u′,0(p − [u′′]) =

β̃u′,0([u
′]− [u′′]) = s′/p, and hence β̃u′,s 	= β̃u′′,s by Lemma 8.3 again.

Suppose next that u 	= 0. Choose c ∈ (p−p/(p−1), p−1/(p−1)) occurring as

the norm of an element of õ and such that p−i+1α̃(u)c ∈ (s, t) for some

nonnegative integer i. Again as in Lemma 2.24, we choose an infinite subset

S of õ such that α̃(u′/u−1) = α̃(u′/u−u′′/u) = cp
i
for all distinct u′, u′′ ∈ S.

By Lemma 8.14, we have β̃u,0(p− [u′]) = β̃u′,0(p− [u′′]) = p−iα̃(u)c for all

distinct u′, u′′ ∈ S. By Lemma 8.3, β̃u,t ≥ β̃u′,s for all u
′ ∈ S, and β̃u′,s 	= β̃u′′,s

for all distinct u′, u′′ ∈ S.

We can now derive an analogue of Lemma 2.24.

Lemma 8.16. For u ∈ õ with α̃(u) ≤ p−1 and t ∈ [0,1], let D(u, t) be

the set of βv,0 ∈ μ−1(α) dominated by βu,t. Then for s, t ∈ [0,1], D(u, s) =

D(u, t) if and only if s= t.

Proof. It suffices to deduce a contradiction under the assumption that

D(u, s) =D(u, t) for some t > s > 0. By Corollary 8.5, we can find u′ ∈ õ

integral over o for which β̃u,s = β̃u′,s, so that D(u, t) =D(u′, t) and D(u, s) =

D(u′, s). Since D(u, t) =D(u, s), for any βv,0 ∈D(u, t), we have βu′,s ≥ βv,0,

and hence (by Lemma 8.9) β̃v,0(p − [τ(u′)]) ≤ s/p for some τ ∈ Aut(õ/o).

Consequently, there are only finitely many points in μ−1(α̃) of the form β̃v,s
which are dominated by β̃u,t; however, this would contradict Corollary 8.15.

This contradiction establishes the desired result.

We also derive the following analogue of Theorem 2.26.

Theorem 8.17. Each element of μ−1(α) is of exactly one of the following

four types.

(i) A point of the form βu,0 for some u ∈ õ with α̃(u)≤ p−1. Such a point

has radius 0 and is minimal.

(ii) A point of the form βu,t for some u ∈ õ with α̃(u) ≤ p−1 and some

t ∈ (0,1) such that t/p is the norm of an element of õ. Such a point

has radius t and is not minimal.
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(iii) A point of the form βu,t for some u ∈ õ with α̃(u) ≤ p−1 and some

t ∈ (0,1) such that t/p is not the norm of an element of õ. Such a

point has radius t and is not minimal.

(iv) The infimum of a sequence βui,ti for which the sequence D(ui, ti) is

decreasing with empty intersection. Such a point has radius infi{ti}> 0

and is minimal.

Proof. By Corollary 8.8, r(βu,t) = t. Consequently, types (i)–(iii) are

mutually exclusive. Moreover, βu,t cannot be of type (iv), because otherwise

βu,0 would belong to the empty intersection
⋂

iD(ui, ti). Consequently, no

point can be of more than one type.

It remains to check that any point β ∈ μ−1(α) not of the form βu,t
is of type (iv) and is minimal of the claimed radius. Choose a sequence

1 ≥ t1 > t2 > · · · with infimum r(β). By Lemma 8.10, for each i, we have

H(β, ti) = βui,ti for some ui ∈ õ. The sequence βu1,t1 , βu2,t2 , . . . is decreas-

ing with infimum β; the sequence D(ui, ti) is also decreasing. For each

u ∈ õ, there exists i for which for which βu,ti 	= βui,ti ; for such i we have

βu,0 /∈D(ui, ti) by Lemma 8.9. Hence, the D(ui, ti) have empty intersection.

Hence, β is of type (iv); it is minimal by Theorem 7.12 plus Lemma 8.10.

Since β = inf i{βui,ti} and r(βui,ti) = ti by Corollary 8.8, we have r(β) ≥
infi{ti}; the reverse inequality also holds because ti = r(βui,ti) ≥ r(β) by

Theorem 7.12.

Suppose by way of contradiction that r(β) = 0. By Corollary 8.5, we may

choose the ui to be integral over o. Let U0 denote the original sequence

u1, u2, . . . . For h = 1,2, . . . , we construct a subsequence Uh of Uh−1 such

that any two terms v1, v2 of Uh satisfy d(v1, v2) ≤ p−h, as follows. Given

Uh−1, for i sufficiently large, whenever ui ∈ Uh−1, we have ti ≤ p−h and

βui,ti = βuj ,ti for all j ≥ i with uj ∈ Uh−1. By Lemma 8.7 and the integrality

of ui over o, this limits the uj to finitely many closed disks of radius ti
under d. One of these disks then contains infinitely many elements of Uh−1;

choose these to form the subsequence Uh.

By diagonalizing (i.e., choosing a subsequence of U0 whose ith term

belongs to Ui for each i), we obtain a Cauchy sequence in õ with respect

to d. By Lemma 8.18 below, this sequence admits a limit u with respect to

d, which then satisfies β = βu,0, a contradiction. We conclude that r(β)> 0,

as desired.
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Lemma 8.18. The pseudometric d on the set {u ∈ õ : α̃(u)≤ p−1} is com-

plete. That is, for every sequence u0, u1, . . . with limi,j→∞ d(ui, uj) = 0, there

exists u for which limi→∞ d(u,ui) = 0.

Proof. Let U0 denote the original sequence. For h= 0,1, . . . , we produce

an infinite subsequence Uh+1 of Uh such that any two elements v1, v2 of

Uh+1 satisfy α̃(v1−v2)≤ p−ph+1/(p−1). To produce U1, apply Lemma 8.14(a).

Given Uh for some h > 0, by Lemma 8.14(c), Uh falls into p residue classes

modulo elements of õ of norm less than p−ph/(p−1). In particular, one of these

residue classes contains infinitely many terms of Uh; by Lemma 8.14(b), all

but finitely many such terms are pairwise congruent modulo elements of õ

of norm at most p−ph+1/(p−1). We can thus choose these to constitute Uh+1.

By diagonalizing, we obtain a Cauchy sequence in õ with respect to α̃,

which then has a limit u. With respect to d, the original sequence is Cauchy,

and u is a limit of a subsequence, so it is also a limit of the entire sequence.

In the manner of Corollary 2.27, we can describe the residual extensions

and norm groups of points in μ−1(α).

Corollary 8.19. Let β be a point of μ−1(α), classified according to

Theorem 8.17. Let |α×|, |β×| denote the groups of nonzero values assumed

by α,β, respectively. Put K =Frac(o).

(i) For β of type (i), κH(β) is algebraic over κK , and |β×|/|α×| is a torsion

group.

(ii) For β of type (ii), κH(β) is finitely generated over κK of transcendence

degree 1, and |β×|/|α×| is a finite group.

(iii) For β of type (iii), κH(β) is a finite extension of κK , and |β×|/|α×| is
a finitely generated abelian group of rank 1.

(iv) For β of type (iv), κH(β) is algebraic over κK , and |β×|/|α×| is a

torsion group.

Proof. By Ostrowski’s theorem again (see (2.27.1)), in cases (ii) and (iii),

it is enough to check the claims after replacing K by a finite extension; in

cases (i) and (iv), we may replace K by a completed algebraic closure. We

make these assumptions hereafter.

In cases (i)–(iii), we have β = βu,t with u ∈ o and α(u)≤ p−1. For each x ∈
W (o), by Lemma 5.7, in W (õ) there exists a stable presentation x0, x1, . . .

of x with respect to u. Let xi ∈ õ denote the reduction modulo p of xi. By
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Theorem 5.11(b),

(8.19.1) βu,t(x) =max
i

{
(t/p)iα̃(xi)

}
.

Consequently, in cases (i) and (ii), |β×|/|α×| is trivial; in case (iii), |β×|/|α×|
is freely generated by t/p.

In case (i), κH(β) may be identified with the quotient of W (o) by the

ideal (p, [u]), so κH(β) = κK . In case (ii), pick v ∈ o with α(v) = t/p. For

R =W (o)[[v]−1], we have oR/mR
∼= κK [z] for z the class of [v]−1(p− [u]).

Consequently, κH(β) = κK(z). In case (iii), if x 	= 0, then the maximum in

(8.19.1) is achieved only by a single index i. For this i, we have βu,t(x− (p−
[u])i[xi])< βu,t(x); it follows that each element of κH(β) is represented by a

Teichmüller element. Consequently, κH(β) = κK .

In case (iv), by Corollary 8.11, for each y ∈W (o), any sufficiently small

s ∈ (r(β),1] satisfies H(β, s)(y) = β(y). If we choose s ∈ |α×|, we deduce

that |β×|/|α×| is trivial. If we choose s /∈ |α×|, then for any z ∈W (o) with

β(z)≤ β(y), by case (iii), there must exist λ ∈ o for whichH(β, s)(z− [λ]y)<

H(β, s)(y). This implies that

β(z − [λ]y)≤H(β, s)(z − [λ]y)<H(β, s)(y) = β(y),

so z/y and [λ] have the same image in κH(β). Hence, κH(β) = κK .

Remark 8.20. One could also consider points of μ−1(α) obtained by

restricting points of μ−1(α̃) of the formH(α̃, π, t) for π ∈W (õ) as in Hypoth-

esis 5.1; that is, π =
∑∞

i=0 p
i[πi] with α̃(π0)≤ p−1 and α̃(π1) = 1. However,

by Theorem 6.8, any such π generates the same ideal as p− [u] for some

u ∈ õ, so H(α̃, π, t) =H(α̃, u, t) for t ∈ [0,1]. Consequently, these points are

again of types (i)–(iii) in Theorem 8.17 and not of type (iv).
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