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THE TOPOLOGY OF AN OPEN MANIFOLD WITH
RADIAL CURVATURE BOUNDED FROM BELOW BY A
MODEL SURFACE WITH FINITE TOTAL CURVATURE

AND EXAMPLES OF MODEL SURFACES

MINORU TANAKA and KEI KONDO

Abstract. We construct distinctive surfaces of revolution with finite total cur-
vature whose Gauss curvatures are not bounded. Such a surface of revolution
is employed as a reference surface of comparison theorems in radial curvature

geometry. Moreover, we prove that a complete noncompact Riemannian mani-
fold M is homeomorphic to the interior of a compact manifold with boundary if

the manifold M is not less curved than a noncompact model surface M̃ of rev-

olution and if the total curvature of the model surface M̃ is finite and less than
2π. By the first result mentioned above, the second result covers a much wider

class of manifolds than that of complete noncompact Riemannian manifolds
whose sectional curvatures are bounded from below by a constant.

§1. Introduction

In a series of previous articles (see [KT1], [KT2], and [KT3]), by restrict-

ing the total curvature of a noncompact model surface of revolution we

investigated some topological properties of a complete and noncompact Rie-

mannian manifold which is not less curved than the model surface. (The

precise definition of “not less curved than a noncompact model surface

of revolution” is given later in this article.) Typical noncompact model

surfaces are a Euclidean plane (R2, dt2 + t2 dθ2) and a hyperbolic plane

(R2, dt2 + sinh2 t dθ2). Here (t, θ) denotes polar coordinates around the ori-

gin of R2. We construct a noncompact model surface of revolution (M̃, p̃)

as follows. Let a smooth function f : (0,∞) −→ (0,∞) be given. Then,

(R2, dt2+ f(t)2 dθ2) is a noncompact complete surface of revolution M̃ with

smooth Riemannian metric dt2 + f(t)2 dθ2 around the base point p̃ ∈ M̃ , if

f is extensible to a smooth odd function around 0 and satisfies f ′(0) = 1

(see [SST, Theorem 7.1.1]). It is well known that the Gauss curvature G of
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M̃ is given by

G(q) =−f ′′

f

(
t(q)

)
.

The total curvature c(M̃) of a noncompact model surface of revolution M̃

is defined by

c(M̃) :=

∫
M̃

G+ dM̃ +

∫
M̃

G− dM̃,

if
∫
M̃

G+ dM̃ < ∞ or
∫
M̃

G− dM̃ > −∞. Here G+ := max{G,0}, G− :=

min{G,0}, and dM̃ denotes the area element of M̃. The total curvature

of a complete 2-dimensional Riemannian manifold is defined analogously.

This definition was introduced by Cohn-Vossen in [CV].

In 1935, Cohn-Vossen generalized the Gauss–Bonnet theorem for non-

compact Riemannian manifolds, as follows.

Theorem 1.1 ([CV, Satz 6]). If a connected, complete, noncompact,

finitely connected Riemannian 2-dimensional manifold X admits a total cur-

vature c(X), then

c(X)≤ 2πχ(X)

holds. Here χ(X) denotes the Euler characteristic of X.

Now, we are in a position to give the precise definition of “not less curved

than a noncompact model surface of revolution” in the following. Let (M,p)

denote a complete, connected, and noncompact n-dimensional Riemannian

manifold with base point p ∈M and (M̃, p̃) a noncompact model surface of

revolution defined above. Note that a unit speed geodesic γ̃ : [0,∞)−→ M̃

emanating from p̃, which is called a meridian, is a ray. From now on, we

choose a meridian γ̃ and fix it. We say that the manifold (M,p) has radial

curvature at the base point p bounded from below by that of the model

surface (M̃, p̃) if, along every minimal geodesic γ : [0, a) −→M emanating

from p= γ(0), its sectional curvature KM satisfies

KM (σt)≥G
(
γ̃(t)

)
for all t ∈ [0, a) and for all 2-dimensional linear planes σt containing γ′(t).
This is the precise definition that a complete noncompact Riemannian man-

ifold is not less curved than a model surface.

By Theorem 1.1, the total curvature of a noncompact model surface of

revolution does not exceed 2π if the total curvature exists. Hence, it is
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natural to assume that the total curvature of a noncompact model surface

of revolution is finite. Under this assumption, we have proved the following

theorem.

Theorem 1.2 ([KT2, Theorem 2.2]). Let (M,p) be a complete noncom-

pact Riemannian manifold M whose radial sectional curvature at the base

point p is bounded from below by that of a noncompact model surface of

revolution (M̃, p̃) with its metric dt2 + f(t)2 dθ2. If

(1) M̃ admits a finite total curvature, and

(2) M̃ has no pair of cut points in a sector Ṽ (δ0) for some δ0 ∈ (0, π],

then M is homeomorphic to the interior of a compact manifold with bound-

ary. Here Ṽ (δ0) := {x̃ ∈ M̃ | 0< θ(x̃)< δ0}.

In this article, we will show that item (2) of Theorem 1.2 is unnecessary

if the total curvature is less than 2π. That is, we will prove the following

theorem.

Theorem 1.3. A connected, complete, noncompact Riemannian manifold

(M,p) is homeomorphic to the interior of a compact manifold with boundary

if the radial curvature at a point p ∈M is bounded from below by that of a

noncompact model surface of revolution (M̃, p̃) which admits a finite total

curvature c(M̃) less than 2π.

Note that the finiteness of the total curvature does not impose strong

restriction on the curvature of the model surface. In fact, we will prove the

following theorem, which tells us that the radial curvature of the model

surface in Theorem 1.3 is not always bounded from below.

Theorem 1.4. Let M̃ := (R2, dt2+f(t)2 dθ2) denote a noncompact model

surface of revolution which admits a finite total curvature c(M̃) less than 2π.

Then, for any ε > 0, there exists a noncompact model surface of revolution

M̃−
ε := (R2, dt2 +m−

ε (t)dθ
2) such that

K ≥G−
ε on [0,∞), ‖G−

ε −K‖2 < ε, lim inf
t→∞

G−
ε (t) =−∞,

and

|c(M̃)− c(M̃−
ε )|< ε.

Here the functions

K(t) :=−f ′′

f
(t), G−

ε (t) :=−m−
ε
′′

m−
ε
(t)
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denote the radial curvature of M̃, M̃−
ε , respectively, and ‖G−

ε − K‖2 :=√∫∞
0 |G−

ε −K|2 dt.

Remark 1.5. In Theorem 1.4, it is impossible to choose M̃−
ε as a von

Mangoldt surface of revolution, when K(t) is bounded from below. Here

a von Mangoldt surface of revolution is, by definition, a model surface of

revolution whose radial curvature is nonincreasing on [0,∞).

§2. Proof of Theorem 1.3

By the same argument used in the proof of [KT2, Theorem 5.3], we have

the following lemma.

Lemma 2.1. Let (M∗, p∗) be a noncompact model surface of revolution

with its metric dt2 +m(t)2 dθ2 satisfying the differential equation m′′(t) +
K(t)m(t) = 0 with initial conditions m(0) = 0 and m′(0) = 1. If M∗ satisfies∫ ∞

0
tK(t)dt >−∞

and if K(t)≤ 0 on [0,∞), then M∗ admits a finite total curvature.

Lemma 2.2. Let (M̃, p̃) denote a noncompact model surface of revolu-

tion with its metric ds̃2 = dt2 + f(t)2 dθ2 satisfying the differential equation

f ′′(t) + G(t)f(t) = 0 with initial conditions f(0) = 0 and f ′(0) = 1. If M̃

admits a finite total curvature c(M̃) less than 2π, then there exists a non-

compact model surface of revolution (M∗, p∗) with its metric

(2.1) g∗ = dt2 +m(t)2 dθ2

satisfying the differential equation m′′(t)+G−(t)m(t) = 0 with initial condi-

tions m(0) = 0 and m′(0) = 1 such that M∗ admits a finite total curvature.

Here G− := min{G,0}.
Proof. Since M̃ admits a finite total curvature, it follows from [SST,

(5.2.6)] that limt→∞ f ′(t) ∈ R exists, and it also follows from [SST, Theo-

rem 5.2.1] that

2π lim
t→∞

f ′(t) = lim
t→∞

2πf(t)

t
= 2π− c(M̃)

holds. Since −∞< c(M̃)< 2π and since

lim
t↓0

f(t)

t
= 1,
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there exists a positive constant α such that

f(t)

t
>

1

α

on (0,∞). Thus,

(2.2)

∫ ∞

0
tG−(t)dt≥ α

∫ ∞

0
f(t)G−(t)dt.

Since c(M̃) is finite,

(2.3) −∞<

∫
M̃

G− ◦ t dM̃ = 2π

∫ ∞

0
f(t)G−(t)dt.

By (2.2) and (2.3), ∫ ∞

0
tG−(t)dt >−∞.

Therefore, by Lemma 2.1, we get the noncompact model surface of revolu-

tion (M∗, p∗) with the metric (2.1) whose total curvature is finite.

Proof of Theorem 1.3. By Lemma 2.2, we have a noncompact model sur-

face of revolution (M∗, p∗) with its metric (2.1) whose total curvature is

finite. Since G≥G− =min{G,0}, (M∗, p∗) is the reference surface to (M,p).

Moreover, (M∗, p∗) has no pair of cut points in a sector Ṽ (δ) for all δ ∈ (0, π],

since 0≥G−. Therefore, by Theorem 1.2,M is homeomorphic to the interior

of a compact manifold with boundary.

§3. Fundamental lemmas

We need several lemmas for constructing a family of specific surfaces

of revolution. Let K : [0,∞) −→ R be a continuous function, and let f :

[0,∞)−→R be a solution of the differential equation

(3.1) f ′′(t) +K(t)f(t) = 0.

Here we assume that the solution f satisfies

(3.2) f > 0

on (0,∞) and that

(3.3)

∫ ∞

1
f(t)−2 dt <∞.
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Lemma 3.1. Let G : [0,∞)−→R be a continuous function, and let m be

the solution of the differential equation

(3.4) m′′(t) +G(t)m(t) = 0

with initial conditions m(0) = f(0) and m′(0) = f ′(0). If G−K has a com-

pact support in a bounded interval [a, b]⊂ [1,∞), then, for any t≥ a,

(3.5) |σ(t)| ≤
∫ t

a
f(t)−2|m′f −mf ′|dt

holds. Here we set

σ(t) :=
m

f
(t)− 1.

Proof. Since

σ′(t) =
1

f2
(m′f −mf ′)(t)

and since σ(t) = 0 on (0, a], we obtain

σ(t) =

∫ t

a

1

f2
(m′f −mf ′)(t)dt,

and hence

|σ(t)| ≤
∫ t

a

1

f2
|m′f −mf ′|dt.

Lemma 3.2. If G and m are the functions defined in Lemma 3.1, then

(3.6) |(m′f −mf ′)(t)| ≤
(
α(m) + 1

)
· ‖G−K‖2 · ‖f2|[a,b]‖2

holds on [0,∞). Here we set

‖G−K‖2 :=
√∫ ∞

0
|(G−K)(t)|2 dt, ‖f2|[a,b]‖2 :=

√∫ b

a
f(t)4 dt,

and α(m) := supt≥0 |σ(t)|.

Proof. Since the case where t ∈ [0, a] is trivial, we assume that t > a. By

(3.1) and (3.4), we have

(3.7) (fm′ − f ′m)′(t) = (K −G)fm(t).
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Hence,

(3.8) (fm′ − f ′m)(t) = (fm′ − f ′m)(b)

holds for any t≥ b, since G=K on [b,∞). By (3.7), we get

|(fm′ − f ′m)|(t)≤
∫ t

a
|K −G|f2(|σ|+ 1)dt=

(
α(m) + 1

)∫ t

a
|K −G|f2 dt.

Now, it is clear from the Schwarz inequality and from (3.8) that (3.6) holds

for any t≥ 0.

Lemma 3.3. Set

C(f, a, b) :=

∫ ∞

a

1

f2
dt · ‖f2|[a,b]‖2 (> 0).

If

C(f, a, b)<
1

‖G−K‖2
,

then

(3.9) α(m)≤ C(f, a, b)‖G−K‖2
1−C(f, a, b)‖G−K‖2

.

Proof. Since σ(t) = 0 for any t ∈ [0, a], it follows from (3.5) and (3.6) that

sup
t≥0

|σ(t)| ≤C(f, a, b) · ‖G−K‖2
(
α(m) + 1

)
.

Thus, it is clear that (3.9) holds.

Lemma 3.4. The equations

(3.10)

∫ b

a
|Gm−Kf |dt≤

(
α(m)+1

)
‖G−K‖2 ·‖f |[a,b]‖2+α(m)

∫ b

a
|f ′′|dt

and

(3.11)

∫ ∞

b
|Gm−Kf |dt≤ α(m)

∫ ∞

b
|f ′′|dt

hold. Hence, we get∫ ∞

0
|Gm−Kf |dt

(3.12)

≤ α(m)

∫ ∞

a
|f ′′|dt+

(
α(m) + 1

)
‖G−K‖2 · ‖f |[a,b]‖2.
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Proof. Since

(3.13) (Gm−Kf)(t) = (G−K)(t)f(t)
(
σ(t) + 1

)
+K(t)f(t)σ(t),

we get, by the triangle inequality,

(3.14) |Gm−Kf |(t)≤
(
α(m) + 1

)
|G−K|(t)f(t) + α(m)|K(t)f(t)|.

From the Schwarz inequality, it follows that∫ b

a
|G−K|(t)f(t)dt

(3.15)

≤
(
α(m) + 1

)
‖G−K‖2 · ‖f |[a,b]‖2 + α(m)

∫ b

a
|Kf |dt.

Equation (3.10) is clear from (3.15), since Kf = −f ′′ by (3.1). Since

supp(G−K)⊂ [a, b], G=K on [b,∞). Hence, |Gm−Kf |(t) = |Kfσ(t)| ≤
α(m)|Kf |(t) on [b,∞), and Gm(t) =Kf(t) on [0, a]. Now, (3.11) and (3.12)

are clear.

Lemma 3.5. If α(m)< 1, then m(t)> 0 on (0,∞), and

(3.16)

∫ ∞

1
|f(t)−2 −m(t)−2|dt≤ (2 + α(m))α(m)

(1− α(m))2

∫ ∞

a
f(t)−2 dt.

Proof. Since σ(t)≥−σ(m)>−1 for any t ∈ [0,∞), it is clear that m(t)

is positive on (0,∞). By definition, m(t)−2 = (σ+1)−2f(t)−2 holds. Hence,

we get

|f(t)−2 −m(t)−2|= f(t)−2|(σ+ 1)−2 − 1| ≤ α(m) · f(t)−2 |σ(t)|+ 2

(1− |σ(t)|)2 .

Since the function (x+ 2)/(1− x)2 is increasing on [0,1),

(3.17) |f(t)−2 −m(t)−2| ≤ α(m)(2 + α(m))

(1− α(m))2
f(t)−2.

Since G=K on [0, a], f =m on [0, a]. Therefore, by (3.17),∫ ∞

1
|f(t)−2 −m(t)−2|dt=

∫ ∞

a
|f(t)−2 −m(t)−2|dt

≤ α(m)(2 + α(m))

(1− α(m))2

∫ ∞

a
f(t)−2 dt.
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Proposition 3.6. Let K : [0,∞)−→R be a continuous function, and let

f : [0,∞)−→R be the solution of the differential equation of (3.1) with ini-

tial conditions f(0) = 0 and f ′(0) = 1. Suppose that the solution f satisfies

(3.2), (3.3), and ∫ ∞

0
|f ′′(t)|dt <∞.

Then, for any ε > 0 and for any bounded interval (a, b)⊂ [1,∞), there exists

δ > 0 such that, for any continuous function G : [0,∞) −→ R satisfying

supp(G−K)⊂ [a, b] and

‖G−K‖2 :=
√∫ ∞

0
|G−K|2 dt < δ,

the solution m of the differential equation m′′(t)+G(t)m(t) = 0 with initial

conditions m(0) = 0 and m′(0) = 1 satisfies

(3.18)

∫ ∞

0
|Gm(t)−Kf(t)|dt < ε

and

(3.19)

∫ ∞

1
|m(t)−2 − f(t)−2|dt < ε.

Proof. Let ε be an arbitrarily fixed number. Here we choose a positive

number δ1 ∈ (0,1/C(f, a, b)) such that

(3.20)
δ1

1−C(f, a, b)δ1
‖f |[a,b]‖2 <

ε

2

and

(3.21)
C(f, a, b)δ1

1−C(f, a, b)δ1

∫ ∞

a
|f ′′|dt < ε

2

hold. Then it follows from Lemma 3.3, (3.20), and (3.21) that, for any

continuous function G : [0,∞) −→ R satisfying supp(G − K) ⊂ [a, b] and

‖G−K‖2 < δ1, the solution m satisfies

α(m)

∫ ∞

a
|f ′′|dt < ε

2
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and (
α(m) + 1

)
‖G−K‖2 · ‖f |[a,b]‖2 <

ε

2
.

Now, (3.18) is clear from (3.12). Moreover, by (3.16) and (3.9), there exists

δ ∈ (0, δ1] such that, for any continuous function G : [0,∞)−→R satisfying

supp(G−K)⊂ [a, b] and ‖G−K‖2 < δ < δ1, the solution m satisfies (3.18)

and (3.19).

The following proposition is clear from Lemmas 3.1, 3.2, 3.3, and 3.5 and

the proof of Proposition 3.6.

Proposition 3.7. Let K : [0,∞) −→ R be a continuous function, and

let f : [0,∞)−→ R be the solution of the differential equation of (3.1) with

initial conditions f(0) = 0 and f ′(0) = 1. Suppose that the solution f sat-

isfies (3.2) and (3.3). Then for any ε > 0 and for any bounded interval

(a, b) ⊂ [1,∞) there exists δ > 0 such that, for any continuous function

G : [0,∞)−→R satisfying supp(G−K)⊂ [a, b] and

‖G−K‖2 :=
√∫ ∞

0
|G−K|2 dt < δ,

the solution m of the differential equation m′′(t)+G(t)m(t) = 0 with initial

conditions m(0) = 0 and m′(0) = 1 satisfies (3.19).

§4. The construction of a distinctive model

Proof of Theorem 1.4. From the isoperimetric inequalities (see [SST,

Theorem 5.2.1]) and l’Hôpital’s theorem, it follows that

2π lim
t→∞

f ′(t) = lim
t→∞

2πf(t)

t
= 2π− c(M̃).

Hence, the property c(M̃)< 2π implies that

lim
t→∞

f(t)

t
= lim

t→∞
f ′(t)> 0.

In particular, ∫ ∞

1
f(t)−2 dt <∞.

Since c(M̃) is finite,

2π

∫ ∞

0
|K(t)|f(t)dt <∞.
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This is equivalent to ∫ ∞

0
|f ′′(t)|dt <∞.

By applying Proposition 3.6 for the interval (3/2,5/2) and ε/9π, we may find

a smooth function G1 : [0,∞) −→ R such that ‖G1 −K‖2 < ε/32, K ≥G1

on [0,∞), supp(K −G1)⊂ (3/2,5/2),∫ ∞

0
|m′′

1 − f ′′|dt < ε

9π
,

∫ ∞

1
|m−2

1 − f−2|dt < ε

9π
<

ε

9
,

and min{G1(t); 3/2 ≤ t ≤ 5/2} ≤ −1. Here m1 denotes the solution m′′
1 +

G1m1 = 0 with initial conditions m1(0) = 0 and m′
1(0) = 1. By applying

Proposition 3.6, it is easy to define a sequence of smooth functions {Gk :

[0,∞)−→R}k≥0, where G0 =K, satisfying ‖Gk−Gk−1‖2 < ε/3k+1, Gk−1 ≥
Gk on [0,∞), supp(Gk −Gk−1)⊂ (2k− 1/2,2k+ 1/2),∫ ∞

0
|m′′

k −m′′
k−1|dt <

ε

3k+1π
,

∫ ∞

1
|m−2

k −m−2
k−1|dt <

ε

3k+1
,

and min{Gk(t); 2k−1/2≤ t≤ 2k+1/2} ≤−k. Here mk denotes the solution

of m′′
k + Gkmk = 0 with initial conditions mk(0) = 0 and m′

k(0) = 1. We

define mε(t) := limk→∞mk(t) and Gε(t) := limk→∞Gk(t). It is easy to check

that mε(t) is the solution of mε
′′ +Gε(t)mε(t) = 0 with initial conditions

mε(0) = 0 and mε
′(0) = 1. Furthermore, the function mε and Gε satisfy

(4.1)

∫ ∞

0
|mε

′′ − f ′′|dt≤ ε

3π
,

lim inft→∞Gε(t) =−∞, K ≥Gε on [0,∞), and ‖Gε−K‖2 ≤ ε/3< ε. Equa-

tion (4.1) implies that

|c(M̃−
ε )− c(M̃)| ≤ 2π

∫ ∞

0
|mε

′′ − f ′′|dt≤ 2ε

3
< ε,

where M̃−
ε is a noncompact model surface of revolution such that M̃−

ε :=

(R2, dt2 +m−
ε (t)dθ

2) and m−
ε (t) :=mε(t).

The proof of the following theorem is similar to the proof of Theorem 1.4

above.

Theorem 4.1. Let M̃ := (R2, dt2+f(t)2 dθ2) denote a noncompact model

surface of revolution which admits a finite total curvature c(M̃) less than 2π.

Then, for any ε > 0, there exists a noncompact model surface of revolution
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M̃+
ε := (R2, dt2 +m+

ε (t)dθ
2) such that G+

ε ≥K on [0,∞), ‖G+
ε −K‖2 < ε,

limsupt→∞G+
ε (t) =∞, and |c(M̃)− c(M+

ε )|< ε, where we denote by K :=

−f ′′/f , G+
ε :=−m+

ε
′′
/mε

+ the radial curvature of M̃ , M̃+
ε , respectively.

Corollary 4.2. Let M̃ := (R2, dt2 + f(t)2 dθ2) denote a noncompact

model surface of revolution which satisfies (3.2) and (3.3). Then, for any

ε > 0, there exist noncompact model surfaces of revolution M̃+
ε := (R2, dt2+

m+
ε (t)dθ

2) and M̃−
ε := (R2, dt2 + m−

ε (t)dθ
2) such that G+

ε ≥ K ≥ G−
ε on

[0,∞), ‖G∗
ε −K‖2 < ε, and

∫∞
1 |f(t)−2 −m∗

ε
−2|dt < ε. Here ∗=±1.
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