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FUNCTIONS WITH
FINITE DIRICHLET SUM OF ORDER p

AND QUASI-MONOMORPHISMS
OF INFINITE GRAPHS

TAE HATTORI and ATSUSHI KASUE

Abstract. In this paper, we study some potential theoretic properties of con-
nected infinite networks and then investigate the space of p-Dirichlet finite func-
tions on connected infinite graphs, via quasi-monomorphisms. A main result

shows that if a connected infinite graph of bounded degrees possesses a quasi-
monomorphism into the hyperbolic space form of dimension n and it is not

p-parabolic for p > n − 1, then it admits a lot of p-harmonic functions with
finite Dirichlet sum of order p.
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§1. Introduction

A map ψ : X → Y between metric spaces (X,dX) and (Y,dY ) is said
to be a quasi-isometric embedding if there exist a ≥ 1, b > 0 such that
a−1dX(x,x′) − b ≤ dY (ψ(x),ψ(x′)) ≤ adX(x,x′)+b for all x,x′ ∈ X . In addi-
tion, ψ is called a quasi-isometry if ψ(X) is c-dense in Y for some c > 0;
namely, for any y ∈ Y , there exists x ∈ X such that dY (y,ψ(x)) ≤ c.
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We consider the collection BG (bounded geometry) of connected infinite
graphs of bounded degrees endowed with the graph distance and complete
Riemannian manifolds with Ricci curvature bounded below and with a uni-
form lower bound on the volume of balls of radius 1. Any manifold in BG
is quasi-isometric to some graph(s) in BG and vice versa. There are several
important quasi-isometric invariant properties, such as having a certain type
of volume growth, p-parabolicity (1 < p < +∞), the existence of spectral
gaps, and so on, which have been studied in many papers (see [22], [23],
[20], [34], and the references therein). In addition, the space of p-harmonic
functions with finite Dirichlet sum of order p on a graph in BG and the
space of p-harmonic functions with finite Dirichlet integral of order p on
a manifold in BG possess invariant properties under quasi-isometries, as
shown in [21], [31], and [18]. For example, it is known that Euclidean space
Rn of dimension n is p-parabolic if and only if p ≥ n, and there exist no
nonconstant p-harmonic functions with finite Dirichlet integral of order p

on Rn for all p > 1; on the other hand, the hyperbolic space form Hn of
constant curvature −1 and dimension n is not p-parabolic for all p > 1, and
it admits a lot of nonconstant p-harmonic functions with finite Dirichlet
integral of order p if p > n − 1 and no such functions if p ≤ n − 1. These are
invariant properties under quasi-isometries.

A map ψ : X → Y of a metric space (X,dX) to another (Y,dY ) is by defi-
nition a quasi-monomorphism if the following two conditions are satisfied:

(i) there exist constants a > 0 and b ≥ 0 such that dY (ψ(x1),ψ(x2)) ≤
adX(x1, x2) + b for all x1, x2 ∈ X , and

(ii) for any r > 0, there exists a constant c > 0 such that for every y ∈ Y ,
the inverse image ψ−1(B) of the open ball B = BY (y, r) centered at y

with radius r can be covered by c open balls of radius r in X .

When we restrict ourselves to spaces in BG, a quasi-isometric embedding is
a quasi-monomorphism, and the composition of quasi-monomorphisms is a
quasi-monomorphism.

The notion of quasi-monomorphisms is introduced by Benjamini and
Schramm [4]. A space in BG is said to be almost planar if there exists
a planar graph in BG and a quasi-monomorphism from the space to the
planar graph. They study (2-)harmonic functions on planar and almost pla-
nar graphs and manifolds, via circle packings, and prove that on an almost
planar space in BG, there exists a nonconstant Dirichlet finite harmonic
function if it is transient, or not (2-)parabolic.
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In this paper, we investigate some potential theoretic properties of infi-
nite networks, or infinite weighted graphs, and then study the interplay
between p-Dirichlet finite, p-harmonic functions, and compactifications of
the networks. This paper is an expansion of [19].

Associated to the space of bounded p-Dirichlet finite functions on an
infinite network, we have a compactification of the network, called the Roy-
den p-compactification. This is not metrizable in general. Our study begins
with introducing the notion of p-Dirichlet finite maps and showing that a
p-Dirichlet finite map from an infinite network to a proper metric space
extends continuously to the Royden p-boundary (see Theorem 3.1). We
explore p-Dirichlet finite maps relevant to geometric compactifications, par-
ticularly the compactifications of Gromov hyperbolic graphs of bounded
degrees and Riemannian manifolds by conformal changes of the metrics
(see Sections 6 and 8).

A quasi-monomorphism of an infinite graph to another one in BG pulls
back p-Dirichlet finite functions or maps in the target graph to such func-
tions or maps in the domain. From this fact, we can prove, for instance, that
it induces a continuous map from the Royden p-boundary of the domain
graph to that of the target one. As a consequence, we can observe that if
the target graph of a quasi-monomorphism is p-parabolic, then so is the
domain. This illustrates Rayleigh’s monotonicity law.

A main result of this paper shows that if a graph in BG possesses a
quasi-monomorphism into Hn and it is not p-parabolic for p > n − 1, then
it admits a lot of p-harmonic functions with finite Dirichlet sum of order
p. For the precise statement, see Theorem 9.5, where we use the harmonic
p-boundary in the Royden p-compactification of the graph to express p-
harmonic functions with finite Dirichlet sum of order p. For example, regard-
ing Rn−1 as a horosphere in Hn, we have a quasi-monomorphism of the
lattice Zn−1 into Hn, but no such map to Hn−1. Applying Bonk and
Schramm’s embedding theorem [8, Theorem 1.1], we see that if a graph
in BG has a quasi-monomorphism to a visual Gromov hyperbolic geodesic
space whose boundary at infinity is doubling for some visual metric, then the
graph carries a lot of p-harmonic functions with finite Dirichlet sum of order
p for sufficiently large p unless it is p-parabolic. For example, the Cartesian
product of the homogeneous tree of degree d ≥ 3, and any (infinite) graph
in BG has no quasi-monomorphisms into such a Gromov hyperbolic space,
because for all p > 1, the product graph is not p-parabolic, and it has no
nonconstant p-harmonic functions with finite Dirichlet sum of order p.
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The paper is organized as follows. In Section 2, we introduce several
notions of nonlinear potential theory on networks and then collect some
known results. In Section 3, the notion of p-Dirichlet finite maps is intro-
duced and boundary behavior is investigated. Section 4 is devoted to exhibit-
ing infinite networks of Liouville Dp-property. The Kuramochi compactifica-
tion of an infinite network is constructed in Section 5. In Section 6, we con-
sider a Gromov hyperbolic graph of bounded degrees and relate some prop-
erties of the Gromov boundary to existence or nonexistence of p-harmonic
functions with finite Dirichlet sum of order p. Section 7 is devoted to show-
ing some basic properties of quasi-monomorphisms between graphs in BG.
In Section 8, we discuss discrete approximation of Riemannian manifolds in
BG and exhibit some examples of Riemannian manifolds on which existence
or nonexistence of p-harmonic functions with finite p-Dirichlet integral can
be illustrated along with their geometric structures. In Section 9, we discuss
infinite graphs of bounded degrees admitting quasi-monomorphisms into the
hyperbolic space forms and prove our main theorem.

§2. Infinite networks and the Royden compactification

In this section, we introduce several notions, such as Dirichlet sum of order
p, p-harmonic functions, Royden and harmonic p-boundaries, p-parabolicity,
extremal length of order p, and Royden decomposition, and then recall some
known results.

To begin with, following [13], we explain how to construct compact bound-
aries of a countably infinite set V . We are first given a family Φ of bounded
functions on V . Let Φ∗ = Φ ∪ {δx : x ∈ V }, where δx(x) = 1 and δx(y) = 0 if
y �= x. For f ∈ Φ∗, there is a constant M(f) such that |f(x)| ≤ M(f) for all
x ∈ V . Endow the product space

ΠΦ = Πf ∈Φ∗[−M(f),M(f)] =
{
ξ : Φ∗ → R : |ξ(f)| ≤ M(f) for all f ∈ Φ∗}

with the product topology, and embed V into ΠΦ by x → ξx, where ξx(f) =
f(x) for f ∈ Φ∗. This mapping is injective, since δx ∈ Φ∗ for each x ∈ V .
Identify V with its image, and take its closure, denoted by CΦ, in the product
space. We extend f ∈ Φ by writing f(ξ) = ξ(f) for ξ ∈ CΦ. In this way, we get
a compact Hausdorff space CΦ, unique up to homeomorphisms, satisfying
the following properties:
(i) V is topologically embedded in CΦ as an open and dense subset;
(ii) every function of Φ extends to a continuous function on CΦ;
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(iii) the extended functions separate the points of the boundary ∂CΦ =
CΦ \ V .

The uniqueness is checked by using the following description of convergence
of nets: a net {xα} in CΦ converges to a point in ∂CΦ if and only if for
every finite K ⊂ V there is an α0 such that xα �∈ K for every α > α0, and
limα f(xα) exists for every f ∈ Φ.

Alternatively, CΦ can be characterized by the minimality property as
follows. Let X be a compactification of V such that each f ∈ Φ extends to a
continuous function on X . Then there is a canonical map from X onto CΦ.

We note that for two families Φ and Ψ of bounded functions with Φ ⊂ Ψ,
the identity map induces a continuous map from ∂CΨ onto ∂CΦ, and further,
∂CΨ is homeomorphic to ∂CΦ if Φ is dense in Ψ with respect to the uniform
norm.

Now we consider a graph G = (V,E) with the set of vertices V and the set
of edges E that consists of pairs of vertices. In this paper, a graph admits
no loops and multiple edges, and the set of vertices is finite or countably
infinite. We say that a vertex x is adjacent to another y if {x, y} belongs
to E, and we write x ∼ y to indicate it. We also use the notation |xy| for
{x, y} ∈ E. For each vertex x, the cardinality of the subset {y ∈ V | y ∼ x}
is called the degree of G at x. We say that G is locally finite if the degree
at each vertex is finite. In this paper, the graph G under consideration is
assumed to be locally finite.

By a path of length n in G, we mean a sequence of (n + 1) vertices
c = (x0, x1, . . . , xn) such that xi ∼ xi+1 (0 ≤ i ≤ n − 1), and we say that c

connects x0 to xn. G is called a connected graph if for any pair of vertices
x, y, there exist paths connecting them. On a connected graph G, we can
introduce a distance dG on V , called the graph distance of G, by assigning to
each pair of vertices x and y the minimum of the length of a path connecting
them. We say that a subset K of V is connected if any pair of points x, y ∈ K

can be connected by a path in K. In what follows, the graph G = (V,E)
under consideration is supposed to be connected unless otherwise stated.

We are now given a weight r on the set of edges E, that is, a positive
function on E. We call such a couple (G,r) a network. Fix a number p ∈
(1,+∞). For a function u on V , we define the pth power of the gradient at
x ∈ V and the p-Laplacian at x ∈ V , respectively, by

|du(x)|p =
∑
y∼x

r(|xy|)
( |u(x) − u(y)|

r(|xy|)
)p

=
∑
y∼x

|u(x) − u(y)|p
r(|xy|)p−1

,
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Lpu(x) =
∑
y∼x

|u(x) − u(y)|p−2(u(x) − u(y))
r(|xy|)p−1

.

The Dirichlet sum of order p of u over a subset K of V is given by

Dr;p(u;K) =
1
2

∑
x∈K

|du(x)|p.

When K = V , we write simply Dr;p(u) for Dr;p(u;V ), and further, when
r = 1, we write Dp(u) for D1;p(u). More generally, the omission of r in a
notation will mean that r = 1.

A function u : V → R is called p-harmonic in a subset K of V if Lpu = 0
in K. Given a subset K, we denote by ∂K the set of vertices x such that
x �∈ K and x ∼ y for some y ∈ K. Then for a function u : V → R and a finite
subset K of V , the following are mutually equivalent (see [28]):

(i) Here u is p-harmonic in K.
(ii) Also, u is a minimizer of Dr;p(u;K) among functions on K ∪ ∂K with

the same values on ∂K; that is,
∑
x∈K

|du(x)|p ≤
∑
x∈K

|dv(x)|p

for every function v on K ∪ ∂K with v = u on ∂K.
(iii) Here, u satisfies

∑
x∈K

∑
y∼x

|u(x) − u(y)|p−2

r(|xy|)p−1

(
u(x) − u(y)

)(
w(x) − w(y)

)
= 0

for every function w on K ∪ ∂K with w = 0 on ∂K. (The existence of
a minimizer in (ii) is easily verified. The uniqueness is described in the
following comparison principle; see [28]).

(iv) Let u and v be functions on V , and suppose that they are p-harmonic
in a finite connected subset K. Then u ≤ v on K if u ≤ v on ∂K.

Let K be a finite connected subset of V . For a function f on ∂K, there
exists a unique function uf on K ∪ ∂K which is p-harmonic in K and equals
f on ∂K.

Lemma 2.1. Let K be a finite connected subset of V . For functions f , g

on ∂K, one has maxK |uf − ug | ≤ max∂K |f − g|.
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Proof. Let f ∨ g = max{f, g}, and let f ∧ g = min{f, g}. Then (iv) above
implies that uf ∧g ≤ uf ∧ ug ≤ uf ∨ ug ≤ uf ∨g on K ∪ ∂K. Let m = max∂K |f −
g| = max∂K(f ∨ g − f ∧ g). Then f ∨ g ≤ f ∧ g +m, so that uf ∨g ≤ uf ∧g+m =
uf ∧g +m ≤ uf ∧ ug +m, and thus we get |uf − ug | = uf ∨ ug − uf ∧ ug ≤ m.

We denote by L1,p(G,r) the space of all functions u on V whose Dirichlet
sum of order p > 1 over V is finite; that is,

Dr;p(u) =
1
2

∑
x∼y

|u(x) − u(y)|p
r(|xy|)p−1

< +∞.

Then L1,p(G,r) is a Banach space with respect to the norm Dr;p(u)1/p +
|u(o)|, where o is a fixed point of V (see [30]). Let us denote by L1,p

0 (G,r) the
closure of the set of functions with finite supports. We write HL1,p(G,r) for
the space of p-harmonic functions in L1,p(G,r). The space BL1,p(G,r) of all
bounded functions in L1,p(G,r) is a Banach algebra with unit element 1 with
respect to the norm Dr;p(u)1/p + supV |u|. Similarly, we define BL1,p

0 (G,r)
and BHL1,p(G,r).

Associated to BL1,p(G,r) as described above, we have a compactification
Rp(G,r) called the Royden p-compactification of the network (G,r), and
the boundary ∂Rp(G,r) = Rp(G,r) \ V is called the Royden p-boundary
of (G,r). For u ∈ BL1,p(G,r), we denote by ū the continuous extension to
Rp(G,r). It is known that every u ∈ L1,p(G,r), not necessarily bounded,
can be extended continuously to a function defined on Rp(G,r) with values
in [−∞,+∞] (see [35, Theorem 6.9], where the case of p = 2 is discussed,
but the argument of which is valid for any p > 1). This extension is also
denoted by ū. There is an important part of the Royden p-boundary, called
the harmonic p-boundary of the network (G,r), which is defined by

Δp(G,r) :=
{
x ∈ ∂Rp(G,r)

∣∣ ū(x) = 0, ∀u ∈ BL1,p
0 (G,r)

}
;

furthermore, the following duality holds (see [40]):

BL1,p
0 (G,r) =

{
u ∈ BL1,p(G,r)

∣∣ ū(x) = 0, ∀x ∈ Δp(G,r)
}
.

Now we introduce a number R
(p)
(G,r)(x, y) for any pair of vertices x, y by

letting

R
(p)
(G,r)(x, y) = sup

{ |f(x) − f(y)|p
Dr;p(f)

∣∣∣ f ∈ L1,p(G,r),Dr;p(f) �= 0
}
.
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Since G is connected, R
(p)
(G,r)(x, y) is finite for any pair of vertices x, y ∈ V

(see (2.1) below), and R
(p)1/p
(G,r) induces a distance on V (see [14]). For p = 2,

R
(2)
(G,r)(x, y) is called the effective resistance between x and y.
The weight r also gives rise to a distance d(G,r) on V by taking r(e) as

the length of an edge e. To be precise, a path c = (x0, x1, . . . , xn) has by
definition the length Lr(c) =

∑n−1
i=0 r(|xixi+1|), and for any pair of vertices

x and y, d(G,r)(x, y) denotes the infimum of Lr(c) over all paths c joining x

and y. Then d(G,r) : V × V → [0,+∞) is called the geodesic distance of the
network (G,r). For a pair of vertices x and y, we connect x to y by a geodesic
path c = (x = x0, x1, . . . , xn = y). Then for a function u ∈ L1,p(G,r), we have

|u(x) − u(y)| ≤
n−1∑
i=0

|u(xi) − u(xi+1)|

≤
(n−1∑

i=0

|u(xi) − u(xi+1)|p
r(|xixi+1|)p−1

)1/p(n−1∑
i=0

r(|xixi+1|)
)1−1/p

≤ Dr;p(u)1/pLr(c)1−1/p.

This holds for any geodesic path as above, so that we get the following basic
inequality:

(2.1) R
(p)
(G,r)(x, y) ≤ d(G,r)(x, y)p−1, x, y ∈ V.

Let

M
(p)
(G,r)(x) = sup

{ |g(x)|p
Dr;p(g)

∣∣∣ g ∈ L1,p
0 (G,r),Dr;p(g) > 0

}
(≤ +∞), x ∈ V.

We say that a network (G,r) is p-parabolic if M
(p)
(G,r)(x) is infinite for some

x ∈ V , and (G,r) is p-nonparabolic otherwise. We note that M
(p)
(G,r)(x) is

infinite for every x ∈ V if the network is p-parabolic, since we have by the
definitions and convexity of x �→ xp

(2.2) M
(p)
(G,r)(x) ≤ 2p−1M

(p)
(G,r)(y) + 2p−1R

(p)
(G,r)(x, y), x, y ∈ V.

It is proved in [38] that the following are mutually equivalent: (i) (G,r)
is p-parabolic; (ii) Δp(G,r) is empty; (iii) L1,p(G,r) = L1,p

0 (G,r); (iv) 1 ∈
L1,p

0 (G,r).
The Royden decomposition of L1,p(G,r) and the comparison principle for

HL1,p(G,r) are stated in the following.
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Theorem 2.2 ([39, Theorem 2.1], [40, Theorem 3.2], [29, Proposi-
tion 1.1]). Let (G,r) be a connected infinite network that is p-nonparabolic.
(1) Every u ∈ L1,p(G,r) is uniquely decomposed in the form

u = h + g, h ∈ HL1,p(G,r), g ∈ L1,p
0 (G,r).

Here the function h satisfies Dr;p(h) = inf{Dr;p(u − f) | f ∈ L1,p
0 (G,r)};

in particular, Dr;p(h) ≤ Dr;p(u). In addition, h and g are bounded if so
is u.

(2) Given that h1, h2 ∈ HL1,p(G,r), one has h1 ≤ h2 on V if h1 ≤ h2 on
Δp(G,r).

Now we recall the following.

Lemma 2.3 ([19, Proposition 4]). Given a connected infinite network
(G,r), the following conditions are mutually equivalent:

(1) supx∈V M
(p)
(G,r)(x) is finite;

(2) all g ∈ L1,p
0 (G,r) are bounded;

(3) for any g ∈ L1,p
0 (G,r), g(x) tends to zero as x ∈ V goes to infinity

(namely, for any ε > 0, there exists a finite subset K of V such that
|g(x)| < ε for all x ∈ V \ K);

(4) Δp(G,r) = ∂Rp(G,r).

A function m : E → [0,+∞) is said to be an Lp-pseudometric if

‖m‖p
r;p :=

1
2

∑
x∼y

m(|xy|)p

r(|xy|)p−1
< ∞.

For our purpose, we permit m to vanish on some edges. For example,
we set m(x, y) = |u(x) − u(y)| for u ∈ L1,p(G,r). Then this gives an Lp-
pseudometric, because ‖m‖p

r;p = Dr;p(u).
An infinite path γ starting from a vertex x of G is by definition a sequence

of vertices {γ(n)}n≥0 such that γ(n) ∼ γ(n − 1) for any n ≥ 1 and γ(0) = x.
Denote by P x the family of all infinite paths starting from a vertex x of G,
and denote by P (G) the union of P x for all x ∈ V .

Given an Lp-pseudometric m, we define the m-length Lm(γ) of γ ∈ P (G)
by

Lm(γ) =
∞∑

n=1

m
(

|γ(n − 1)γ(n)|
)
(≤ ∞).
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The extremal length ELr;p(P ) of order p of a subset P of P (G) is defined
by

ELr;p(P ) = sup
{ inf{Lm(γ) | γ ∈ P }

‖m‖p
r;p

∣∣∣ m is a nontrivial Lp-pseudometric
}
.

(Extremal length was first investigated by Duffin [16] in the discrete setting,
and extremal length of order p was studied in Nakamura and Yamasaki [30].
By simple calculation, we verify that our definition is equivalent to theirs.
We refer also to [4] and [6].) We will say that a property holds for almost
every path in P (G) if the subset of all paths for which the property is not
true has extremal length ∞.

For an Lp-pseudometric m, we denote by P m,∞ the family of all paths
γ ∈ P (G) with Lm(γ) = +∞. Obviously, ELr;p(P m,∞) = +∞, and hence
Lm(γ) is finite for almost every path γ in P (G).

We recall a property of extremal length in the following.

Lemma 2.4 ([27, Lemma 2.2]). Let {P n} be a countable family of subsets
of P (G). Then

ELr;p

( ∞⋃
n=1

P n

)−1
≤

∞∑
n=1

ELr;p(P n)−1.

Boundary behavior of p-Dirichlet finite functions is studied in [27], [39],
and [40]; some of the results are stated in the following.

Theorem 2.5 ([27, Theorem 3.1], [39, Theorem 3.2], [40, Lemma 5.3]).
Let (G,r) be a connected infinite network. The following assertions hold.
(1) Let f ∈ L1,p(G,r). Then the sequence {f(γ(n))} has a limit as n tends

to ∞ for almost every path γ in P (G).
(2) Let h ∈ HL1,p(G,r) be nonconstant. Then there is no constant c such

that limn→∞ h(γ(n)) = c for almost every path γ in P (G).
(3) Let g ∈ L1,p(G,r). Then g ∈ L1,p

0 (G,r) if and only if limn→∞ g(γ(n)) = 0
for almost every path γ in P (G).

(4) For any closed subset F in ∂Rp(G,r) \ Δp(G,r), if it is not empty, there
is a function g ∈ L1,p

0 (G,r) such that g(x) tends to +∞ as x ∈ V → F .

For a subset B of Rp(G,r), we denote by B the closure of B in Rp(G,r).
The set of extreme points for γ ∈ P (G) is given by EPr;p(γ) := {γ(n)} ∩
∂Rp(G,r).
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Theorem 2.6 ([40, Theorem 6.4]). Let P ∞ be a subset of P (G) with
ELr;p(P ∞) = +∞. Then the set ∪ {EPr;p(γ);γ ∈ P (G) \ P ∞ } contains
Δp(G,r).

§3. p-Dirichlet finite maps

In this section, we introduce the notion of p-Dirichlet finite maps from
an infinite network to a metric space and study the boundary behavior of
such a map.

Let (G,r) be a connected infinite network. Let (X,dX) and f be a metric
space and a map from V to X , respectively. The Dirichlet sum of order p

with weight r of the map f is defined by

Dr;p(f) =
1
2

∑
x∼y

dX(f(x), f(y))p

r(|xy|)p−1
,

and f is said to be p-Dirichlet finite if Dr;p(f) < ∞.
For a p-Dirichlet finite map f : V → X , we have

(3.1) dX

(
f(y), f(z)

)p ≤ (2δ)p−1
∑

w∈B(G,r)(x,2δ)

∑
w′ ∼w

dX(f(w), f(w′))p

r(|ww′ |)p−1

for any δ > 0, every x ∈ V , and all y, z ∈ B(G,r)(x, δ), where B(G,r)(x, δ)
stands for the metric ball around x with radius δ with respect to the geodesic
distance d(G,r). In fact, we connect y to z by a geodesic path c = (y =
x0, x1, . . . , xn = z). Then we have

dX

(
f(y), f(z)

)
≤

n−1∑
i=0

dX

(
f(xi), f(xi+1)

)

≤
(n−1∑

i=0

dX(f(xi), f(xi+1))p

r(|xixi+1|)p−1

)1/p(n−1∑
i=0

r(|xixi+1|)
)1−1/p

≤
( ∑

w∈B(G,r)(x,2δ)

∑
w∼w′

dX(f(w), f(w′))p

r(|ww′ |)p−1

)1/p
Lr(c)1−1/p.

We remark also that if f is a p-Dirichlet finite map, then for any Lipschitz
continuous function η with Lipschitz constant L on X , the composition η ◦ f

belongs to L1,p(G,r) and

Dr;p(η ◦ f) ≤ LpDr;p(f).
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Therefore, η ◦ f uniquely extends to a continuous function η ◦ f : Rp(G,r) →
[−∞,+∞].

For a p-Dirichlet finite map f , we define a function on the set of edges E

by mf (|xy|) = dX(f(x), f(y)), |xy| ∈ E. Note that ‖mf ‖p
r;p = Dr;p(f) < ∞,

and hence mf is an Lp-pseudometric on E. We put P mf ,∞ = {γ ∈ P (G) |
Lmf

(γ) = ∞}.
Suppose that (X,dX) is complete. Then for γ ∈ P (G) \ P mf ,∞, we have

by the definition of P mf ,∞

Lmf
(γ) =

∞∑
n=1

dX

(
f(γ(n − 1)), f(γ(n))

)
< ∞,

and hence {f(γ(n))} converges since it is a Cauchy sequence in X . The
limit of the sequence {f(γ(n))} in X is denoted by (f ◦ γ)(∞). Then for
any Lipschitz continuous function η on X ,

η
(
(f ◦ γ)(∞)

)
= lim

n→∞
η
(
f(γ(n))

)
= lim

n→∞
η ◦ f

(
γ(n)

)
= η ◦ f(ξ)

for all γ ∈ P (G) \ P mf ,∞ and ξ ∈ EPr;p(γ).

Theorem 3.1. Let f : (G,r) → (X,dX) be a p-Dirichlet finite map from
a connected infinite network (G,r) to a proper metric space (X,dX), that is,
a metric space such that any bounded closed subset is compact. Let X̄ = X ∪
{∞X } be the 1-point compactification of X. Then f extends to a continuous
map f̄ : Rp(G,r) → X̄ from the Royden compactification of (G,r) to X̄.
Moreover, suppose that (G,r) is p-nonparabolic. Then there exists a family
P ∞ in P (G) with ELr;p(P ∞) = ∞, including P mf ,∞, such that

f̄
(
Δp(G,r)

)
=

{
(f ◦ γ)(∞) ∈ X

∣∣ γ ∈ P (G) \ (P ′
∞ ∪ P ∞)

}

for any family P ′
∞ in P (G) with ELr;p(P ′

∞) = ∞.

Proof. For a point x ∈ X , we denote by ηx the distance function to x in
X . Let Σf = {ξ ∈ ∂Rp(G,r) | ηx ◦ f(ξ) = +∞}. This closed subset is inde-
pendent of the choice of a reference point x. Now we take a countably
infinite dense subset {xi} of X . Let ξ and {vn} be, respectively, a point of
∂Rp(G,r) \ Σf and a sequence in V converging to ξ. Then f(vn) stays in
a compact subspace in X . Since dX(xi, f(vn)) tends to ηxi ◦ f(ξ) as n → ∞
for all xi which are densely distributed in X , we can deduce that as n tends
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to infinity, f(vn) converges to a point, f̄(ξ), in X . By setting f̄(ξ) = ∞X

for ξ ∈ Σf , we obtain a continuous map f̄ from Rp(G,r) to X̄ .
Suppose now that (G,r) is p-nonparabolic. For any j = 1,2, . . . , let

f̄(Δp(G,r))j =
{
x ∈ X

∣∣ dX

(
x, f̄(Δp(G,r))

)
< 1/j

}
and Aj = f̄(∂Rp(G,

r)) \ f̄(Δp(G,r))j . Since f̄ −1(Aj) is disjoint from Δp(G,r), by Theorem
2.5(4), we have a function gj ∈ L1,p

0 (G,r) such that ḡj = +∞ on f̄ −1(Aj) ∩
∂Rp(G,r). On the other hand, it follows from Theorem 2.5(3) that
limn→∞ ḡj(γ(n)) = 0 for almost every path γ in P (G). This shows that
ELr;p({γ ∈ P (G) \ P mf ,∞ | (f ◦ γ)(∞) ∈ Aj }) = +∞, and hence, letting
P f,∞ = {γ ∈ P (G) \ P mf ,∞ | (f ◦ γ)(∞) ∈ ∪jAj }, we have by Lemma 2.4
ELr;p(P f,∞) = +∞. Hence, (f ◦ γ)(∞) ∈ f̄(Δp(G,r)) for all γ ∈ P (G) \
(P f,∞ ∪ P mf ,∞). Moreover, in view of Theorem 2.6, we see that the asser-
tion holds true.

Corollary 3.2. Let f : (G,r) → (X,dX) be a p-Dirichlet finite map from
a connected infinite network (G,r) to a proper metric space (X,dX), and
let f̄ be its continuous extension to Rp(G,r) with values in X̄. Suppose
that (G,r) is p-nonparabolic and that, for any ξ ∈ f̄(Δp(G,r)), ELr;p({γ ∈
P (G) | (f ◦ γ)(∞) = ξ}) = ∞. Then f̄(Δp(G,r)) is a perfect subspace of X̄.

Proof. In view of the Cantor-Bendixson theorem, f̄(Δp(G,r)) can be
uniquely written as f̄(Δp(G,r)) = P ∪ C, with P a perfect subset of f̄(Δp(G,

r)) and C countably open. Suppose that C is not empty, and take a point
ξ of it. Let U be a neighborhood of ξ in f̄(Δp(G,r)) such that U ∩ P = ∅,
and set P U = {γ ∈ P (G) \ P mf ,∞ | (f ◦ γ)(∞) ∈ U }. Since U is at most
countably infinite, it follows from the assumption and Lemma 2.4 that
ELr;p(P U ) = ∞. Therefore, by Theorem 3.1, we have

f̄
(
Δp(G,r)

)
=

{
(f ◦ γ)(∞)

∣∣ γ ∈ P (G) \ (P U ∪ P ∞)
}
,

which excludes the point ξ. This is a contradiction.

Corollary 3.3. Let f : (G,r) → X be a p-Dirichlet finite map from
a connected infinite network (G,r) to a proper metric space (X,dX), and
let f̄ be its continuous extension to Rp(G,r). Suppose that (G,r) is p-
nonparabolic. Then for a continuous function v in f̄(Δp(G,r)) which is Lip-
schitz continuous in f̄(Δp(G,r)) ∩ X, there exists a unique h ∈ HL1,p(G,r)
such that
(1) h̄ = v ◦ f̄ on Δp(G,r); in particular, if ∂Rp(G,r) = Δp(G,r), then h(xn)

tends to v(ξ) for any sequence {xn} in V such that f(xn) converges to
ξ as n → ∞;
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(2) limn→∞ h(γ(n)) = v((f ◦ γ)(∞)) for almost every γ ∈ P (G).

Proof. We extend v to a Lipschitz function v in X (e.g., letting v(x) =
inf{v(y) + LdX(y,x) | y ∈ f̄(Δp(G,r))} at x ∈ V , where L is a Lipschitz
constant of v). Then v ◦ f belongs to L1,p(G,r), so that the p-harmonic
part of v ◦ f in the Royden decomposition gives a unique solution required
in (1). As far as (2) is concerned, we use Theorem 2.5(3).

Before ending this section, we consider n-dimensional sphere packings in
the Euclidean sphere Sn. Let B = {Bx | x ∈ V } be a collection of closed
balls indexed by a countably infinite set V with disjoint interiors in Sn.
Let K(B) be the set of accumulation points of the centers of the balls in
B. Associated to the collection, we have a graph G = (V,E) with the set of
vertices V and the set of edges E defined by |xy| ∈ E if and only if Bx and
By are tangent. We assume that G is connected, of bounded degrees, and
of weight r = 1. Assigning to a vertex x ∈ V the center of Bx, we obtain a
map f : V → Sn. For any x, y ∈ V , the distance between f(x) and f(y) is
not more than the sum of the radii of Bx and By. Then it is easy to see that
f is a p-Dirichlet finite map from G into Sn for p ≥ n. Hence, f extends to
a continuous map f̄ from the Royden p-compactification of G into Sn, and
we have f̄(∂Rp(G)) = K(B). Moreover, it is proved in [4, Theorem 4.1], and
[6, Theorem 7], that

ELr;p

({
γ ∈ P (G)

∣∣ (f ◦ γ)(∞) = ξ
})

= +∞ for ∀ξ ∈ K(B).

(This is verified for the case p = n, but the argument is valid for any p ≥ n.)
As a result of Corollary 3.2, we see that f̄(Δp(G)) is a perfect subspace of
K(B) if p ≥ n and G is p-nonparabolic.

§4. Networks of Liouville Dp-property

In this section, we are concerned with networks admitting no nonconstant
p-harmonic functions of finite Dirichlet sum of order p, and we show two
propositions which are mentioned in [19] without proof.

The Cartesian product G1 × G2 of two graphs G1 = (V1,E1) and G2 =
(V2,E2) is by definition the graph with vertex set V = V1 × V2 and adjacency
relation given by

(a,x) ∼ (b, y) ⇐⇒ a ∼ b and x = y or a = b and x ∼ y.
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For two networks (G1, r1) and (G2, r2), the Cartesian product is endowed
with the weight r defined by

r
(

|(a,x)(b, y)|
)

= r1(|ab|)δx(y) + r2(|xy|)δa(b), (a,x), (b, y) ∈ V1 × V2.

First we prove the following.

Proposition 4.1. Let (G1, r1) and (G2, r2) be connected infinite net-
works. Suppose that M

(p)
(G1,r1) is bounded for an exponent p > 1. Then the

Royden p-boundary and the harmonic p-boundary of the Cartesian product
(G,r) = (G1, r1) × (G2, r2) of them coincide and consist of a single point.

Proof. Given u ∈ L1,p(G,r), we define a family {ux | x ∈ V2} of functions
on V1 by ux(a) = u(a,x) (a ∈ V1). Then we have

∑
x∈V2

Dr1;p(ux) =
1
2

∑
x∈V2

∑
a,b∈V1;a∼b

|ux(a) − ux(b)|p
r1(|ab|)p−1

=
1
2

∑
x∈V2

∑
a∼b

|u(a,x) − u(b,x)|p
r(|(a,x)(b,x)|)p−1

≤ Dr;p(u).

Hence, ux ∈ L1,p(G1, r1), and we have

(4.1)
∑
x∈V2

Dr1;p(ux) ≤ Dr;p(u).

This shows in particular that Dr1;p(ux) tends to zero as x ∈ V2 goes to
infinity. Similarly, for u ∈ L1,p(G,r) and a ∈ V1, let ua(x) = u(a,x) (x ∈ V2).
Then we have ∑

a∈V1

Dr2;p(ua) ≤ Dr;p(u).

Hence, we see that ua ∈ L1,p(G2, r2) and Dr2;p(ua) tends to zero as a ∈ V1

goes to infinity. Now we fix a point x0 ∈ V2. For a point x of V2, we join x0

to x by a path c = (x0, x1, . . . , xn = x). Then we get

|ux0(a) − ux(a)| ≤
n−1∑
i=0

|u(a,xi) − u(a,xi+1)|

≤
(n−1∑

i=0

|u(a,xi) − u(a,xi+1)|p
r2(|xixi+1|)p−1

)1/p(n−1∑
i=0

r2(|xixi+1|)
)1−1/p
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=
(n−1∑

i=0

|u(a,xi) − u(a,xi+1)|p
r2(|xixi+1|)p−1

)1/p
Lr2(c)

1−1/p

≤ Dr2;p(ua)1/pLr2(c)
1−1/p,

and hence we have

(4.2) lim
a∈V1→∞

|ux(a) − ux0(a)| = 0.

According to the Royden decomposition of L1,p(G1, r1), we write ux =
hx + gx, where hx ∈ HL1,p(G1, r1) and gx ∈ L1,p

0 (G1, r1). By the assumption
and Lemma 2.3, gx(a) tends to zero as a ∈ V1 goes to infinity, and hence
by (4.2), we see that hx0(a) − hx(a) tends to zero as a ∈ V1 goes to infinity.
For this, we can deduce from Lemma 2.3 that hx0 = hx for all x ∈ V2. Let
h = hx0 . Then Dr1;p(h) ≤ Dr1;p(ux) for any x ∈ V2, so that by (4.1), we have∑

x∈V2
Dr1;p(h) ≤ Dr;p(u) < +∞. In this way, we see that Dr1;p(h) = 0; that

is, h must be constant, say, h = c. Then it follows that

|ux(a) − c| = |gx(a)| ≤ M
(p)
(G1,r1)

(a)Dr1;p(gx)

= M
(p)
(G1,r1)(a)Dr1;p(ux)

≤ sup
b∈V1

M
(p)
(G1,r1)

(b)Dr1;p(ux),

which shows that supa∈V1
|ux(a) − c| converges to zero as x ∈ V2 goes to

infinity. Moreover, in view of Lemma 2.3, as a ∈ G1 goes to infinity, |ux(a) −
c| also tends to zero for any x fixed. Thus, we can deduce that for any
u ∈ L1,p(G,r), u(a,x) converges to a constant as (a,x) ∈ V1 × V2 tends to
infinity. This proves the assertion of the proposition.

We now give another sufficient condition under which the harmonic p-
boundary of (G,r) = (V,E, r) is empty or consists of a single point. Let
{Vn} be an increasing family of finite subsets of V whose union coincides
with V . We suppose that we can take a sequence of connected subsets Bn of
V in such a way that ∂Vn

c(= ∂(V \ Vn)) ⊂ Bn, and furthermore, Bn tends
to infinity as n → ∞; that is, for any m, Bn does not intersect with Vm if
n is sufficiently large. Let Gn = (Bn,En) be the connected subgraph of G

generated by Bn, and denote by rn the restriction of r to the set of edges
En of Gn.
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Proposition 4.2. Let (G,r) and (Gn, rn) be as above. Suppose that for
an exponent p > 1,

lim inf
n→∞

max
(x,y)∈∂Vn

c×∂Vn
c
R

(p)
(Gn,rn)(x, y) < +∞.

Then the harmonic p-boundary of (G,r) is empty or consists of a single
point; that is, HL1,p(G,r) = R.

Proof. We take a subsequence {Gnk
} in such a way that

max
∂Vnk

c ×∂Vnk
c
R

(p)
(Gnk

,rnk
) ≤ c for some c > 0

and all k. Then for u ∈ L1,p(G,r), we have max(x,y)∈∂Vnk
c×∂Vnk

c |u(x) −
u(y)|p ≤ cDrnk

;p(u|Bnk
) for all k. Since the right-hand side of the last inequal-

ity tends to zero as k → ∞, we see that max{|u(x) − u(y)| | (x, y) ∈ ∂Vnk
c ×

∂Vnk
c} goes to zero as k → ∞. On the other hand, in the case where u

is p-harmonic, the maximum principle stated in Lemma 2.1 yields that
maxVnk

u − minVnk
u ≤ max∂Vnk

c u − min∂Vnk
c u. Thus, we can deduce that

u must be constant.

In the proposition above, if r = 1 and {Gn} is a family of expanders, that
is, a family of finite graphs with a uniform upper bound on the degrees
such that the cardinality of Gn goes to infinity as n → ∞ and the Cheeger
constant h(Gn) is uniformly bounded from below by a positive constant,
then the assumption holds for all p > 1 (and so does the assertion). In fact,
in this case, it can be shown that R

(p)
Gn

≤ Ch(Gn)−p for some constant C

depending only on p and an upper bound of the degrees (see, e.g., [2]).
We refer the reader to [14], [33], [34], [37], and the references therein for

graphs of Liouville Dp-property.

§5. The Kuramochi compactification

Let G = (V,E) be a connected infinite graph of bounded degrees, and let
r be a weight on E. In this section, we are concerned with compactifications
of (G,r) associated with subsets of BL1,p(G,r) which have countable dense
subsets.

We are given a subset Φ in BL1,p(G,r) which separates points of V . Then
the identity map I of V extends to a continuous map Ī of Rp(G,r) onto the
compactification CΦ associated to Φ (as explained in Section 2). Suppose
that Φ includes a countable subfamily Φ0 which is dense in Φ with respect
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to the uniform norm. Let Φ0 = {un}. Then CΦ0 = CΦ, and CΦ is metrizable.
In fact, we take a sequence of positive numbers μ(n) in such a way that

∞∑
n=1

μ(n)
(
Dr;p(un) + sup

x∈V
|un|p

)
< +∞,

and we define a distance dΦ on V by

dΦ(z,w) =
{ ∞∑

n=1

μ(n)|un(z) − un(w)|p
}1/p

.

Then dΦ can be extended to a metric on the compactification CΦ, and
the completion (V dΦ , dΦ) of (V,dΦ) is homeomorphic to CΦ. In fact, let
d

(m)
Φ (z,w)p =

∑m
n=1 μ(n)|ūn(z) − ūn(w)|p, where ūn stands for the continu-

ous extension of un to CΦ. Since

sup
z,w∈ CΦ

|d(m)
Φ (z,w)p − d

(m+k)
Φ (z,w)p| ≤ 2p

m+k∑
n=m+1

μ(n) sup
x∈V

|un(x)|p,

d
(m)
Φ uniformly converges to dΦ, so that dΦ is continuous on CΦ × CΦ. It is

easy to see that dΦ(z,w) = 0 implies that z = w, because Φ0 is dense in Φ
separating points of V .

Now we set mΦ(|xy|) = dΦ(x, y), |xy| ∈ E. Then mΦ is an Lp-pseudometric
on E and ‖mΦ‖p

r;p =
∑∞

n=1 μ(n)Dr;p(un). This shows that the inclusion map
I : V → (CΦ, dΦ) is a p-Dirichlet finite map. Let ΔΦ

p (G,r) = Ī(Δp(G,r)).
Then it follows from Theorem 3.1 that

ΔΦ
p (G,r) =

{
γ(∞)

∣∣ γ ∈ P (G) \ (P ∞ ∪ P ′
∞)

}

for some P ∞ ⊂ P (G) with ELr;p(P ∞) = ∞ and any P ′
∞ ⊂ P (G) with

ELr;p(P ′
∞) = ∞.

In what follows, we specify a subset of BL1,p(G,r). We denote by ΦK the
set of all bounded functions f on V with finite p-Dirichlet sum such that
for some finite subset K of V , Dr;p(f) ≤ Dr;p(u) if u ∈ L1,p(G,r) coincides
with f on K. The compactification relative to ΦK is called the Kuramochi
p-compactification of (G,r) and is denoted by Kp(G,r).

We want to take a countable subset of ΦK which is dense in ΦK with
respect to the uniform norm. For this purpose, we need two lemmas.
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Let K be a (nonempty) finite subset of V . For any function f on K, we
set

Ff =
{
u ∈ L1,p(G,r)

∣∣ u = f on K
}
.

Ff is not empty, because K is finite.

Lemma 5.1. There exists a unique Dr;p-minimizer uf in Ff .

Proof. To begin with, we recall Clarkson’s inequalities (see [1, p. 36]): in
the case where p ≥ 2, it holds that
(5.1)

Dr;p(u + v;K) + Dr;p(u − v;K) ≤ 2
(
Dr;p(u;K)p∗/p + Dr;p(v;K)p∗/p

)p/p∗

for functions u, v on a subset K, where 1/p∗ + 1/p = 1; in the case where
1 < p ≤ 2, it holds that
(5.2)

Dr;p(u + v;K)p∗/p + Dr;p(u − v;K)p∗/p ≤ 2
(
Dr;p(u;K) + Dr;p(v;K)

)p∗/p

for functions u, v on a subset K.
Let {Vn} be an increasing family of finite subsets Vn whose union coincides

with V , and let {Gn = (Vn,En)} be a sequence of finite subgraphs generated
by Vn. We consider a sequence of subnetworks (Gn, rn), where rn is the
restriction of the weight r to En. We suppose that K ⊂ V1. Let un be a
unique Drn;p-minimizer among functions v on Vn with v = f on K. We
would like to show that un converges to a unique Dr;p-minimizer u in Ff as
n → ∞. Take m and n with m > n. Let v be a function on Vm with v = f

in K, and set vn = v|Vn
. Consider the case where p ≥ 2. Then we have

Drn;p(un) ≤ Drn;p

(un + vn

2

)

≤ Drn;p

(un + vn

2

)
+ Drn;p

(un − vn

2

)

≤ 2
(
Drn;p(un)p∗/p + Drn;p(vn)p∗/p

)p/p∗

= 21−p
(
Drn;p(un)p∗/p + Drn;p(vn)p∗/p

)p/p∗

≤ 21−p+p/p∗
Drn;p(vn) = Drn;p(vn)

≤ Drm;p(v),

where we have used (5.1) in the third inequality. In particular, taking v =
um, we get

Drn;p(un) ≤ Drm;p(um) if n < m.
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Thus, {Drn;p(un)} is nondecreasing. Let α = limn→∞ Drn;p(un). Then
for any g ∈ Ff , α ≤ Dr;p(g), because Drn;p(un) ≤ Drn;p(g|Vn

) for all n.
Moreover, it follows from the above inequalities (with v = um) that
limn→∞;m>n Drn;p((un + um|Vn

)/2) = limn→∞;m>n Drn;p(um|Vn
) = α and

limn→∞;m>n Drn;p((un − um|Vn
)/2) = 0. This shows that for any x ∈ V ,

{un(x)} is a Cauchy sequence. Let u(x) = limn→∞ un(x), x ∈ V . Then we
have Drn;p(u|Vn

) = limm→∞ Drn;p(um|Vn
) ≤ α, and hence Dr;p(u) =

limn→∞ Drn;p(u|Vn
) ≤ α. Thus, u turns out to be a Dr;p-minimizer in Ff .

Let v be another minimizer in Ff . Then applying the above inequalities
again, we see that un converges pointwise to v as n → ∞, and thus v = u. In
the case where 1 < p ≤ 2, the same argument as above together with (5.2)
yields the same conclusion. This completes the proof of Lemma 5.1.

Lemma 5.2. Let K be a nonempty finite subset in V .

(1) For functions f , g on K, uf ≤ ug on V if f ≤ g on K.
(2) For functions f , g on K, supV |uf − ug | ≤ maxK |f − g|.

Proof. Let un (resp., vn) be the Drn;p-minimizer among functions w on
Vn with w = f (resp., w = g) on K as in the proof of Lemma 5.1. If f ≤ g

on K, then by the comparison principle (iv) mentioned before Lemma 2.1,
we have un ≤ vn on Vn and hence uf ≤ ug on V . By Lemma 2.1, we have
supVn

|un − vn| ≤ maxK |f − g|, and hence supV |uf − ug | ≤ maxK |f − g|.
This completes the proof of Lemma 5.2.

Let {Vn} be an increasing family of finite subsets of V whose union coin-
cides with V . Let Φn = {uf ∈ L1,p(G,r) | f : Vn → Q} and Φ0 =

⋃
n Φn. Then

in view of Lemma 5.2(2), we see that Φ0 is dense in ΦK with respect to the
uniform norm.

Proposition 5.3. Let (G,r) be a connected infinite network. The
Kuramochi compactification Kp(G,r) is metrizable and admits a compatible
metric such that the inclusion map I of V to Kp(G,r) is a p-Dirichlet finite
map. Moreover, letting ΔK

p (G,r) be the image of Δp(G,r) by the continuous
extension Ī of Rp(G,r) onto Kp(G,r), one has

ΔK
p (G,r) =

{
γ(∞)

∣∣ γ ∈ P (G) \ (P ∞ ∪ P ′
∞)

}
,

where P ∞ is some subset in P (G) with ELr;p(P ∞) = +∞ and P ′
∞ is any

of such subsets.
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The Kuramochi p-compactification of an infinite weighted tree topolog-
ically coincides with the end compactification. We have another example,
though it is simple, of the Kuramochi p-compactification of an infinite net-
work, which is different from the end compactification (see [25], [19] for
details).

Our definition of the Kuramochi p-boundary of an infinite network is
adapted to that of a Riemannian manifold given in [36]. On the other hand,
in [29], the Kuramochi p-boundary of an infinite network is introduced in a
different manner. A family of certain kernel functions that is smaller than
ours is used to define the compactification. It is not clear whether both
boundaries coincide except for the case p = 2. In fact, it is verified that
this is true when p = 2 (see [25]). In addition, we have an analogue to
Proposition 5.3 with p = 2 expressed in terms of the random walk of an
infinite network (see [26] for details).

§6. Gromov hyperbolic graphs

The purpose of this section is to study projections of the Royden p-
boundaries of Gromov hyperbolic graphs of bounded degrees onto their
Gromov boundaries for sufficiently large p.

To begin with, we recall some basic facts on the spectral gap of a con-
nected, infinite graph G = (V,E) of bounded degrees with weight r = 1 on
E. Let


p(V ) :=
{
u : V → R

∣∣∣ ∑
x∈V

|u(x)|p < +∞
}

and
‖u‖�p :=

(∑
x∈V

|u(x)|p
)1/p

, u ∈ 
p(V ).

If a positive constant d is an upper bound of the degrees of G, then we have
Dp(u) ≤ 2p−1d‖u‖�p

p for all u ∈ 
p(V ), so that all u ∈ 
p(V ) belong to the
Banach space L1,p

0 (G) and the inclusion of 
p(V ) into L1,p
0 (G) is bounded.

Let λp(G) be the largest real λ such that

λ‖u‖�p
p ≤ Dp(u), ∀u ∈ 
p(V ).

Then it follows from the bounded inverse theorem that λp(G) > 0 if and
only if 
p(V ) = L1,p

0 (G); moreover, in this case, we have

sup
x∈V

M
(p)
G (x) ≤ 1

λp(G)
< +∞,
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since
|u(x)|p ≤ ‖u‖�p

p ≤ λp(G)−1Dp(u), u ∈ L1,p
0 (G), x ∈ V.

We remark that if λp(G) is positive for some p > 1, then this is the case for
all p > 1 (see [34]).

Let G = (V,E) be a connected, infinite graph of bounded degrees. Regard-
ing each edge e ∈ E as a segment [0,1], we obtain a Riemannian polyhedron
of dimension 1. We call it the metric graph of G and denote it by |G|. In
the metric graph, we write d|G| for the geodesic distance. Then (|G|, d|G|) is
a connected, locally compact, geodesic space. It is assumed that (V,dG) is
isometrically embedded in (|G|, d|G|). The metric graph is considered hyper-
bolic in the sense of Gromov if there is a nonnegative number δ such that
every geodesic triangle is δ-slim, that is, if each of its sides is contained in
the δ-neighborhood of the union of the other two sides. We say that G is
Gromov hyperbolic if the metric graph is hyperbolic in the sense of Gromov.

In what follows, we focus on a Gromov hyperbolic graph G = (V,E) with
bounded degrees.

A ray in |G| is by definition an isometric map from the interval [0,+∞)
into |G|, and two rays are equivalent if the Hausdorff distance of their images
in |G| are finite. The Gromov boundary ∂∞G is defined to be the set of
equivalence classes of rays in |G|. We say that a ray γ ends at a ∈ ∂∞G if
γ represents the point a. There is a natural topology on |G| ∪ ∂∞G making
it a compact metrizable space, and there is a natural family of visual met-
rics on ∂∞G (see, e.g., [11] for details). We write V

H for V ∪ ∂∞G in the
compactification G

H of |G|.
Now we introduce another compactification of V . Let

S(n) =
{
x ∈ V

∣∣ dG(x, o) = n
}
,

E(n) =
{

|xy| ∈ E
∣∣ x, y ∈ S(n) or x ∈ S(n), y ∈ S(n − 1)

}
,

where n = 1,2, . . . and o is a fixed vertex of G. For a positive constant ε,
we define a function rε on E by letting rε(e) = exp(−εn) if e ∈ E(n). We
denote by dε the geodesic distance of the network (G,rε). Let V

dε and
∂εV be the completion of V with respect to dε and the boundary V

dε \ V ,
respectively. It is proved in [7, Proposition 4.13] that, for any ε > 0, V

dε

is compact, and there is ε0(G) ∈ (0,+∞] such that, for ε < ε0(G), V
dε is

homeomorphic to V
H and the distance dε induces a visual metric on ∂∞G.

For every equivalence class of rays, there is a unique point a ∈ ∂εV such
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that γ(t) converges to a as t → ∞ for each ray γ in the equivalence class.
We note that the visual metric is doubling. For this assertion, we refer to
[11, Theorem 8.3.9] or [8, Theorem 9.2].

Here we recall an observation from [19]. Let I be the inclusion map of V into
the compact metric space (V dε

, dε). Then we have Dp(I) ≤
∑∞

n=1 #E(n) ×
exp(−εpn)(≤ +∞), and hence letting

e(G) = limsup
n→∞

1
n

log
(
#E(n)

)
(∈ [0, ∞)),

we see that Dp(I) is finite; that is, I is a p-Dirichlet finite map if pε >

e(G). Let Lip(V,dε) be the set of Lipschitz functions on V relative to the
distance dε, that is, identified with the set of Lipschitz functions on V

dε .
When pε > e(G), Dp(I) is finite, so that Lip(V,dε) is included in BL1,p(G).
Thus in this case, V

dε can be identified with the compactification CLip(V,dε)

associated with Lip(V,dε) explained in Section 2, and the inclusion map I

can be extended to a continuous map Ī from Rp(G) onto (V dε
, dε).

Now we state some important results on Gromov hyperbolic graphs of
bounded degrees. We refer to [11, Theorem 5.2.17] for (i) below, and [11,
Theorems 6.4.1, 7.1.2] for (ii) below.

(i) If Ψ : G′ → G is a quasi-isometric embedding of Gromov hyperbolic
graphs of bounded degrees G′ to G, then there exists a power quasi-
symmetric (continuous) map ∂∞Ψ from ∂∞G′ to ∂∞G.

(ii) For any closed subspace A of the Gromov boundary ∂∞G of a Gro-
mov hyperbolic graph G of bounded degrees, there exists a visual Gromov
hyperbolic graph GA whose Gromov boundary ∂∞GA coincides with A,
and a roughly isometric map Ψ : GA → G such that ∂∞Ψ is nothing but
the inclusion map from A into ∂∞G. (Here a map Ψ of a metric space
(X,dX) to another one (Y,dY ) is called a roughly isometric map if it sat-
isfies |dY (Ψ(x),Ψ(y)) − dX(x, y)| ≤ C for some positive constant C and all
x, y ∈ X .) We remark that e(GA) ≤ e(G) and ε0(GA) ≥ ε0(G).

We are now in a position to prove the following.

Theorem 6.1. Let G = (V,E) be a Gromov hyperbolic graph with bounded
degrees.

(1) If p > max{e(G)/εo(G),1} and supx∈V M
(p)
G (x) < +∞, then ∂∞G =

Ī(Δp(G)), where Ī : Rp(G) → Ḡ is the continuous extension of the iden-
tity of V which maps ∂Rp(G) onto ∂∞G.
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(2) Let G′ = (V ′,E′) be a Gromov hyperbolic graph with bounded degrees, and
suppose that there exists a quasi-isometric embedding Ψ from G′ to G.
Then ∂∞Ψ(∂∞G′) is included in Ī(Δp(G)) if p > max{1, e(G)/εo(G),
e(G′)/εo(G′)} and supx∈V ′ M

(p)
G′ (x) < +∞.

(3) Let A be a closed subset of ∂∞G, and suppose that A is uniformly perfect
(i.e., there exists a constant μ ∈ (0,1) so that for every x ∈ A and any
ε > 0, we have BA(x, ε) \ BA(x,με) �= ∅ unless A is included in the
metric ball BA(x,με)), or A is connected and of positive diameter. Then
A is included in Ī(Δp(G)) for any p > max{1, e(G)/ε0(G)}.

Proof. Since the condition of supx∈V M
(p)
G (x) being finite is equivalent to

the condition that ∂Rp(G) = Δp(G) by Lemma 2.3, the first assertion can
be deduced by choosing ε > 0 in such a way that pε > e(G) and ε < ε0(G).

We prove the second assertion. We note that Ψ extends to a continuous
map Ψ̄ from Rp(G′) to Rp(G) which maps ∂Rp(G′) (resp., Δp(G′)) to
∂Rp(G) (resp., Δp(G)). This will be verified later in Lemma 7.3 for the
more general case of quasi-monomorphisms of connected, infinite graphs of
bounded degrees. Let I ′ be the continuous extension of the identity map
I ′ of V ′ to Rp(G′) which maps ∂Rp(G′) onto ∂∞G′. Then we see that
∂∞Ψ ◦ I ′ = Ī ◦ Ψ̄ on ∂Rp(G′), from which it follows that

∂∞Ψ
(
I ′(Δp(G′))

)
= Ī

(
Ψ̄(Δp(G′))

)
⊂ Ī

(
Δp(G)

)
.

Since ∂Rp(G′) = Δp(G′) by the assumption that supx∈V ′ M
(p)
G′ (x) < +∞,

we see that I ′(Δp(G′)) = ∂∞G′. This proves the second assertion of the
theorem.

To verify the last one, let GA = (VA,EA) be a visual Gromov hyperbolic
graph as described in (iii) above. Then in view of [9, théorème 3.1], we
can deduce that if A is uniformly perfect, then 
p(VA) = L1,p

0 (GA) for any
p > 1, and hence λp(GA) is positive for any p > 1. It is also proved by
Cao [12] that if A is connected and of positive diameter, then λp(GA) is
positive for any p > 1. In any case, supx∈VA

M
(p)
GA

(x) is finite, so that A =
∂∞GA = IA(Δp(GA)) ⊂ Ī(Δp(G)), where IA is the continuous extension of
the identity of VA which maps ∂Rp(GA) onto ∂∞GA.

Corollary 6.2. A Gromov hyperbolic graph G of bounded degrees admits
a lot of p-harmonic functions with finite Dirichlet sum of order p for p large
enough, provided that there is a bi-Lipschitz embedding of the binary tree
into G.
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This is proved in Tessera [37, Theorem 2.8], where a different method
is employed for the proof. In fact, it is enough to take p greater than
max{e(G)/ε0(G),1}.

Benjamini and Schramm [5] show that a connected, infinite graph G of
bounded degrees with positive Cheeger constant (or equivalently positive
spectral gap) contains a tree T with positive Cheeger constant such that
the inclusion map T → G is a bi-Lipschitz embedding and that there is a
bi-Lipschitz embedding of the binary tree into G.

§7. Quasi-monomorphisms

A map ψ : X → Y of a metric space (X,dX) to another (Y,dY ) is called
a quasi-monomorphism if the following two conditions are satisfied:

(i) there exist constants a > 0 and b ≥ 0 such that dY (ψ(x1),ψ(x2)) ≤
adX(x1, x2) + b for all x1, x2 ∈ X ;

(ii) for any r > 0, there exists a constant c > 0 such that for every y ∈ Y ,
the inverse image ψ−1(B) of the open ball B = BY (y, r) centered at y

with radius r can be covered by c open balls of radius r in X .

For a graph in BG, the inclusion map of a subgraph to the graph is a
quasi-monomorphism. If we take two copies of a graph in BG and identify
them along a subset of the graph, then the canonical projection of the
resulting graph onto the given one is a quasi-monomorphism. When we
consider a finitely generated discrete group acting isometrically and properly
on a proper metric space, by taking a finite symmetric generating set of the
group and fixing a point of the metric space, the map sending each element of
the group to the corresponding point in the orbit of the fixed point turns out
to be a quasi-monomorphism from the Cayley graph into the metric space.
Following [15], we say that a graph G = (V,E) can be drawn in a civilized
manner in Euclidean space Rn if there exists an embedding ψ of the set
of vertices V into Rn such that for some r < +∞, s > 0, |ψ(x) − ψ(y)| ≤ r

for any edge |xy| ∈ E, and |ψ(v) − ψ(w)| ≥ s for any distinct two vertices
v and w. In this definition, Rn can be replaced by any metric space. For a
graph in BG, such an embedding of a graph into a metric space (X,dX) is
obviously a quasi-monomorphism of the graph to X .

In this section, we consider connected, infinite graphs of bounded degrees
with weight r = 1 on E and study some properties of quasi-monomorphisms
between them.

To begin with, we prove the following.
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Lemma 7.1. Let G1 = (V1,E1) and G2 = (V2,E2) be connected infinite
graphs with bounded degrees. Suppose that there exists a quasi-monomor-
phism ψ from the graph G1 to the graph G2. Then there exists a constant
C > 0 such that

Dp(f ◦ ψ) ≤ CDp(f)

for any p-Dirichlet finite map f of G2 to a metric space (X,dX).

Proof. From the definition of a quasi-monomorphism, we see that there
exists a constant κ such that dG2(ψ(x),ψ(y)) ≤ κ for any edge |xy| ∈ E1,
and the cardinality of ψ−1(x′) is bounded by κ for all x′ ∈ V2. For any edge
|xy| ∈ E1, we can take a path {γx,y(n)}Nx,y

n=0 connecting ψ(x) and ψ(y) with
length Nx,y ≤ κ. Let f be a p-Dirichlet finite map of G2 to a metric space
(X,dX). Then we have

Dp(f ◦ ψ) =
1
2

∑
x∈V1

∑
y∼x

dX

(
f(ψ(y)), f(ψ(x))

)p

≤ κp−1 1
2

∑
x∈V1

∑
y∼x

Nx,y∑
i=1

dX

(
f(γx,y(i)), f(γx,y(i − 1))

)p

≤ κp−1 1
2

∑
x∈V1

∑
y∼x

Nx,y∑
i=1

∑
z′ ∼γx,y(i)

dX

(
f(γx,y(i)), f(z′)

)p

≤ M1κ
p−1 1

2

∑
x∈V1

∑
y′ ∈B2(ψ(x),κ)

∑
z′ ∼y′

dX

(
f(z′), f(y′)

)p

≤ M1κ
p 1
2

∑
x′ ∈V2

∑
y′ ∈B2(x′,κ)

∑
z′ ∼y′

dX

(
f(y′), f(z′)

)p

≤ M1M
κ
2 κpDp(f),

where M1 (resp., M2) is an upper bound of the degrees of G1 (resp., G2),
and B2(x, r) is the metric ball centered at x with radius r in G2.

We remark that in Lemma 7.1, for any g ∈ L1,p
0 (G2), the composition

g ◦ ψ belongs also to L1,p
0 (G1).

For any two disjoint subsets A and B of V , we define the p-capacity of
the pair (A,B) by

Cap(p)
(G)(A,B) = inf

{
Dp(u)

∣∣ u ∈ L1,p(G), u = 1 in A and u = 0 in B
}
.
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In the case when A = {x} and B = {y}, the reciprocal of Cap(p)
G ({x}, {y})

is equal to R
(p)
G (x, y).

Now we take functions f ∈ L1,p(G2) in Lemma 7.1 and apply the estimate
to obtain the following.

Corollary 7.2. Let G1 = (V1,E1) and G2 = (V2,E2) be connected infi-
nite graphs with bounded degrees. If there exists a quasi-monomorphism ψ

form G1 to G2, then there exists a constant C > 0 such that

(1) Cap(p)
G1

(ψ−1(A),ψ−1(B)) ≤ C Cap(p)
G2

(A,B) for all subsets A,B of V2

with A ∩ B = ∅, where one understands Cap(p)
G1

(ψ−1(A),ψ−1(B)) = 0
if ψ−1(A) or ψ−1(B) is empty;

(2) R
(p)
G2

(ψ(x),ψ(y)) ≤ CR
(p)
G1

(x, y)(< +∞) for all x, y ∈ V1;

(3) M
(p)
G2

(ψ(x)) ≤ CM
(p)
G1

(x)(≤ +∞) for all x ∈ V1.
In particular, if G2 is p-parabolic, then so is G1.

It should be remarked that when G1 is a subgraph of G2, Lemma 7.1
and Corollary 7.2 hold with constant C = 1. These illustrate Rayleigh’s
monotonicity law.

Lemma 7.3. Let G1 = (V1,E1) and G2 = (V2,E2) be connected infinite
graphs of bounded degrees. If there exists a quasi-monomorphism ψ : G1 →
G2, then ψ extends to a continuous map ψ̄ of Rp(G1) to Rp(G2) such that
ψ̄(Δp(G1)) ⊂ Δp(G2). Moreover, for a p-Dirichlet finite map f of G2 to a
proper metric space (X,dX), f ◦ ψ is also a p-Dirichlet finite map of G1 to
X and satisfies f ◦ ψ = f̄ ◦ ψ̄.

Proof. For a sequence {xi} in V1 converging to a point z ∈ ∂Rp(G1) and
a function u ∈ L1,p(G2), if a subsequence {ψ(xik)} of {ψ(xi)} tends to a
point w ∈ ∂Rp(G2), then we have ū(w) = limk→∞ u(ψ(xik)) = u ◦ ψ(z) =
limi→∞ u ◦ ψ(xi). This shows that the sequence {ψ(xi)} converges to w.
Letting ψ̄(z) = w, we get a continuous map ψ̄ : Rp(G1) → Rp(G2) such that
u ◦ ψ = ū ◦ ψ̄ for all u ∈ L1,p(G2). It is easy to see that ψ̄ maps Δp(G1)
into Δp(G2), since for any g ∈ L1,p

0 (G2), the composition g ◦ ψ belongs to
L1,p

0 (G1). The second assertion also follows.

Corollary 7.4. Let G1 = (V1,E1) and G2 = (V2,E2) be connected infi-
nite graphs of bounded degrees. Suppose that there exists a quasi-monomor-
phism ψ from G1 to G2, and suppose that supx∈V1

M
(p)
G1

(x) < +∞ and
ψ(G1) is κ-dense in G2 for some κ > 0; that is, for any v ∈ V2 there
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exists w ∈ V1 such that dG2(v,ψ(w)) < κ. Then supy∈V2
M

(p)
G2

(y) < +∞ and
ψ̄(Δp(G1)) = Δp(G2).

Proof. For any y ∈ V2, we take x ∈ V1 in such a way that dG2(ψ(x), y) < κ.
Then by (2.1), (2.2), and Corollary 7.2(3), we get

M
(p)
G2

(y) ≤ 2p−1M
(p)
G2

(
ψ(x)

)
+2p−1R

(p)
G

(
ψ(x), y

)
≤ C2p−1M

(p)
G1

(x)+2p−1κp−1,

and thus supy∈V2
M

(p)
G2

(y) < +∞. In particular, we have by Lemma 2.3
∂Rp(G1) = Δp(G1) and ∂Rp(G2) = Δp(G2).

Now to complete the proof, let ξ be a point of Δp(G2), and let {yn} be a
sequence in V2 converging to ξ as n → ∞. Take xn ∈ V1 in such a way that
dG2(ψ(xn), yn) < κ. Then ψ(xn) also converges to ξ as n → ∞. In fact, for
all u ∈ BL1,p(G2), we have

∣∣u(
ψ(xn)

)
− u(yn)

∣∣p ≤ (2κ)p−1
∑

y∈BG2
(yn,2κ)

∑
z∼y

|u(z) − u(y)|p,

and the right-hand side tends to zero as n → ∞. Passing to a subsequence,
we may assume that xn converges to a point η ∈ Δp(G1) as n → ∞. Then
we have ψ̄(η) = limn→∞ ψ̄(xn) = ξ. In this way, we obtain ψ̄(Δp(G1)) =
Δp(G2).

When ψ in Corollary 7.2 or Lemma 7.3 is a quasi-isometry, these results
are restated as follows.

Theorem 7.5 ([19, Theorem 6]). Let G1 = (V1,E1) and G2 = (V2,E2) be
connected infinite graphs with bounded degrees. Suppose that they are quasi-
isometric, and let ψ : (V1, dG1) −→ (V2, dG2) be a quasi-isometry. Then there
exist constants C ≥ 1 and C ′ ≥ 0 such that

1
C

R
(p)
G1

(x, y) − C ′ ≤ R
(p)
G2

(
ψ(x),ψ(y)

)
≤ CR

(p)
G1

(x, y), x, y ∈ V1.

1
C

M
(p)
G1

(x) − C ′ ≤ M
(p)
G2

(
ψ(x)

)
≤ CM

(p)
G1

(x), x ∈ V1.

In particular, G1 is p-parabolic if and only if G2 is p-parabolic.

Theorem 7.6 ([18, Theorem 1]). Let G1 = (V1,E1) and G2 = (V2,E2) be
connected, infinite graphs with bounded degrees. Suppose that G1 and G2 are
quasi-isometric, and let ψ : (V1, dG1) −→ (V2, dG2) be a quasi-isometry. Then
ψ extends to a continuous map ψ̄ of Rp(G1) to Rp(G2) whose restriction to
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∂Rp(G1) induces a homeomorphism between ∂Rp(G1) and ∂Rp(G2) such that
ψ̄(Δp(G1)) = Δp(G2). Moreover, assigning to a function h of BHL1,p(G2)
the unique function η(h) of BHL1,p(G1) such that η(h) = h̄ ◦ ψ̄ on Δp(G1) is
a bijective process, there exists a constant C > 0 such that

C−1Dp(h) ≤ Dp

(
η(h)

)
≤ CDp(h)

for all h ∈ BHL1,p(G2). When p = 2, η induces a linear isomorphism between
BHL1,2(G1) and BHL1,2(G2).

Let G = (V,E) be a connected infinite graph of bounded degrees. Notice
that for 1 < p < q, Dq(f)1/q ≤ Dp(f)1/p for all f ∈ L1,p(G). In fact, we have
(7.1)

Dq(f) =
∑
e∈E

|df(e)|p
(

|df(e)|p
)(q−p)/p ≤ Dp(f)Dp(f)(q−p)/p = Dp(f)q/p.

As consequences, we get L1,p
0 (G) ⊂ L1,q

0 (G), L1,p(G) ⊂ L1,q(G), and more-
over,

R
(p)
G (x, y)1/p ≤ R

(q)
G (x, y)1/q, x, y ∈ V ;

M
(p)
G (x)1/p ≤ M

(q)
G (x)1/q(≤ +∞), x ∈ V.

As a result of the last inequality, G is q-parabolic if it is p-parabolic. On
account of this fact, we are able to introduce the parabolic index of G by
ind(G) := inf{p | G is p-parabolic} (see [38]).

As a direct consequence of Corollary 7.2(3), we have the following.

Corollary 7.7. Let G1 = (V1,E1) and G2 = (V2,E2) be connected infi-
nite graphs with bounded degrees. If there exists a quasi-monomorphism
ψ : G1 → G2 from G1 to G2, then ind(G1) ≤ ind(G2).

Proposition 7.8. Let G be a connected infinite graph with bounded
degrees. For 1 < p < q, there exists a surjective continuous map jp,q from
the Royden q-boundary ∂Rq(G) to the Royden p-boundary ∂Rp(G) such
that for every f ∈ L1,p(G) ⊂ L1,q(G),

trp(f) ◦ jp,q = trq(f),

where trp(f) stands for f̄|∂Rp(G); moreover if 1 < p < q < r < ∞, then it
holds that jp,q ◦ jq,r = jp,r. In particular, if ∂Rq(G) = Δq(G), then there
exists a continuous surjective map jp,q : Δq(G) → Δp(G).
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Proof. For every z ∈ ∂Rq(G) and any sequence {vn} ⊂ V which converges
to z as n → ∞, there exists a subsequence {vnk

} ⊂ {vn} which converges to
a point w ∈ ∂Rp(G). For any f ∈ L1,p(G) ⊆ L1,q(G), it holds that

trp(f)(w) = lim
k→∞

f(vnk
) = trq(f)(z).

Thus, we define the continuous map jp,q such that jp,q(z) = w, and then
jp,q is surjective. From the equality above, it holds that trp(f) ◦ jp,q(z) =
trq(f)(w).

§8. Discrete approximation of Riemannian
manifolds and p-Dirichlet finite maps

In this section, we discuss discrete approximation of Riemannian man-
ifolds and p-Dirichlet finite maps, and then we exhibit some examples of
Hadamard manifolds with bounded geometry on which existence or nonex-
istence of p-harmonic functions with finite p-Dirichlet integral can be illus-
trated along with their geometric structure.

Let M = (M,gM ) be a connected, complete, noncompact Riemannian
manifold of dimension n. We assume that M belongs to the collection BG;
that is, the Ricci curvature of M is bounded below by a negative constant,
and the volume of any ball of radius 1 is bounded below by a positive
constant. Given a positive constant κ, let V be a maximal κ-separated subset
of M , and define a graph G = (V,E), called a κ-net of M , as follows. Two
vertices x and y are adjacent; that is, {x, y} ∈ E if and only if dM (x, y) ≤ 3κ.
A κ-net of M is of bounded degrees and quasi-isometric to M .

We recall here a result in [18]. Let HL1,p(M) be the space of p-harmonic
functions h on M with finite p-Dirichlet integral Dp(h) =

∫
M ‖dh‖p dv. It is

known that for any h ∈ HL1,p(M),

|h(x) − h(y)|p ≤ C1

∫
BM (z,2δ)

‖dh‖p dv dM (x, y)αp

for every x ∈ M and any y, z ∈ BM (x, δ), where C1 is a positive constant
depending only on M , p, and a given positive constant δ, and α is a positive
constant less than 1 depending only on M and p. For h ∈ HL1,p(M), we
denote by ν(h) the restriction of h to V . Then ν(h) belongs to L1,p(G),
and in fact, we have Dp(ν(h)) ≤ C2Dp(h), where C2 is a positive constant
depending only on M and p. When G is p-nonparabolic, letting σ(h) be the
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p-harmonic part of ν(h) in the Royden decomposition, we obtain a bijective
correspondence σ between HL1,p(M) and HL1,p(G) such that

C−1
3 Dp(h) ≤ Dp

(
σ(h)

)
≤ C3Dp(h)

for some positive constant C3 and all h ∈ HL1,p(M). In the case of p = 2,
σ is a linear isomorphism between HL1,2(G) and HL1,2(M). Moreover, for
p > n, a quasi-isometry φ : (V,dG) → (M,dM ) induces a homeomorphism
between the Royden p-boundary of G and that of M which sends the har-
monic p-boundary of G to that of M (see [18] for details).

Let f be a smooth map from M as above to another Riemannian manifold
N which is not necessarily complete. We assume that

Dp(f) =
∫

M
‖df ‖p dv < +∞,

and for a given positive constant δ, there exists a positive constant C4 such
that

(8.1) dN

(
f(y), f(z)

)p ≤ C4

∫
BM (x,2δ)

‖df ‖p dv

for every x ∈ M and any y, z ∈ BM (x, δ). Let G = (V,E) be a connected,
infinite graph of bounded degrees, and suppose that G admits a quasi-
monomorphism ψ into M . Then the composition f ◦ ψ is a p-Dirichlet finite
map from G into N (see (3.1)), and hence f ◦ ψ extends to a continuous map
from Rp(G) to the completion N of N if N is compact (see Theorem 3.1).

Let σ be a positive smooth function on M , and suppose that
∫
M σp dv <

+∞ and, further, that supx∈M maxB(x,1) σ/minB(x,1) σ < +∞. Consider the
identity map I of M as a map from the Riemannian manifold (M,gM ) to a
Riemannian manifold endowed with metric σ2gM . Then Dp(I) =

∫
M σp dv <

+∞ and I satisfies condition (8.1).

Example 8.1. Let η be a smooth function on [0, ∞) such that η(t) > 0 for
t > 0, η(0) = 0, and η′(0) = 1. We consider a rotationally symmetric metric
gη on Rn written as gη = dr2 + η(r)2 dθ2

n in polar coordinates (r, θn), where
dθ2

n stands for the Riemannian metric of the unit sphere Sn−1(1) in Rn. We
denote by Mη the Riemannian manifold (Rn, gη).

It is proved in [17, Proposition 4] that Mη is p-nonparabolic if and only
if

(8.2)
∫ ∞

1

dt

η(t)(n−1)/(p−1)
< +∞.
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Suppose that
∫ ∞
1 1/η(t)dt < +∞, and let

Fη(r, θ) =
(
R−1 exp

∫ r

1

dt

η(t)
, θ

)
,

where R = exp
∫ ∞
1 1/η(t)dt. Then Fη induces a conformal diffeomorphism

of Mη onto the Euclidean unit open ball Bn(1) around the origin, and the
pullback of the Euclidean metric g0 = dt2 + t2dθ2 by Fη is given by

F ∗
η g0 =

( 1
Rη(r)

exp
∫ r

1

dt

η(t)

)2
gη.

Since∫
Mη

‖dFη ‖p dv = np/2R−p Vol
(
Sn−1(1)

)∫ ∞

0
η(r)−p+n−1 exp

(
p

∫ r

1

dt

η(t)

)
dr,

∫
Mη

‖dFη ‖p dv < +∞ if and only if

(8.3)
∫ ∞

1
η(t)−p+n−1 dt < +∞.

In what follows, to keep our manifold Mη in BG, we assume that the
radial curvature −η′ ′(r)/η(r) of Mη is pinched by −a2 and 0 for some
positive constant a. We note that (8.1) is satisfied for Fη. Then Mη is
a Hadamard manifold of bounded sectional curvature. We remark that
1/r ≤ η′(r)/η(r) ≤ a coshar/ sinhar on (0,+∞). Let Gη be a κ-net of Mη.
Under condition (8.3), the restriction fη of Fη to Gη gives rise to a p-
Dirichlet finite map of Gη into Bn(1), so that fη extends to a continuous map
fη from the Royden p-compactification Rp(Gη) of Gη to Bn(1) which maps
∂Rp(Gη) onto Sn−1(1) (see Theorem 3.1). We notice that for any element τ

of the orthogonal group O(n) acting isometrically on both Mη and Bn(1), τ

induces a homeomorphism τ̄ of the Royden p-boundary ∂Rp(Gη) of Gη in
such a way that fη ◦ τ̄ = τ ◦ fη on ∂Rp(Gη). Since τ̄(Δp(Gη)) = Δp(Gη), we
can deduce that fη(Δp(Gη)) is invariant under the action of O(n), and hence
fη(Δp(Gη)) = Sn−1(1) if Δp(Gη) is not empty; namely, Gη is p-nonparabolic.

Now we can deduce from the arguments of [24] that Mη admits no non-
constant p-harmonic functions with finite Dirichlet integral of order p if

(8.4) 1 + (n − 1 − p)
rη′(r)
η(r)

≥ 0, ∀r > 0.
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Clearly, (8.4) implies the divergence of the integral in (8.3). But there are
cases where (8.3) and (8.4) are mutually complementary.

(i) In the case where rη′(r)/η(r) ≤ δ for some δ ≥ 1 and all r > 0, and
as r → ∞, rη′(r)/η(r) goes to δ, (8.2) is equivalent to the condition p <

1+ δ(n − 1); (8.3) is equivalent to the condition p > n − 1+ (1/δ); and (8.4)
is equivalent to the condition 1 < p ≤ n − 1 + (1/δ).

(ii) In the case where limr→∞ rη′(r)/η(r) = ∞, (8.2) holds for any p > 1;
(8.3) is equivalent to the condition p > n − 1; and (8.4) is equivalent to the
condition 1 < p ≤ n − 1.

Example 8.2. We consider a warped product M = (M,g) of Euclidean
spaces (Rn−k, gE) (n ≥ 3) and (Rk, gE) (1 ≤ k ≤ n − 2) with a warping
function cosh r, where r denotes the distance to a fixed point o1 of Rn−k.
The metric is written as

g = gE + (cosh r)2gE = dr2 + r2 dθn−k
2 + (cosh r)2 dt2

for the case of k = 1, and

g = gE + (cosh r)2gE = dr2 + r2 dθn−k
2 + (cosh r)2(dt2 + t2 dθk

2)

for the case of k ≥ 2, where we use polar coordinates (r, θn−k) and (t, θk) of
Rn−k and Rk, respectively. We denote by ρ the Riemannian distance in M

to a fixed point o = (o1, o2). Let N be a Riemannian manifold endowed with
a Riemannian metric ḡ = (coshρ)−2g, and consider the identity map of M

as a map from M onto N , which will be denoted by I . We note here that√
r2 + t2 ≤ ρ ≤ r + t, where the first inequality is verified by comparing the

metric g with the product metric and the second one follows from the fact
that the distance is realized by the minimal geodesic. We further observe
that αr +

√
1 − α2t ≤

√
r2 + t2 for all t, r ≥ 0 and 0 ≤ α ≤ 1. Then we have∫

M

(
cosh(r + t)

)−p
dv ≤ Dp(I) =

∫
M

(coshρ)−p dv

≤
∫

M
(cosh

√
r2 + t2)−p dv

≤
∫

M

(
cosh(αr +

√
1 − α2t)

)−p
dv.

Since the volume element dv of M is given by Cn,k(cosh r)krn−k−1 ×
tk−1 dr dθn−k dtdθk in the coordinates (r, θn−k, t, θk), where Cn,k is a posi-
tive constant depending only on n,k, we can deduce that Dp(I) is finite if
and only if p > k. It is not hard to see that (8.1) is satisfied.
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Now applying [10, Theorem 3.10], to the completion N of N , we can
conclude that the boundary ∂N of N is homeomorphic to a closed interval
if k = 1, and Sk(1) if k ≥ 2.

We remark that the Laplacian ΔMr of r on M is equal to (n − k −
1)r−1 +k sinh r(cosh r)−1, and hence ΔM

√
r2 + 1 > β > 0, where we set β =

inf{(r2 + 1)−3/2 + (n − k − 1)(r2 + 1)−1/2 + kr(r2 + 1)−1/2 sinh r(cosh r)−1}.
This implies that

β Voln(Ω) < Voln−1(∂Ω)

for any bounded smooth domain Ω in M . In fact, we have

β Voln(Ω) ≤
∫

Ω
ΔM

√
r2 + 1dv ≤

∫
∂Ω

r√
r2 + 1

∣∣∣∂r

∂ν

∣∣∣dv∂Ω ≤ Voln−1(∂Ω).

It is known that

inf
u

∫
M |∇u| dv∫
M |u| dv

= inf
Ω

Voln−1(∂Ω)
Voln(Ω)

,

where u (resp., Ω) ranges over C0(M) (resp., bounded smooth domains of
M ). This shows that

β

∫
M

|u| dv ≤
∫

M
|∇u| dv, u ∈ C∞

0 (M).

Therefore, we have

β

∫
M

|u|p dv ≤
∫

M
p|u|p−1|∇u| dv ≤ p

(∫
M

|u|p dv
)1−1/p(∫

M
|∇u|p dv

)1/p
,

which implies that

(8.5)
(β

p

)p
∫

M
|u|p dv ≤

∫
M

|∇u|p dv, u ∈ C∞
0 (M).

Let G = (V,E) be a κ-net of M . Then it follows from (8.5) that λp(G) > 0
for all p > 1 (see [22], [23], [34]). Thus we see that ∂Rp(G) = Δp(G) for all
p > 1, so that I|V (Δp(G)) = ∂N if p > k. It follows that for any Lipschitz
continuous functions φ on ∂N , there exists uniquely a p-harmonic function
h ∈ L1,p(G) such that h(x) converges to φ(ξ) as x ∈ V tends to ξ ∈ ∂N (see
Corollary 3.3); correspondingly, we have a unique p-harmonic function H

with finite Dirichlet integral of order p on M such that H(x) converges
to φ(ξ) as x ∈ M tends to ξ ∈ ∂N . Thus, M admits a lot of p-harmonic
functions with finite Dirichlet integral of order p if p > k, and for any p > 1
if k = 1.
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Example 8.3. We consider a warped product Ma = (Ma, ga) of the hyper-
bolic space form (Hn−k, gH) (n ≥ 3) and Euclidean space (Rk, gE) (1 ≤ k ≤
n − 2) with a warping function coshar, where a is a constant ∈ [1, ∞) and
r denotes the distance to a fixed point oH of Hn−k. The metric is written
as

ga = gH + (coshar)2gE = dr2 + (sinh r)2 dθn−k
2 + (coshar)2 dt2

for the case of k = 1, and

ga = gH + (coshar)2gE = dr2 + (sinh r)2 dθn−k
2 + (coshar)2(dt2 + t2 dθk

2)

for the case of k ≥ 2, where we use polar coordinates (r, θn−k) and (t, θk) of
Hn−k and Rk, respectively. We denote by ρ the Riemannian distance in Ma

to a fixed point o = (oH , oE). Let Nε be a Riemannian manifold endowed
with a Riemannian metric ḡε = (coshερ)−2ga, where a positive constant ε

will be chosen later, and we consider the identity map of Ma as a map from
Ma onto Nε, which will be denoted by Iε. Since αr +

√
1 − α2t ≤

√
r2 + t2 ≤

ρ ≤ r + t, we have
∫

Ma

(
coshε(r + t)

)−p
dv ≤ Dp(Iε) =

∫
Ma

(coshερ)−p dv

≤
∫

Ma

(coshε
√

r2 + t2)−p dv

≤
∫

Ma

(
coshε(αr +

√
1 − α2t)

)−p
dv.

The volume element dv is given by Cn,k(coshar)k(sinh r)n−k−1 ×
tk−1 dr dθn−k dtdθk in the coordinates (r, θn−k, t, θk), and hence we can
deduce that Dp(Iε) is finite if and only if εp > ak + n − k − 1. It is not
hard to see that (8.1) is satisfied.

Now applying [10, Theorem 3.10] to the completion Nε of Nε, we can
conclude that, for the case where 0 < ε ≤ 1, the boundary ∂Nε of Nε is
homeomorphic to Sn−1(1) if k = 1 and the gluing of Sn−k−1(1) × Sk(1) is
onto a point N of Sk(1) along Sn−k−1(1) × {N }, using the projection map;
for the case where 1 < ε ≤ a, ∂Nε is homeomorphic to a closed interval if
k = 1 and Sk(1) if k ≥ 2.

We remark that the Laplacian ΔMar of r on Ma is equal to (n − k −
1) cosh r(sinh r)−1 + ak sinhar(coshar)−1, and hence ΔMa

√
r2 + 1 > γ > 0,
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where we set γ = inf{(r2+1)−3/2 +(n − k − 1)r(r2 +1)−1/2 cosh r(sinh r)−1+
kar(r2 + 1)−1/2 sinhar(coshar)−1}. This implies that

γ Voln(Ω) < Voln−1(∂Ω)

for any bounded smooth domain Ω in Ma, so that we obtain

(8.6)
(γ

p

)p
∫

Ma

|u|p dv ≤
∫

Ma

|∇u|p dv, u ∈ C∞
0 (Ma).

Let Ga = (V,E) be a κ-net of Ma. Then it follows from (8.6) that λp(Ga) >

0 for all p > 1. Thus, we see that ∂Rp(Ga) = Δp(Ga) for all p > 1, so that
Ia|V (Δp(Ga)) = ∂N1 if p > ak + (n − k − 1) and Ia|V (Δp(Ga)) = ∂Na if
p > k + (n − k − 1)/a. It follows that for any Lipschitz continuous functions
φ on ∂Na, there exists uniquely a p-harmonic function h ∈ L1,p(G) such
that h(x) converges to φ(ξ) as x ∈ V tends to ξ ∈ ∂Na (see Corollary 3.3);
correspondingly, we have a unique p-harmonic function H with finite Dirich-
let integral of order p on Ma such that H(x) converges to φ(ξ) as x ∈ Ma

tends to ξ ∈ ∂Na. Thus, Ma admits a lot of p-harmonic functions with finite
Dirichlet integral of order p > k + (n − k − 1)/a. When n = 3, k = 1, and
p = 2, this is verified by Anderson [3] in a different manner. It should be
remarked that when k = 1, the sectional curvature of Ma is pinched by
−a2 and −1, and Ma admits no nonconstant p-harmonic functions with
finite Dirichlet integral of order p for 1 < p < (n − 1)/a. This is true for a
complete simply connected manifold M of dimension n whose curvature is
pinched by −a2 and −1, by a result of Pansu [31] (see also [24]). On the
other hand, it admits a lot of nonconstant p-harmonic functions with finite
Dirichlet integral of order p for p > a(n − 1). In fact, for a Gromov hyper-
bolic graph G = (V,E) of bounded degrees approximating M in the above
manner, we see that e(G) ≤ a(n − 1) and ε0(G) ≥ 1. Also using the compar-
ison arguments, we can show that the map Fη : M → Bn(1) defined above
with η = sinh r is a p-Dirichlet finite map satisfying (8.1) for p > a(n − 1).
This explains a nonvanishing theorem due to Pansu [31, théorème 5]. We
also refer to [9] for related results.

§9. Quasi-monomorphisms to hyperbolic space forms

In this section, we consider a connected infinite graph of bounded degrees
admitting a quasi-monomorphism into the hyperbolic space form Hn. In
view of the above example, Theorem 3.1, and Lemma 7.3, a quasi-monomor-
phism extends continuously to the Royden p-boundary which is sent to the
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hyperbolic boundary ∂∞Hn of Hn if p > n − 1. Theorem 9.5 below shows
that if the graph is p-nonparabolic for p > n − 1, then the image of the
harmonic p-boundary Δp(G) is a perfect subspace of ∂∞Hn.

To begin with, we recall some basic properties of Hn which are used in
Pansu [32] to estimate the Hölder invariant.

We denote by gH and dH , respectively, the Riemannian metric and the
distance of Hn. Fix a point o of Hn, and let 
(t), −∞ < t < +∞, be a line
on Hn, that is, a unit speed geodesic defined on R, such that 
(0) = o.
In the case where n ≥ 3, we employ cylindrical coordinates (r, θ, t) of Hn

around 
 to express the Riemannian metric gH as

gH = dr2 + (sinh r)2 dθ2 + (cosh r)2 dt2, (r, θ, t) ∈ [0,+∞) × Sn−2(1) × R,

where r is the distance to the line 
 and dθ2 stands for the Riemannian
metric of the unit sphere Sn−2(1) in Rn−1. In the case where n = 2, we use
coordinates (s, t) of H2 such that

gH = ds2 + (coshs)2 dt2, (s, t) ∈ R2,

where r = |s| is the distance to the line 
. Given R > 0, we define a function
ξl,R on Hn by

ξ�,R(r, θ, t) =

⎧⎪⎨
⎪⎩

R (t ≥ R),

t (0 ≤ t ≤ R)

0 (t ≤ 0)

if n ≥ 3, and by

ξ�,R(s, t) =

⎧⎪⎨
⎪⎩

R (t ≥ R),

t (0 ≤ t ≤ R)

0 (t ≤ 0)

if n = 2. Let U(
,R) = {x ∈ Hn | ξ�,R(x) = R}, and let L(
,R) = {x ∈ Hn |
ξ�,R(x) = 0}. Then in Hn \ U(
,R) ∪ L(
,R), we have ‖dξ�,R‖ = 1/ cosh r

when n ≥ 3 and ‖dξ�,R‖ = 1/ coshs when n = 2. For p > n − 1, the p-Dirichlet
integral Dp(ξ�,R) of ξ�,R is finite and given by

Dp(ξ�,R) = Vol
(
Sn−2(1)

)∫ ∞

0
(cosh r)1−p(sinh r)n−2 drR
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if n ≥ 3, and by

Dp(ξ�,R) =
∫ ∞

0
(cosh r)1−p drR

if n = 2. Thus, we have the following.

Lemma 9.1 ([32, section 4]). For any p > n − 1, there exists a constant
C1 > 0 depending only on n and p such that

Dp(ξl,R) < C1R.

Lemma 9.2. Let δ be a positive constant. Then there exists a constant
C2 > 0 depending only on n, p, and δ such that

(9.1) |ξ�,R(y) − ξ�,R(z)|p ≤ C2

∫
B(x,2δ)

‖dξ�,R‖p dv

for every x ∈ Hn and any y, z ∈ B(x, δ), where B(x,a) denotes the geodesic
ball centered at x with radius a in Hn.

Proof. We assume that B(x,2δ) is included in Hn \ U(
,R) ∪ L(
,R).
Then we have

∫
B(x,2δ)

‖dξ�,R‖p dv =
∫

B(x,2δ)

( 1
cosh r

)p
dv

≥ Vol
(
B(x,2δ)

)( 1
cosh (r(x) + δ)

)p
.

On the other hand, let c(t) : [0, dH(y, z)] → Hn be the unit speed geodesic
joining y to z. Then we have

|ξ�,R(y) − ξ�,R(x)| ≤
∫ dH(y,z)

0

∣∣∣ d

dt
ξ�,R

(
c(t)

)∣∣∣dt

≤
∫ dH(y,z)

0
‖dξ�,R‖

(
c(t)

)
dt

≤
∫ dH(y,z)

0

1
cosh r(c(t))

dt

≤ dH(y, z)
cosh (r(x) − δ)

.
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From these inequalities, we get

|ξ�,R(y) − ξ�,R(z)|p ≤
(cosh (r(x) + δ)

cosh (r(x) − δ)

)p dH(y, z)p

Vol(B(x,2δ))

∫
B(x,2δ)

‖dξ�,R‖p dv.

Similarly, we can derive (9.1) in the case where B(x,2δ) intersects U(
,R)
or L(
,R).

Proposition 9.3. Let G = (V,E) be a connected infinite graph with
bounded degrees. Suppose that there exists a quasi-monomorphism ψ from
G to Hn. For p > n − 1, there exists a constant C3 > 0 such that

R
(p)
G (x, y)1/p ≥ C3dH

(
ψ(x),ψ(y)

)1−1/p
, x, y ∈ V.

In particular, R
(p)
G is not bounded for p > n − 1.

Proof. For any x, y ∈ V , let 
 be a line such that 
(0) = ψ(x), 
(R) = ψ(y),
where we put R = dH(ψ(x),ψ(y)). Let f = ξ�,R ◦ ψ. Then it follows from the
proofs of Lemmas 7.1 and 9.2 that Dp(f) ≤ C4Dp(ξl,R) for some constant
C4 depending only on n, p, and ψ. Hence, by Lemma 9.1, we obtain

R
(p)
G (x, y) ≥ |f(x) − f(y)|p

Dp(f)
≥ 1

C1C4
Rp−1 =

1
C1C4

dH

(
ψ(x),ψ(y)

)p−1

for all x, y ∈ V .

In view of (2.1), we see the following.

Corollary 9.4. Let G = (V,E) be a connected infinite graph with
bounded degrees. Suppose that there exists a quasi-isometric embedding ψ

from G to Hn. For any p > n − 1, there exist constants C5 > 0 and C ′
5 ≥ 0

such that

C5dG(x, y)1−1/p − C ′
5 ≤ R

(p)
G (x, y)1/p ≤ dG(x, y)1−1/p, x, y ∈ V.

We refer to [14] and [32] for related results on R
(p)
G .

Now we are in a position to prove the following.

Theorem 9.5. Let G = (V,E) be a connected infinite graph with bounded
degrees. Suppose that there exists a quasi-monomorphism ψ from G to the
hyperbolic space form Hn of constant curvature −1 and dimension n. Then
for p > n − 1, ψ extends to a continuous map ψ̄ from Rp(G) to Hn =
Hn ∪ ∂∞Hn, and moreover, if G is p-nonparabolic, that is, the harmonic
p-boundary Δp(G) is not empty, then ψ̄(Δp(G)) is a perfect subspace of
ψ(V ) ∩ ∂∞Hn.
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Proof. It follows from Example 8.1(ii) (or Example 8.2 (k = 1)), Lem-
ma 7.3, and Theorem 3.1 that for p > n − 1, ψ extends to a continuous map
ψ̄ from Rp(G) to Hn = Hn ∪ ∂∞Hn. Suppose that G is p-nonparabolic.
Then it follows from Theorem 3.1 again that

ψ̄
(
Δp(G)

)
=

{
(ψ ◦ γ)(∞);γ ∈ P (G) \ (P ∞ ∪ P ′

∞)
}

for some P ∞ ⊂ P (G) with ELp(P ∞) = +∞ and any P ′
∞ ⊂ P (G) with

ELp(P ′
∞) = +∞. Given points v ∈ V and w ∈ ∂∞Hn, let 
w(t), −∞ < t <

+∞, be the line on Hn such that 
w(0) = ψ(v) and 
w(∞) = limt→∞ 
w(t) =
w. For any R > 0, we set fR := ξ�w,R/R, K(w,R) = U(
w,R) ∩ ∂∞Hn, and
Qw,R = {γ ∈ P (G) \ P ∞ | ψ ◦ γ(∞) ∈ K(w,R)}. Since LmfR

(γ) ≥ 1 for all
γ ∈ Qw,R ∩ P v, we have

ELp(Qw,R ∩ P v)−1 ≤ ‖mfR
‖p

p

inf{LmfR
(γ) | γ ∈ Qw,R ∩ P v }

≤ Dp(fR)

≤ C

Rp−1
.

Now in view of the Cantor-Bendixson theorem, ψ̄(Δp(G)) can be uniquely
written as ψ̄(Δp(G)) = P ∪ C, with P a perfect subset of ψ̄(Δp(G)) and C
countably open. If C is not empty, we write C = {wk | k = 1,2, . . .}. Then
we first choose positive numbers Rk, k = 1,2, . . . in such a way that P ∩(⋃

K(wk,Rk)
)
= ∅. Let Q =

⋃
Qwk,Rk

. Then for positive numbers R′
k > Rk,

we have Q =
⋃

Qwk,R′
k
. Since

ELp(Qwk,R′
k

∩ P v)−1 ≤ C

R′
k
p−1 ,

we obtain by using Lemma 2.4

ELp(Q ∩ P v)−1 ≤
∞∑

k=1

ELp(Qwk,R′
k

∩ P v)−1 ≤ C
∞∑

k=1

1
R′

k
p−1 .

This holds for all R′
k with R′

k > Rk. Hence, we get ELp(Q ∩ P v) = +∞, so
that ELp(Q) = +∞. This implies that

ψ̄
(
Δp(G)

)
=

{
ψ ◦ γ(∞)

∣∣ γ ∈ P (G) \ (P ∞ ∪ Q)
}

⊂ P .

In this way, we can deduce that C is empty.
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In Theorem 9.5, we remark that in general, ψ̄(Δp(G)) does not coincide
with ψ(V ) ∩ ∂∞Hn and also with ψ̄(Δq(G)) for q > p > n − 1 even if G is
q-nonparabolic.

Now using [8, Theorem 1.1] and Theorem 9.5, we obtain the following.

Corollary 9.6. Let G be a connected infinite graph of bounded degrees.
Suppose that G is p-nonparabolic for all p > 1 and that it admits a quasi-
monomorphism into a visual Gromov hyperbolic geodesic space whose bound-
ary at infinity is doubling for some visual metric. Then G possesses a lot of
nonconstant p-harmonic functions with finite Dirichlet sum of order p for
all sufficiently large p.

Example 9.7. We consider an upper half-space model of the hyperbolic
space form of dimension 3, H3 = ({(x, y, z) | z > 0}, gH = (dx2 +dy2 +dz2)/
z2). Let τ(t) be a smooth positive function on an interval (0, a] such that
τ ′(t) > 0 on (0, b] (b < a), limt→0 τ(t) > 0, and τ(a) = 0. Consider a surface
of revolution in H3 defined by

Sτ =
{(

τ(z) cosθ, τ(z) sinθ, z
) ∣∣ 0 < z ≤ a,0 ≤ θ ≤ 2π

}
,

where it is assumed that Sτ is smooth at (0,0, a). Let gτ be the induced
metric of Sτ . In the coordinates (z, θ), gτ can be expressed as

gτ =
τ ′(z)2 + 1

z2
dz2 +

τ(z)2

z2
dθ2.

Changing the coordinates (z, θ) to (r, θ) by dr = −(
√

τ ′(z)2 + 1/z)dz on
(0, b] and letting η(r) = τ(z(r))/z(r), we get

gτ = dr2 + η(r)2 dθ2, r ∈ [r(b),+∞), θ ∈ [0,2π].

Now we take τ(z) in such a way that τ(z) = Azα + B on (0, b], where
A,B are positive constants and α is a constant in (0,1). Then there is a
constant C > 1 such that

C−1(rδ + r) ≤ η(r) ≤ C(rδ + r), r ∈ [r(b),+∞),

where δ = 1/(1 − α)(> 1). Let η̃(r) = rδ +r. Then the resulting 2-dimensional
Riemannian manifold Mη̃ as in Example 8.1 is quasi-isometric to our sur-
face Sτ . Thus, we can apply Example 8.1(i) to Sτ with δ. The inclusion
map of Sτ into H3 is a quasi-monomorphism. In other words, Mη̃ admits a
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quasi-monomorphism ψ into H3 such that ψ(Mη̃) touches on ∂∞H3(= R2)
along a circle. Notice that there exist no quasi-monomorphisms from Mη̃ to
H2 because Mη̃ is p-nonparabolic for p < 1 + δ and admits no nonconstant
p-harmonic functions of finite p-Dirichlet sum for 1 < p ≤ 1 + 1/δ.

Acknowledgments. We would like to express our thanks to the referees
for their careful reading of our manuscript and for valuable suggestions that
improved the exposition.
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