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Abstract Westudy the Selmer variety associated to a canonical quotient of theQp-pro-
unipotent fundamental group of a smooth projective curve of genus at least two defined
overQwhose Jacobiandecomposes into a product of abelian varietieswith complexmul-
tiplication. Elementary multivariable Iwasawa theory is used to prove bounds for the
dimension of the Selmer variety, which, in turn, leads to a new proof of finiteness of ratio-
nal points on such curves.

0. Introduction

Let X/Q be a smooth proper curve of genus g ≥ 2, and let b ∈ X(Q) be a rational
point. We assume that X has good reduction outside a finite set S of primes
and choose an odd prime p /∈ S. In earlier articles (see [14]–[18]), a p-adic Selmer
variety

H1
f (G,U)

was defined and studied with the hope of applying its structure theory to the
Diophantine geometry of X . Here G = Gal(Q̄/Q),

U = π
Qp,un
1 (X̄, b)

is the Qp-pro-unipotent étale fundamental group of

X̄ = X ×Spec(Q) Spec(Q̄),

and the subscript f refers to a collection of local Selmer conditions, carving out
a moduli space of torsors for U on the étale topology of Spec(Z[1/S,1/p]) that
satisfy the condition of being crystalline at p.

The Selmer variety is actually a provariety consisting of a projective system

· · · → H1
f (G,Un+1) → H1

f (G,Un+1) → · · · → H1
f (G,U2) → H1

f (G,U1)

of varieties over Qp associated to the descending central series filtration

U = U1 ⊃ U2 ⊃ Un ⊃ Un+1 = [U,Un] ⊃ · · ·
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of U and the corresponding system of quotients

Un = Un+1\U

that starts out with

U1 = V = TpJ ⊗ Qp,

the Qp-Tate module of the Jacobian J of X .
As a natural extension of the map

X(Q) � J(Q) � H1
f (G,V )

visible in classical Kummer theory, the Selmer variety is endowed with a system
of unipotent Albanese maps emanating from the points of X :

...

... H1
f (G,U4)

H1
f (G,U3)

�

H1
f (G,U2)

�

X(Q) �

�
�

�

H1
f (G,U1)

�

These maps fit into commutative diagrams

X(Q) � X(Qp)

H1
f (G,Un)

�
locp� H1

f (Gp,Un)
�

D� UDR
n /F 0

�

involving the local Selmer varieties H1
f (Gp,Un) and their de Rham realizations

UDR
n /F 0. Here F 0 refers to the zeroth level of the Hodge filtration

UDR ⊃ · · · ⊃ F i ⊃ F i+1 ⊃ · · · ⊃ F 0

on the de Rham fundamental group UDR of X ×Spec(Q) Spec(Qp). Recall that
the de Rham fundamental group is defined using the Tannakian category of
unipotent vector bundles with flat connections on X ×Spec(Q) Spec(Qp) (see [15,
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Section 1]) and that the Hodge filtration F −i on UDR is the subvariety defined
by the ideal F i+1ADR in the coordinate ring ADR of UDR (see [15], [4]). F 0UDR

turns out to be a subgroup. The filtration on ADR is defined over C using the
(d, d̄)-decomposition on iterated integrals of differential forms but descends to
any field of characteristic zero (see [31]). Here and in the following, we suppress
from the notation the object that the Hodge filtration filters when the context
provides sufficient clarity.

Diophantine considerations oblige us to study the localization map D ◦ locp

with some care. In fact, one could formulate the dimension hypothesis

dimH1
f (G,Un) < dimUDR

n /F 0 (DHn)

for each n and show that DHn for any fixed n implies the finiteness of X(Q) (see
[15]). When n = 1, we have

UDR
1 /F 0 � Lie(J) ⊗ Qp,

while the map factors as

X(Q) → J(Q) → H1
f (G,Un) → Lie(J) ⊗ Qp,

so that (DH1) is simply a cohomological version of the hypothesis used in the
classical method of Chabauty. Throughout this article, dimension refers to that
of algebraic varieties over Qp (see [14]), although the dimensions of various associ-
ated graded objects, for example, Un/Un+1, are just the naive ones of Qp-vector
spaces. Given any X , it seems reasonable to believe that DHn should be true for
n sufficiently large (see [15]).

An eventual goal is to use the Selmer variety to arrive at a structural under-
standing of the Diophantine set X(Q), or at least some means of effective compu-
tation. The hope for effective computation is associated with the classical method
of Chabauty, as described by Coleman (see [3]), which the study of the unipotent
Albanese map generalizes. The related issue of structural understanding, on the
other hand, should concern an implication of the form

control of L-values ⇒ control of Selmer varieties

following a pattern familiar from the theory of elliptic curves (see [2], [25]).
It should be admitted right away that our current intuition about the nature

of such an implication is very tentative. Nevertheless, previously studied cases
of hyperbolic curves of genus zero and one seem to suggest that our expectations
are not entirely groundless.

The purpose of this article is to augment our list of examples where something
can be worked out with the case where J is isogenous over Q̄ to a product

J ∼
∏

i

Ai

of abelian varieties Ai that have complex multiplication by complex multiplica-
tion (CM) fields Ki of degree 2dimAi. For this discussion we choose the prime p
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to further satisfy the condition that p be split in the compositum K of the fields
Ki and, hence, in each field Ki.

Let QT be the maximal extension of Q unramified outside T = S ∪ {p, ∞},
and let GT = Gal(QT /Q). Now let

W = U/[U2,U2]

be the quotient of U by the third level of its derived series. Of course, W itself
has a descending central series

W = W 1 ⊃ W 2 ⊃ · · · ⊃ Wn+1 = [W,Wn] ⊃ · · ·

and associated quotients Wn = W/Wn+1.

THEOREM 0.1

There is a constant B (depending on X and T ) such that

dim
n∑

i=1

H2(GT ,W i/W i+1) ≤ Bn2g−1.

We derive this inequality as a rather elementary consequence of multivariable
Iwasawa theory. The key point is to control the distribution of zeros of a reduced
algebraic p-adic L-function of sorts, namely, an annihilator of a natural ideal
class group.

In accordance with the motivic nature of the construction, W also has a de
Rham realization

WDR = UDR/[(UDR)2, (UDR)2]

over Qp, endowed with a Hodge filtration. The upper bound of Theorem 0.1 com-
bines with an easy linear independence argument for sufficiently many elements
in (WDR)n/(WDR)n+1, yielding a lower bound for the de Rham realization

WDR
n /F 0

of its local Selmer variety. We obtain thereby the easy but important corollary
that follows.

COROLLARY 0.2

For n sufficiently large, we have the bound

dimH1
f (G,Wn) < dimWDR

n /F 0.

Of course, this implies the following.

COROLLARY 0.3 (FALTINGS’S THEOREM, SPECIAL CASE)

X(Q) is finite.
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For explicit examples where the hypothesis is satisfied, we have, of course, the
Fermat curves

xm + ym = zm

for m ≥ 4 (see [26, Chapter VI, Satz 1.2, Satz 1.5]) but also the twisted Fermat
curves

axm + bym = czm

for a, b, c, ∈ Q \ {0}, m ≥ 4. One might hope that the methods of this article will
eventually lead to some effective understanding of these twists. Some relatively
recent examples of hyperelliptic curves with CM Jacobians can be found in [30].
One from the list there is

y2 = −243x6 + 2223x5 − 1566x4 − 19012x3 + 903x2 + 19041x − 5882

whose Jacobian has CM by

Q
(√

−13 + 3
√

13
)
.

The results here conclude the crude application of Selmer varieties to finite-
ness over Q in situations where the controlling Galois group of the base is essen-
tially abelian. It remains then to work out the appropriate interaction between
noncommutative geometric fundamental groups and the noncommutative Iwa-
sawa theory of number fields.

Of course, as far as a refined study of defining ideals for the image of D ◦ locp

is concerned, work of any serious nature has not yet commenced. In this regard,
we note that there is little need in this article for specific information about the
annihilator that occurs in the proof of Theorem 0.1. However, it is our belief
that structure theorems of the Iwasawa main conjecture type have an important
role to play in eventual refinements of the theory.

1. Preliminaries on complex multiplication

Let F/Q be a finite extension with the property that the isogeny decomposition

J ∼
∏

i

Ai

as well as the complex multiplication on each Ai are defined over F . We assume
further that F ⊃ Q(J [p]), so that F∞ := F (J [p∞]) has Galois group Γ � Zr

p over
F . Denote by GF,T , the Galois group Gal(FT /F ), where FT is the maximal
extension of F unramified outside the primes dividing those in T .

As a representation of GF,T , we have

V := TpJ ⊗ Qp �
⊕

i

Vi,

where

Vi := TpAi ⊗ Qp.
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Let m be a modulus of F that is divisible by the conductor of all the represen-
tations Vi. Each factor representation

ρi : GF,T → (Ki ⊗ Qp)∗ ⊂ Aut(Vi)

corresponds to an algebraic map

fi : Sm → ResKi

Q (Gm),

where Sm is the Serre group of F with modulus m (see [27, Chapter II]) and
ResKi

Q is the restriction of scalars from Ki to Q. That is, there is a universal
representation (see [27, Chapter II.2.3])

εp : GF,T → Sm(Qp)

such that

ρi = fi ◦ εp : GF,T
� Sm(Qp) � ResKi

Q (Gm)(Qp) = (Ki ⊗ Qp)∗.

Since we have chosen p to split in each Ki, we have

ResKi

Q (Gm) ⊗ Qp �
∏
j

[Gm]Qp .

Each of the algebraic characters

fij = prj ◦ ρi : [Sm]Qp
� [ResKi

Qp
(Gm)]Qp �

∏
j

[Gm]Qp

prj� [Gm]Qp

correspond to Galois characters

χij = fij ◦ εp : GF,T → Q∗
p

in such a way that

ρi �
⊕

j

χij .

Recall that Sm fits into an exact sequence

0 → Tm → Sm → Cm → 0

with Cm finite and Tm an algebraic torus (see [27, Chapter II.2.2]). Hence, there
is an integer N such that the kernel of the restriction map on characters

X∗([Sm]Qp) → X∗([Tm]Qp)

is killed by N . Since X∗([Tm]Qp) is a finitely generated torsion-free abelian group,
so is the image of X∗([Sm]Qp). Let {β′

1, . . . , β
′
d} be a basis for the subgroup of

X∗([Tm]Qp) generated by the restrictions fij |[Tm]Qp as we run over all i and j.
Then the set {β′

1, . . . , β
′
d} can be lifted to characters {β1, . . . , βd} of [Sm]Qp so

that each fN
ij is a product

fN
ij =

∏
k

β
nijk

k

for integers nijk. For ease of notation, we now change the indexing and write
{f1, . . . , f2g } for the set of fij and {χi}2g

i=1 for the characters of GF,T that they
induce. We have shown that there are integers nij such that
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fN
i =

∏
j

β
nij

j .

Thus, if we denote by ξi the character

βi ◦ εp : GF,T → Q∗
p,

then

χN
i =

∏
j

ξ
nij

j .

LEMMA 1.1

The characters ξi are Zp-linearly independent.

Proof
The image of the map εp : GF,T → Sm(Qp) contains an open subgroup Om of
Tm(Qp) (see [27, Chapter II.2.3, Remark]). Suppose∏

ξai
i = 1

for some ai ∈ Zp as a function on GF,T (and, say, the choice of p-adic log such
that log(p) = 0). Then ∏

i

βai

i = 1

as a function on Om. Since the βi|[Tm]Qp = (β′
i)

N are Z-linearly independent, for
each j there exists a cocharacter

cj : [Gm]Qp → [Tm]Qp

such that βi ◦ cj = 1 for i �= j and

βj ◦ cj : [Gm]Qp → [Gm]Qp

is nontrivial and, hence, an isogeny. But c−1
j (Om) is an open subgroup of Q∗

p.
Hence, it contains an element of the form x = 1 + pnu with n > 0 and u ∈ Z∗

p.
Therefore, c = βj(cj(x)) ∈ 1 + pZp also has infinite order and caj = 1. Therefore,
we get aj = 0. �

Since the kernel of

ρ =
⊕

j

ρj =
2g⊕

i=1

χi

is the same as that of ξ :=
⊕d

i=1 ξi, ξ maps Γ isomorphically to a subgroup of⊕d
i=1(1 + pZp) of finite index. After enlarging F if necessary, we can assume

that there is a basis {γ1, . . . , γd} for Γ such that ξi(γj) = 1 for j �= i and ξi(γi) is
a generator for ξi(GF,T ), which we can take to be a fixed element g ∈ Zp∗. Here
we abuse notation a bit and write ξi for the character of GF,T as well as that of
the quotient group Γ that it induces.
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In the following, for any character φ of GF,T , we frequently use the notation
φ for the one-dimensional vector space Qp(φ) on which GF,T acts via φ, as well
as for the character itself. Choose a basis

B = {e1, e2, . . . , e2g }

of V so that ei is a basis of Qp(χi). Write ψi for the dual of χi.
Note that over F , the abelian variety J has good reduction everywhere (see

[29]).

2. Preliminaries on dimensions

For a (proalgebraic) group or a Lie algebra A, we define the descending central
series by

A1 = A, An+1 = [A,An]

and the derived series by

A(1) = A, A(n+1) = [A(n),A(n)].

The corresponding quotients are denoted by

An := A/An+1

and

A(n) := A/A(n+1).

Also, we denote by

Zn(A) := An/An+1

the associated graded objects so that we have an exact sequence

0 → Zn(A) → An → An−1 → 0.

Denote by

Z(A) :=
∞∑

n=1

Zi(A)

the associated graded Lie algebra, described in [28, Chapter II.1], in the case of
a group.

According to [23, Appendix 3], the Q-pro-unipotent completion of a finitely
presented discrete group E can be constructed as follows: take the group algebra
Q[E], and complete it with respect to the augmentation ideal K:

Q[[E]] := lim←−
n

Q[E]/Kn.

Since the coproduct

Δ : Q[E] → Q[E] ⊗ Q[E]

defined by sending an element g ∈ E to

g ⊗ g ∈ Q[E] ⊗ Q[E]
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takes K to the ideal

K ⊗ Q[E] + Q[E] ⊗ K,

there is an induced coproduct

Δ : Q[[E]] � Q[[E]] ⊗̂ Q[[E]] := lim←−n
(Q[[E]] ⊗ Q[[E]])/(K ⊗ Q[E] + Q[E] ⊗ K)n.

The unipotent completion U(E) can be realized as the grouplike elements in
Q[[E]]:

U(E) =
{
g ∈ Q[[E]]

∣∣ Δ(g) = g ⊗ g
}
.

This turns out to define the Q-points of a proalgebraic group over Q. Its Lie
algebra, LieU(E), consists of the primitive elements

LieU(E) =
{
X ∈ Q[[E]]

∣∣ Δ(X) = X ⊗ 1 + 1 ⊗ X
}
.

For any element g ∈ U(E),

log(g) = (g − 1) − (g − 1)2/2 + (g − 1)3/3 − · · ·

defines an element of LieU(E). In fact, this map is a bijection (see [23, Appen-
dix 3])

log : U(E) � LieU(E).

When E is a topologically finitely presented profinite group, the Qp-pro-
unipotent completion UQp(E) is defined in an entirely analogous manner, except
that the group algebra Qp[[E]] is defined somewhat differently: First, let Epro-p

be the maximal pro-p quotient of E, and let

Zp[[Epro-p]] := lim←−
N

Zp[Epro-p/N ],

where N runs over the normal subgroups of Epro-p of finite index, be its Iwasawa
algebra. Then

Qp[[E]] = lim←−
n

[
(Zp[[Epro-p]]/Kn) ⊗ Qp

]
,

where K ⊂ Zp[[Epro-p]] again denotes the augmentation ideal. Then

UQp(E) ⊂ Qp[[E]]

and its Lie algebra are defined exactly as above. Consider the category Un(E,Qp)
of unipotent continuous Qp-representations of E, that is, finite-dimensional con-
tinuous representations

ρ : E → Aut(M)

that possess a filtration

M = M0 ⊃ M1 ⊃ M2 ⊃ · · ·

such that each M i/M i+1 is a direct sum of copies of the trivial representation.
We see that E acting on the left on Qp[[E]]/Kn turns the system {Qp[[E]]/Kn}
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into a pro-object of Un(E,Qp). Given any pair (M,m) where M is a contin-
uous unipotent Qp-representation of E and m ∈ M , there is a unique map of
prorepresentations

(Qp[[E]], e) → (M,m),

where e ∈ Qp[[E]] comes from the identity of E, making the pair (Qp[[E]], e)
universal among such pairs. Therefore, if we let

F : Un(E,Qp) � VectQp

be the forgetful functor from the category of continuous unipotent Qp-representa-
tions of E to the category of finite-dimensional Qp-vectors spaces, the map

f �→ fe ∈ Qp[[E]]

defines an isomorphism

End(F ) � Qp[[E]].

Meanwhile, the condition of being grouplike corresponds to the compatibility
with tensor products (see [5]), so that we have

UQp(E) = Aut⊗(F ),

the tensor-compatible automorphisms of F .
Since it is our main object of interest, we denote simply by U the Qp-pro-

unipotent completion of the profinite fundamental group πet
1 (X̄, b) of X̄ with

base point at b. Fix a rational tangent vector v ∈ TbX , and let X ′ = X \ {b}. Let

U ′ := π
Qp,un
1 (X̄ ′, v),

the Qp-pro-unipotent completion of the profinite fundamental group of X̄ ′ with
tangential base point at v as defined in [4]. These groups come with corresponding
Lie algebras L′ =: LieU ′ and L := LieU .

Let

Un(X̄,Qp)

be the category of unipotent lisse Qp-sheaves on the étale site of X̄ . Then the
fiber functor

Fb : Un(X̄,Qp) → VectQp ,

which associates to any sheaf F its stalk Fb, factors through the tensor equiva-
lence of categories

Un(X̄,Qp) � Un
(
πet

1 (X̄, b),Qp

) F→ VectQp ,

so that we also have

U = Aut⊗(Fb).

Similarly,

U ′ = Aut⊗(F ′
v),
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where

F ′
v : Un(X̄ ′,Qp) → VectQp

is again the fiber functor defined in [4], using the functor that takes an étale
covering of X ′ to a covering of the punctured tangent space at b.

As explained in [11, Appendix A], there are natural isomorphisms

U ′ � U ′
B ⊗ Qp

and

U � UB ⊗ Qp,

where U ′
B and UB denote the Q-pro-unipotent completions of the topological fun-

damental groups π′ = π1(X(C), v) and π = π1(X(C), b) of X ′(C) and X(C) ([11,
Appendix A] is recommended in general for background on pro-unipotent com-
pletions, while [11, Section 2] contains a nice discussion of proalgebraic groups).
Therefore, L′

B =: LieU ′
B , and LB := LieUB also satisfy comparison isomorphisms

L′ � L′
B ⊗ Qp

and

L � LB ⊗ Qp.

The natural maps

π′ � U ′
B

and

π � UB

induce isomorphisms

Z(π′) ⊗ Q � Z(L′
B) � Z(U ′

B)

and

Z(π) ⊗ Q � Z(LB) � Z(UB)

(see, e.g., [1, Proposition 1.2]; in that reference, real coefficients are used). But
this obviously implies that same result for Q-coefficients. The second isomor-
phism for any unipotent group is a simple consequence of the Baker-Campbell-
Hausdorff formula (see [28, Chapter 4]).

From this, we also get

Z(π′) ⊗ Qp � Z(L′) � Z(U ′)

and

Z(π) ⊗ Qp � Z(L) � Z(U).

It follows from this that Z(L′) is the free Lie algebra on 2g generators. Hence,
L′ is free on generators obtained from any lift of a basis for (L′)1 = V . That is,
we can take a lift S̃ of any basis S for V ; then the map
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F (S̃) → L′

from the free Lie algebra on S̃ to L′ induces isomorphisms

F (S̃)/F (S̃)n � L′/(L′)n

for each n, and hence, an isomorphism

F (S̃) := {F (S̃)/F (S̃)n}n � L′

of pro-Lie algebras (see, e.g., [11, Proposition 2.1]). As generators for L′, we take
a lifting B̃ = {ẽ1, . . . , ẽ2g } of the basis B above. The corresponding isomorphism
from F (B̃) to L′ puts on L′ the structure of a completed graded pro-Lie algebra

L′ =
∞⊕

n=1

L′(n)

in such a way that

(L′)n =
∞⊕

i≥n

L′(i).

We warn the reader that this grading is not compatible with the Galois action.
Since there appears to be little danger of confusion, we denote the elements ẽi

by ei again and the generating set B̃ by B.
By [19], the natural map

π′ → π

induces an isomorphism (
Z(π′) ⊗ Q

)
/R̄B � Z(π) ⊗ Q

for a Lie ideal R̄B generated by the class of a single element c :=
∏

i[ai, bi] ∈
(π′)2, expressed in terms of a set of free generators {a1, . . . , ag, b1, . . . , bg } for π′.
Consider the natural map

p : L′ → L.

We have ω := log(c) ∈ Ker(p), and the preceding discussion implies that

L′/R � L,

where R is the closed ideal generated by ω, since there is induced an isomorphism
of associated graded algebras.

For the structure of N := LieW , we have therefore

N � L′/(I + R),

where

I = (L′)(3) =
[
[L′,L′], [L′,L′]

]
.

According to [24], we can construct a Hall basis for L′ as follows. First, we
order B so that ei < ej if i < j. This is, by definition, the set H0. Now define
Hn+1 recursively as the brackets of the form
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[
. . . [h1, h2], h3], . . .], hk

]
,

where k ≥ 2, hi ∈ Hn, and

h1 < h2 ≥ h3 ≥ · · · ≥ hk.

Now choose a total order on Hn+1. Finally, put H =
⋃

i Hi, and extend the order
by the condition

h ∈ Hi, k ∈ Hj , i < j ⇒ h > k.

Symbolically,

H0 > H1 > H2 > · · · .

In fact, it is shown that
⋃

i≥n Hi is a Hall basis for the subalgebra

(L′)(n+1).

In particular, it follows that the elements of H1 are linearly independent from
(L′)(3), which is generated by

⋃
i≥2 Hi. Furthermore, the basis consists of mono-

mials, so that H(i) := H ∩ L′(i) is a basis for L′(i). Define Hn(i) := Hn ∩ L′(i)
so that H(i) =

⋃
n Hn(i). We thus get a bigrading

L′ =
⊕

L′(i, j),

where L′(i, j) is the span of Hi(j).
Denote by N ′ the Lie algebra

(L′)(2) = L′/I.

Then we have the following.

LEMMA 2.1

For n ≥ 2, the set H1(n), consisting of Lie monomials of the form[
[. . . [ei1ei2 ]ei3 ] . . .]ein

]
,

where i1 < i2 ≥ i3 ≥ · · · ≥ in, is linearly independent from

(L′)(n+1) + I.

Proof
We have the bigradings

I =
⊕∞

i=1

⊕
j≥2 L′(i, j),

(L′)(n+1) =
⊕

i≥n+1

⊕∞
j=1 L′(i, j),

from which it is clear that (L′)(n+1) + I is the product of the L′(i, j), where
(i, j) runs over the pairs such that j ≥ 2 or i ≥ n + 1. Thus, H1(n) is linearly
independent from it. �
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COROLLARY 2.2

The image [H1(n)] of H1(n) in N ′
n is a basis for Zn(N ′).

The elements of H1(n) for n ≥ 2 can be counted by noting that there are
(
2g
2

)
possibilities for the bracket [ei1 , ei2 ], while for each such bracket, the cardinality
of the nonincreasing (i3, i4, . . . , in) with i3 ≤ i2 is(

(n − 2) + (i2 − 1)
i2 − 1

)
=

(
n − 3 + i2

i2 − 1

)
.

So we find the following dimension formula.

COROLLARY 2.3

For n ≥ 2,

dimZn(N ′) =
2g∑

i=1

(i − 1)
(

n − 3 + i

i − 1

)
.

Proof
This follows immediately from the previous discussion together with the obser-
vation that for any index i, there are i − 1 possibilities for the bracket [ej , ei] at
the beginning of an element of H1(n). �

We wish to understand the dimension of Zn(N). Although it would be elementary
to work out a precise formula, we need just a reasonable estimate for our purposes.
That is, we need to estimate the dimension of

Zn(N ′)/[Zn(N ′) ∩ Im(R)],

where Im(R) refers to the ideal in N ′
n generated by the image of ω (which we

again denote by ω).
For an ordered collection of elements v = (x1, x2, . . . , xm) ∈ Bm and an ele-

ment y ∈ L′, define

adv(y) := [[. . . [y,x1], x2], . . . , xm].

Note that if y ∈ (L′)2 and v′ is a reordering of v, then

adv(y) − adv′ (y) ∈ I.

Thus, for y ∈ (L′)2, we have

adv(y) ≡ adord(v)(y) mod I,

where ord(v) is the unique reordering of v for which the components are nonin-
creasing. Hence, any x ∈ (I +R) ∩ L′(n) has an expression as a linear combination

x ≡
∑

i

ci advi(ω) mod I

for some constants ci ∈ Qp, where vi runs through elements of Bn−2 with non-
increasing components. The number of such vi is the same as the number of
monomials of degree n − 2 in a polynomial algebra of 2g-variables, and hence,
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(
n − 2 + 2g − 1

2g − 1

)
=

(
n − 3 + 2g

2g − 1

)
,

which therefore gives an upper bound on the dimension of Im(R) ∩ Zn(N ′).

LEMMA 2.4

For n ≥ 2,

dimZn(N) ≥ (2g − 2)
(

n − 3 + 2g

2g − 1

)
+

2g−1∑
i=1

(i − 1)
(

n − 3 + i

i − 1

)
.

3. Proofs

We refer to [14] and [15, Section 2] for general background material on Selmer
varieties. Recall that

H1
f (G,Wn) ⊂ H1(GT ,Wn)

consists of the cohomology classes corresponding to Wn-torsors that are unram-
ified outside T and crystalline at p. So a bound for H1(GT ,Wn) is a bound for
H1

f (GT ,Wn) as well.
We use again the exact sequence

0 → H1
(
GT ,Zn(W )

)
→ H1(GT ,Wn) → H1(GT ,Wn−1)

as in [15] and a bound for the dimension of H1(GT ,Zn(W )). There is, as usual,
the Euler characteristic formula (see [12]) that reduces over Q to

dimH0
(
GT ,Zn(W )

)
− dimH1

(
GT ,Zn(W )

)
+ dimH2

(
GT ,Zn(W )

)
= dim[Zn(W )]+ − dim[Zn(W )]

= − dim[Zn(W )]−,

where the signs in the superscript refer to the ±1-eigenspaces for the action of
complex conjugation. Because Zn(W ) has weight n, we see that the H0-term is
zero for n ≥ 1, from which we get

(EC) dimH1
(
GT ,Zn(W )

)
= dim[Zn(W )]− + dimH2

(
GT ,Zn(W )

)
.

Note that if T ′ ⊃ T , then

dimH1
(
GT ′ ,Zn(W )

)
≥ dimH1

(
GT ,Zn(W )

)
.

The Euler characteristic formula then shows that

dimH2
(
GT ′ ,Zn(W )

)
≥ dimH2

(
GT ,Zn(W )

)
as well. Therefore, in our discussion of bounds, we may increase the size of T to
include the primes that ramify in the field F . In particular, we may assume that
F ⊂ QT , so that

GF,T ⊂ GT ,

a subgroup of finite index.
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Proof of Theorem 0.1
Since there is a constant in the formula, we can assume that n ≥ 3. Furthermore,
by the surjectivity of the corestriction map

H2
(
GF,T ,Zn(N)

)
→ H2

(
GT ,Zn(N)

)
,

we may concentrate on bounding H2(GF,T ,Zn(N)). As in [16], we consider the
localization sequence

0 → X2
(
Zn(N)

)
→ H2

(
GF,T ,Zn(N)

)
→

⊕
v|T

H2
(
Gv,Zn(N)

)
,

where Gv = Gal(F̄v/Fv). For the local terms, we have Tate duality

H2
(
Gv,Zn(N)

)
�

(
H0(Gv,Zn(N)∗(1))

)∗
.

For v � p, since J has good reduction, the action of Gv on Z∗
n(N)(1) is unramified.

But then, for n ≥ 3, Zn(N)∗ has Frobenius weight ≥ 3, while Qp(1) has Frobenius
weight –2. Therefore,

H0
(
Gv,Zn(N)∗(1)

)
= 0.

For v|p, we use instead the fact (see [7, Theorem 5.2]) that

H0
(
Gv,Zn(N)∗(1)

)
= HomMF (φ)

(
Fnr

v ,Dcris(Zn(N)∗(1))
)
.

Here Fnr
v is the maximal absolutely unramified subfield of Fv and Dcris(·) =

((·) ⊗ Bcris)Gv is Fontaine’s crystalline Dieudonné functor applied to crystalline
Gv-representations, while MF (φ) is the category of admissible filtered φ-modules
over Fnr

v (see [7, Section 5.1]). Since each character ψi occurs inside H1
et(J̄ ,Qp),

we know that Dcris(ψi) occurs inside the crystalline cohomology H1
cris(J,Qp)

(see [8]). But then, if the residue field of Fv is of degree d over Fp, φd again has
positive weights on Dcris(Z∗

n(N)(1)) (see [13]). Therefore, H0(Gv,Z∗
n(N)(1)) = 0.

It follows that

H2
(
Gv,Zn(N)

)
� X2

(
Zn(N)

)
�

[
X1

(
Zn(N)∗(1)

)]∗

by Poitou-Tate duality (see [20, Theorem 4.10]), where X1(Zn(N)∗(1)) is defined
by the exact sequence

0 → X1
(
Zn(N)∗(1)

)
→ H1

(
GF,T ,Zn(N)∗(1)

)
→

⊕
v|T

H1
(
Gv,Zn(N)∗(1)

)
.

Now, the group Γ = Gal(F∞/F ) is the image of GF,T inside Aut(J [p∞]), and
Zn(N)∗(1), being a twist by Qp(1) of a sum of tensor products of the characters
ψi = χ∗

i , is a direct summand of (V ∗)⊗n(1). Hence, by Bogomolov’s theorem (as
in [7, Lemmas 6.20, 6.21]),

H1
(
Γ,Zn(N)∗(1)

)
= 0.

Therefore, using the Hochschild-Serre sequence, we get

H1
(
GF,T ,Zn(N)∗(1)

)
⊂ HomΛ

(
XT ,Zn(N)∗(1)

)
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for

Λ := Zp[[Γ]] � Zp[[T1, T2, . . . , Td]]

and XT = Gal(KT /F∞), the Galois group of the maximal abelian pro-p extension
KT of F∞ unramified outside T . Here Ti = γi − 1 for free generators γi of Γ
chosen as in Section 1, so that ξi(γj) = 1 while ξi(γi) is a generator for the image
of ξi(GF,T ). The condition of belonging to the kernel of the localization map
implies, in any case,

X1
(
Zn(N)∗(1)

)
⊂ HomΛ

(
M,Zn(N)∗(1)

)
= HomΛ

(
M(−1),Zn(N)∗)

,

where M = M ′/(Zp − torsion) for the Galois group M ′ = Gal(H ′/F∞) of the
p-Hilbert class field H ′ of F∞. (Of course, we could take an even smaller Galois
group.) According to [9], M ′, and hence M , is a torsion Λ-module. (Reference
[9] states this in the case where F∞ is replaced by the compositum of all Zp-
extensions of F , but the proof clearly applies to any Zr

p-extension.) According to
a lemma of Greenberg [10], Lemma 2, there is a subgroup P ⊂ Γ such that Γ/P �
Zp and M is still finitely generated over Zp[[P ]]. Consequently, as explained in
[10, page 89], if we choose a basis {ε1, . . . , εd−1} for P and complete it to a basis
of Γ by using an element εd that maps to a topological generator of Zp, then in
the variables Si = εi − 1, we can take the annihilator to have the form

f = b0(S1, . . . , Sd−1) + b1(S1, . . . , Sd−1)Sd + · · · + bl−1(S1, . . . , Sd−1)Sl−1
d + Sl

d

for some power series bi. Furthermore, by approximation, we can choose the εi

to be of the form

εi = γni1
1 · · · γni,d

d

for integers nij . That is, given any topological basis involving p-adic powers nij ,
we can approximate them by integral n′

ij that are p-adically close, so that the ei

and

ε′
i = γ

n′
i1

1 · · · γn′
i,d

d

topologically generate the same subgroup P .
We know that Zn(N) is generated by the image of H1(n). So Zn(N)∗ is a sub-

space of the GF,T -representation given as the direct sum of the one-dimensional
representations

ψi1 ⊗ ψi2 ⊗ ψi3 ⊗ · · · ⊗ ψin ,

where i1, . . . , in run over indices {1,2, . . . ,2g} such that

i1 < i2 ≥ i3 ≥ · · · ≥ in.

So this is of the form ⊕
i<2g

[ψi ⊗ ψ2g ⊗ Symn−2(V ∗)] ⊕ Kn,
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where

dimKn ≤
(

2g

2

)(
n − 2 + 2g − 2

2g − 2

)
= O(n2g−2).

Therefore, the representation
n⊕

i=3

Zi(N)∗

is of the form

⊕
i<2g

[
ψi ⊗ ψ2g ⊗

(n−2⊕
i=1

Symi(V ∗)
)]

⊕ Rn,

where Rn has dimension ≤ An2g−1 for some constant A. We then have

dimH2(GT ,Rn) = dimX1
(
R∗

n(1)
)

⊂ HomΛ

(
M,R∗

n(1)
)

≤ A′n2g−1

for another constant A′. So we need to find a good bound for

HomΛ

(
M(−1),

⊕
i<2g

[
ψi ⊗ ψ2g ⊗

(n−2⊕
i=1

Symi(V ∗)
)])

.

We use the multiindex notation

ψα = ψα1
1 ψα2

2 · · · ψα2g

2g

for a multiindex α = (α1, . . . , α2g) ∈ N2g . The weight of the multiindex α is
denoted |α| :=

∑
i αi so that

Symi(V ∗) =
⊕

|α|=i

ψα.

If a component

HomΛ

(
M(−1), ψi ⊗ ψ2g ⊗ ψα

)
= HomΛ

(
M(−1) ⊗ χi ⊗ χ2g, ψ

α
)

is nonzero, then we must have

ψα(fi) = 0,

where

fi := f(ci1S1 + ci1 − 1, . . . , ci,dSd + ci,d − 1)

= bi
0(S1, . . . , Sd−1) + bi

1(S1, . . . , Sd−1)Sd + · · ·

+ bi
l−1(S1, . . . , Sd−1)Sl−1

d + cl
idS

l
d,

for some power series bi
j and units cij := χ(Sj +1)ψi(Sj +1)ψ2g(Sj +1), is in the

annihilator of M(−1) ⊗ χi ⊗ χ2g . We wish to estimate how many zeros each fi

can have on the set {ψα | |α| ≤ n − 2}.
There are independent elements {φi} in the Z-lattice of characters generated

by the ξi such that φi(εj) = 1 for i �= j and

ξi = φmi1
1 · · · φmi,d

d
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for a nonsingular matrix (mij) with entries mij ∈ (1/M ′)Z for some fixed denom-
inator M ′ ∈ Z ∩ Z∗

p. Therefore, by the discussion in Section 1, we have

ψi = φqi1
1 · · · φqi,d

d

for a (2g) × d integral matrix D = (qij) of rank d having entries in (1/M)Z for
some fixed integer M . Given a multiindex α, we then have

ψα = φαD

with αD denoting the matrix product. For |α| ≤ n − 2, we find the bound

|αD| ≤ (n − 2)d‖D‖,

where ‖D‖ = max{ |qij | }. Now, for each multiindex

δ = (δ1, . . . , δd) ∈ [(1/M)Z]d

such that

|δ| ≤ (n − 2)d‖D‖,

we need to count the cardinality of the set

Lδ =
{
α ∈ N2g

∣∣ δ = αD, |α| ≤ n − 2
}
.

If we fix one α ∈ Lδ , the map α′ �→ α′ − α injects Lδ into the set of μ =
(μ1, . . . , μ2g) ∈ Z2g such that μD = 0 and supi |μi| ≤ (n − 2). The first condi-
tion defines a lattice inside a Euclidean space of dimension 2g − d, while the
second condition defines a fixed compact convex body (independent of n) inside
this space dilated by a factor of n − 2. Thus, there is a constant C depending on
the convex body such that |Lδ | ≤ C(n − 2)2g−d. Now we turn to the number of
δ for which

φδ(fi) = 0

and |δ| ≤ (n − 2)d‖D‖. The coefficients φδ(bi
j) depend only on (δ1, . . . , δd−1),

which runs over a set of cardinality
d(n−2)M ‖D‖∑

i=1

(
i + d − 2

d − 2

)
.

This is the number of lattice points in (d − 1)-dimensional space that are con-
tained inside a simplex with vertices at the origin and at the points(

0, . . . ,0, d(n − 2)M ‖D‖,0, . . . ,0
)
.

This number is clearly majorized by the number of lattice points inside the cube

[0, d(n − 2)M ‖D‖]d−1,

that is, (
d(n − 2)M ‖D‖ + 1

)d−1
.

For each such (δ1, . . . , δd−1), there are at most l d-tuples δ = (δ1, . . . , δd−1, δd) such
that φδ(fi) = 0. We conclude that the number of δ such that |δ| ≤ d(n − 2)M ‖D‖
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and φδ(f) = 0 is bounded by l(d(n − 2)M ‖D‖ +1)d−1. Therefore, the number of
zeros of each fi on {ψα | |α| ≤ n − 2} is bounded by

C(n − 2)2g−dl
(
d(n − 2)M ‖D‖ + 1

)d−1 ≤ An2g−1

for some constant A. For each such zero α, the dimension of

HomΛ

(
M(−1) ⊗ χi ⊗ χ2g, ψ

α
)

is bounded by the number of generators m of M . From this, we deduce the
desired asymptotics

dimHomΛ

(
M(−1),

⊕
i<2g

[
ψi ⊗ ψ2g ⊗

(n−2⊕
i=1

Symi(V ∗)
)])

≤ mAn2g−1.

�

Proof of Corollary 0.2.
For the rough estimates relevant to this corollary, we find useful the elementary
fact that (n + a)b = nb + O(nb−1) for any fixed constant a and exponent b.

We need to find lower bounds for the dimension of the local Selmer variety.
We have the de Rham realization

WDR := UDR/(UDR)(3),

where UDR is the de Rham fundamental group of X ⊗ Qp with base point at b.
We denote by (U ′)DR the de Rham fundamental group of X ′ with base point at
v (see [4], [15]). Since

(U ′)DR ⊗ Cp � U ′ ⊗ Cp

(see [21], [22]), we see that

(L′)DR = Lie(U ′)DR

is also free, and we can estimate dimensions exactly as in Section 1. For example,
as in Lemma 1.3,

dimZn(WDR) ≥ (2g − 2)
(

n − 3 + 2g

2g − 1

)

so that
n∑

i=3

dimZi(WDR) ≥ 2g − 2
(2g)!

(n − 2)2g.

We need to estimate the contribution of F 0(Zn(WDR)). For this, we let
{b1, . . . , bg, . . . , b2g } be a basis of (L′)DR

1 such that {b1, . . . , bg } is a basis for
F 0(L′)DR

1 . This determines a Hall basis HDR =
⋃

n HDR
n for (L′)DR exactly

as in the étale case of Section 3. There are also corresponding bases for LDR,
(N ′)DR := Lie[(U ′)DR/[(U ′)DR](3)], and a generating set for NDR, exactly as in
the discussion of Section 1. The Hodge filtration on

(L′)DR
1 = [H1

DR(X ′ ⊗ Qp)]∗
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is of the form

(L′)DR
1 = F −1(L′)DR

1 ⊃ F 0(L′)DR
1 ⊃ F 1(L′)DR

1 = 0.

Hence, for an element

[[. . . [bi1 , bi2 ], bi3 ], . . .]bin ]

of HDR
1 (n) to lie in F 0[Zn((L′)DR)], all of the bi must be in F 0(L′)DR

1 . Thus,
the dimension of F 0[Zn((N ′)DR)] and, hence, of F 0[Zn(WDR)] is at most(

g

2

)(
n + g − 3

g − 1

)
.

From this, we get the estimate
n∑

i=3

dimF 0
(
Zi(WDR)

)
≤ cng

for some constant c. Therefore, we see that

(∗) dimWDR
n /F 0 = dimWDR

2 /F 0 +
n∑

i=3

Zi(WDR)/F 0

≥ (2g − 2)
(2g)!

n2g + O(n2g−1).

Now we examine the dimension of the minus parts Zn(W )−. For this, it is
convenient to carry out the Hall basis construction with yet another generat-
ing set. We choose B′ = {f1, . . . , fg, . . . , f2g } so that {f1, . . . , fg } and {fg+1, . . . ,

f2g } consist of the plus and minus 1 eigenvectors in V , respectively. Clearly,
dimZn(N ′)− majorizes dimZn(W )−. Furthermore, as discussed above, Zn(N ′) =
Sn ⊕ Rn, where Sn is the span of

[. . . [fj , f2g], fi3 ] . . . , fin ]

for j < 2g and nondecreasing (n − 2)-tuples (i3, . . . , in), while dimRn = O(n2g−2).
Now [fj , f2g] is in the minus part for j ≤ g and in the plus part for j ≥ g + 1,
while the contribution of the (n − 2)-tuple is the same as Symn−2(V ).

That is,

dimS−
n = g dimSymn−2(V )+ + (g − 1)Symn−2(V )−.

But

Symn−2(V ) =
⊕

i

[Symi(V +) ⊗ Symn−2−i(V −)],

of which we need to take into account the portions where n − 2 − i is even and
odd, respectively, to get the positive and negative eigenspaces.

For n odd, we easily see that the plus and minus parts pair up, giving us

dimSymn−2(V )− = dimSymn−2(V )+ =
(1

2

)
dimSymn−2(V )

=
(1

2

)(
n − 3 + 2g

2g − 1

)
.
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From this, we deduce that for n odd,

dimS−
n =

(1
2

)
(2g − 1)

(
n − 3 + 2g

2g − 1

)
.

On the other hand, if n is even, then there is the embedding

Symn−2(V ) ↪→ Symn−1(V ),

v → v · f1

that preserves the plus and minus eigenspaces. Hence,

dimSymn−2(V )+ ≤ dimSymn−1(V )+ =
(1

2

)(
n − 2 + 2g

2g − 1

)

=
(1/2)n2g−1

(2g − 1)!
+ O(n2g−2)

and

dimSymn−2(V )− ≤ dimSymn−1(V )− =
(1

2

)(
n − 2 + 2g

2g − 1

)

=
(1/2)n2g−1

(2g − 1)!
+ O(n2g−2),

where the equalities follow from the discussion above for the odd case. Therefore,
for any n, we have

dimS−
n ≤ (1/2)(2g − 1)n2g−1

(2g − 1)!
+ O(n2g−2)

and

dimZn(N)− ≤
(1

2

)
(2g − 1)

n2g−1

(2g − 1)!
+ O(n2g−2).

We deduce immediately that
n∑

i=1

Zi(N)− ≤
(1

2

)
(2g − 1)

n2g

(2g)!
+ O(n2g−1).

Combining this inequality with the lower bound (∗), Theorem 0.1, and the Euler
characteristic formula (EC), we get

dimWDR
n /F 0 < dimH1

f (Gp,Wn)

for n sufficiently large. �

REMARK

Note that in the comparison of leading coefficients,(1
2

)2g − 1
(2g)!

<
2g − 2
(2g)!

exactly for g ≥ 2.
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Proof of Corollary 0.3
By [15, Section 2] and [6], there is an algebraic map

D = Dcr : H1
f (Gp,U) � UDR/F 0

sending a U -torsor

P = Spec(P )

to

Spec
(
Dcr(P )

)
= Spec(P ⊗ Bcr)Gp ,

an admissible UDR torsor, that is, a UDR-torsor with a compatible Frobenius
action and a reduction of structure group to F 0UDR (see [15, Section 1]).

We wish to deduce an analogous map for W . But [21] and [22] give an
isomorphism

L ⊗ Bcr � LDR ⊗ Bcr

compatible with the Lie algebra structure as well as the usual Galois action,
φ-action, and Hodge filtration. In particular,

L(3) ⊗ Bcr � (LDR)(3) ⊗ Bcr,

and hence,

N ⊗ Bcr � NDR ⊗ Bcr.

Therefore,

Dcr(N) = NDR

and

Dcr(W ) = WDR.

There is thereby an induced map

D : H1
f (Gp,W ) � WDR/F 0

following verbatim the construction for U and UDR as in [15, Section 2]. That
is, as in [15, Section 1, Proposition 1], WDR/F 0 classifies admissible torsors for
WDR, and the map assigns to a W -torsor a WDR-torsor, exactly following the
recipe for U and UDR.

Now Corollary 0.3 also follows verbatim the argument in [14, Section 2] and
[15, Section 3] by using the diagram

X(Q) � X(Qp)

H1
f (G,Wn)

�
� H1

f (Gp,Wn)
�

� WDR
n /F 0

�

for n sufficiently large. We need only note that the map

]y[→ WDR
n /F 0
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from any residue disk ]y[⊂ X(Qp) to WDR
n /F 0 has Zariski dense image since the

same is true of

]y[→ UDR
n /F 0

and the map

UDR
n /F 0 → WDR

n /F 0

is surjective. �
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