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Abstract We give an explicit formula for the central critical value L(1/2,7 ® x) of the
base-change lift 7 to an imaginary quadratic field K of an automorphic representation 7
as the square of a finite sum of the values of a nearly holomorphic cusp form in 7 at ellip-
tic curves with complex multiplication by K. As long as the transcendental factor of the
value is a CM period, x is basically any unitary arithmetic Hecke character of K inducing
the inverse of the central character of .
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0. Introduction

Let D be a quaternion algebra over a number field F', regarded as a quadratic
space by its norm form N : D — F. The orthogonal similitude group GOp is
isogenous to D* x D* by the action (g,h)v =gvh~! on v € D. Pick a qua-
dratic extension K/F with an embedding K into D; so, we have K*\K,* —
D*\D} . Take a Hecke eigenform f on D*\D, with central character v, and
pick a character x of K*\K; with Xlpx = . The unitarization f*(g) :=

£(g)|(det(g))|~1/? generates a unitary automorphic representation ¢, which
has a base-change lift 7¢ to Resg/p D*. Similarly, we set x~ = (x o ¢)/|x| for
(¢) = Gal(K/F). Waldspurger [Wa] proved a striking (and ingenious) formula
relating the square of L, (f) := fKX\KAX £(t)x(t) d*t to the central critical value

L(1/2,7 ® x~) (up to sometimes undetermined local factors). When K/F is a
totally imaginary quadratic extension of a totally real field F' (a CM extension),
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L, (f) is basically a finite sum of the value of f at CM-abelian varieties, and
hence it is essentially p-integral up to the Néron period of the abelian variety. If
one wants to interpolate L, (f) p-adically over arithmetic x’s for a cusp form f
as Katz [K] did for Eisenstein series, we need an explicit formula without ambi-
guity. Such a computation has been done by many people, including Shou-Wu
Zhang, Ben Howard, Kartik Prasanna, and others (see [KRY], [YZZ], [P]). How-
ever, published computation seems limited to the case where the infinity type
of x is either the highest or the lowest determined by f and D, and the conduc-
tor of x could be limited to split primes of K/Q (the Heegner hypothesis). For
simplicity, assuming that F'= Q, K is imaginary quadratic, and D = M»(Q), we
present here an explicit formula of L, (f)? (Theorem 4.1) covering all arithmetic
characters x with x|ax = ~" (producing “critical” central value). The formula
involves a Euler-like factor (at primes dividing the level) that vanishes only in
limited cases. A main point is to find a good Schwartz-Bruhat function on Dy,
making the theta correspondence optimal. This optimal choice is suggested by
the explicit computation of the g-expansion of the theta lift of f to GO(Fy)
through “partial Fourier transform” of the Siegel-Weil theta series which was
studied in [Hil] to prove the anticyclotomic main conjecture for CM fields. Our
method is elementary, classical, and almost global without resorting much to
Langlands theory, and we can extend it to general base fields. In this article,
we restrict ourselves to M»(Q) for simplicity. Obviously one may use the same
Schwartz-Bruhat function for division D fixing an isomorphism D, 2 My (Fy) (for
almost all primes ¢) or take a non-CM quadratic extension K/F. However, we
need a more careful analysis (e.g., [P]) of the rationality/transcendence of the
theta correspondence in these slightly more general cases, which we hope to treat
in the future.

Organization of the article and a sketch of the proof

In Section 1, starting with a brief discussion of how to associate automorphic
forms f on GL2(A) to classical holomorphic elliptic modular forms f, we recall
the Siegel-Weil theta series © and its theta correspondence: f — ©(f) for the dual
pairs (SL(2),S0(2,2)) and (SL(2),SO(2)) of the quadratic spaces (M3(Q),det)
and (K,+Ng/qg). For an explicitly given Schwartz-Bruhat function on Ms(A),
we make a computation of its partial Fourier transform, which later enables us
to make explicit the image ©(f) on the side of SO(2,2) ~ SL(2) x SL(2). In other
words, starting with a normalized Hecke eigenform f of weight k£, by our choice
of a Schwartz-Bruhat function, we conclude that the image O(f) = [, Of dx
is given (2i)*f ® f for a suitably chosen measure dz and an elliptic modu-
lar Shimura curve Sh. For this reason, we call the choice optimal. The pre-
cise choice of the Schwartz-Bruhat function is made in Section 1.4, and then
we adjust the choice to make easier the later computation of Rankin convo-
lution in Section 1.7. In Section 2, we compute the restriction of the Siegel-
Weil theta series to the orthogonal group O(2) x O(2) given by the quadratic
space (K, Ng,q) ® (K,—Ng/q) = (M2(Q),det) and show that the restriction is
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a product 6y - 0" of two binary theta series 0,0 of K (resp., of weight 1+ k
and 1). Via the Siegel-Weil formula (and a more classical result of Hecke),
we identify 6’ with an explicitly given Eisenstein series E. In Section 3, we
apply to © a (two-variable) Maass-Shimura differential operator A =6} ® §7* on
SO(2,2) ~ SL(2) x SL(2) which is induced by (the mth power of) a Lie invariant
differential operator X ® X on SLa(R) x SLy(R). The restriction of this derived
AB to O(2) x O(2) turns out to be ;12,077 E for a holomorphic binary theta
series k1o, with higher weight 1 + k + 2m than ;. In the final Section 4,
we state our main theorem and compute f(KX\KAX)Q(fx) ® (fx)dt* @ dt* (with

respect to a suitable Haar measure d*¢ on K ;). On the one hand, this value is
L,(f)%. Replacing f @ f by O(f) transforms the integral into a double integral
over (K*\K})? x Sh. Interchanging the order of integration, L, (f)? is trans-
formed into a Rankin convolution integral fSh £01+2m 07" E dz, which gives rise to
the L-value. This proves the desired formula.

1. Quaternionic theta correspondence

1.1. Classical modular forms and adelic ones
Let S be the algebraic group SL(2),z. Let f(7) be a cusp form in S(I',%))
(tr€$H={ze€C|Im(z) >0}) for a congruence subgroup I'" of S(Q). Here ¢ is a
finite-order character whose kernel is a congruence subgroup IV of I". Write T for
the closure of T' in S(A()). Then I'/T’ 2T /I”, and hence we may regard 1
as a character of I'. Then by the strong approximation theorem, we have
S(A) = S(Q)I'S(R). Thus we can lift f to £: S(Q)\S(A)/T — C by f(au) =
F oo (1)) (1) (uos, i) % for o € S(Q) and u € T, where J((¢8),7) = (cr + d).
For our later use, we put J((¢4),7) = (ad — bc)~"Y/?(cr + d). We note that
§(r(0),d) = J(r(0),i) = e~ for r(0) = ( %% 5n0) € SOo(R). Similarly, writ-
ing Z for the center of GL(2), we have j(¢,7) = ¢, while J(¢,7) =1 for ( € Z(R).
For an open compact subgroup T' of GLy(A(®®)) with GLy(A) = GLy(Q)T -
GLS (R) (GLF (R) = {g € GLy(R) | det(g) > 0}), put T =T'- GLF (R)NGLy(Q). If
P T — C* is a continuous character, we may regard v as a character of I'. Write
Sy (T',9) for the space of holomorphic cusp forms with f(v(7)) =¥ ~(y)f(7) x
§(7,7)*. Then we can define f(au) = f(too (7)) (1)j(too,) ™", and f is a function
on GLy(Q)\ GL2(A)/ Ker(¢) : ' — C*) such that f(agu) = (u)f(g) for u € T and
a € G(Q). Write Sy (f, 1) for the space of cusp forms f with holomorphic f satis-
fying f(au) = f(uoo(i))¥ (1) (U, i) ~*. Thus we have Sy (T, v) = Si(T, 1) by f «
f- More generally, fixing g € GLy(A()), we may define fy(2) = f(9900)j(goo, )"
With geo(i) = z. Then f, € Sp(Ty,1,) for T, = (gTg~") - GLF (R) N GLy(Q)
and 1, (u) = ¥(g  ug), so Sy (T, ) = Si(Ty,1,) via f — f,. For ¢ € Z(A) and
fe Sk(f,zﬁ), we have that f|((x) = f(Cz) resides in Sk(f,z/z). Thus Z(A) acts
on Sy (f,z/;). Note that f|¢s = (*f. Thus Sy (f,¢) can be decomposed into the
direct sum of the eigenspaces of Z(A). On each eigenspace, Z(A) acts by a Hecke
character ¥ : A*/Q* — C* with ¢|fmZ(A) = and ¥((s) = (F, and |- |§ is

of finite order. Write this eigenspace as Sy, (f, ). Let fO(N) ={(2}%)eGLy (Z) |
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ce Nz} and fl(N) ={(eY) e fO(N) |d—1¢€ NZ} IfT = fO(N) for a positive
integer N, a choice of ¢ is given by (2%)+— ¢(d) for a Dirichlet character ¢
modulo N. Then % is a Hecke character whose restriction to Zjy, = Hf\ N L[ is
given by v¢. Thus as usual, if we lift ¢ to A* by ©*(€y) =4 (¢) for £ prime to N,
we have 9 = ¢*| - | %, We write simply Sy.(N,) for Sp(To(N), ). Then we
have Si(N,v) = Sp(To(N),v) via f « f. Note that f € Si(To(N),v) satisfies
F(4(2)) = (@) F(2)j (v, 2)" for v = (24) € To(N) (note that (a) = ¢~(d)),
which could be a common definition of Si(To(IN),v)).

If we start with an antiholomorphic modular form f(z) € Si(T,1), we lift
it to the adelic one f by f(au) = f(ue (i)Y (1)j(tUoo, —i) % for a € S(Q) and
uwel. Again f(ou) = f(u(i))¥(w)j(tso, i)~ for a € S(Q) and w €. The
corresponding spaces of antiholomorphic adelic modular forms are written as

gk(f, 1) and Si(N, ).

1.2. Weil representation

Let (V,Q) be a quadratic space over Q with dimension 2d. The quadratic form
V3 z— Q(x) € Q produces a Q-bilinear symmetric pairing s(z,y) = Q(x +y) —
Q(z)—Q(y). If V=D and Q(x) = za* = N(x) (for the reduced norm N: D —Q
and the main involution ¢), then s(z,y) = Tr(zy*). If V = K and Q = Nk g, then
s(z,y) = Trgg(2y©) ((c) = Gal(K/Q)). Write S(V4) for the space of Schwartz-
Bruhat functions on V4 =V &g A. The group S(Q) is generated by (% )
and upper triangular matrices, so by the density of S(Q) C S(A(")) diagonally
embedded (removing one place v), S(A®")) is topologically generated by these
elements. The Weil representation r of S(A) on S§(V}) is defined as follows:

" (é 7;) 6(v) = en (Q(v)u) H(v),

(1) t(5 ) ol = xvi@iatfot@),

a

f(5) ) o) =)

where xv : A*/Q* — {£1} is a Hecke character, ey : A/Q — C* is an additive
character with e (z4) = exp(2mizoo) for zo € R, vy is an eighth root of unity
both determined by (V, Q) (see [KRY, Section 8.5.3]), and ¢ is the Fourier trans-

form with respect to es(s(x,y)) normalized so that QAS(x) = ¢(—x). We have the
following (cf. [KRY, Section 8.5.3] and [Hi5, Proposition 2.61]).

I (V,Q) = (M2(Q),+det) for the determinant det: M2(Q) — Q, xp =
o =1.

- If (V,Q) = (K, £Ng/q) for an imaginary quadratic field K, yy = (K—/Q)
and vy = Fv/—1.

Let Oy be the orthogonal group, and let GOy be its similitude group, so
GOy (A)={a e GL(V ®g A) | Q(ax) = vy (a)Q(z) with vy (a) € A}
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and Oy =Ker(vy : GOy — G,,). We let g € GOy (A) act on S(Vi) b

L(9)b(v) = v (9)], > b (g™ 0).

Then by [Wel], the actions r and L commute on S(A) x Oy (A), so we may
regard r ® L as a representation of S(A) x Oy (A). The following result is a main
theorem of [Wel, théoreme 4].

THEOREM 1.1
The generalized theta series of Siegel and Weil
05(®)(w;9) = > (x(2)L(9))®(v) (for cach ® € S(Va))
veV

gives an automorphic form defined as a function on (S(Q)\S(A)) x (Oy(Q)\
Oy (A)).

We define two projections z — g and x — gz of GL(2) to S by zg = wagelt(z) and
ST = agelt(m)x for ay = ({ 9). Let Gy ={(z,9) € GL(2) x GOy | det(z) = vy (g)}.
Then we have the following skew commuting relation for (z,g) € Gy (A):

(1.2) r(zs)o L(g) = L(g) o r(sx).

Thus we may extend the representation r ® L to a representation of Gy (A) such
that r(zs) ® L(g) = L(g) ® r(sxz). We can still think of

(1.3)  fa(d)(x;g) == r(ws)oLlg ZL or(sz)¢(v) =:0g(4)(g; x).

In this definition, the variables « and g are not independent, so we write 8¢ (z;g)
if we use the expression r(zg)o L(g), and we write 0 (g; ) if we use the expression
L(g) or(sz) (although they produce the same function).

LEMMA 1.2

The above extended theta series 0q(¢)(x;g) on Gy (A) is left Gy (Q)-invariant;
that is, it factors through Gy (Q)\Gv (A).

Proof
Take £ € GOy (Q). Since GOy (Q) leaves stable the vector space V' C Vi, noting
that g(agx) = g and \l/v( &)|a =1 for £ € GOy (Q), we have

0c(9)(Egionem) = > L(&g)( 62))9) (v)
veV
="l (€9) 2 (x(s(aue)2))o) (916 10)
=39 (r(s2)8) (971 M0)

=" (@)l (x(s2)8) (97 v) = 06 (9) (g5 2).



782 Haruzo Hida

Thus 0g(¢) is left invariant under (au(¢),&) € G(Q). Since (a,§) € G(Q) can be
written as (ay(¢),§)(sa, 1), we now only need to prove left invariance of 0 (¢)
under S(Q). Since (az)s = a(zg) for a € S(Q), we see that

Oc(d)(ax;g) =Y r((ax)s)(L(g)$) (v) =05 (L(g)$) (a(zs): 1)

v

*) GS(L(9)¢) (zs;1) =0 () (z;9),

where the identity at (x) follows from S(Q)-invariance of g (see Theorem 1.1).
O

1.3. Partial Fourier transform

Let D = (M2(Q), £ det). Then s(x,y) is the trace pairing (x,y) := Tr(zy") for the
main involution . We define the partial Fourier transform ¢ +— ¢* for ¢ € S(Dj)
as in [Hi4, Section 2.4]:

(1.4) " (Z Z) :/Aqu(‘g Z) ex(ab' —ba')dd' v,

where ey : A/Q — C* is the additive character with ea (%) = exp(2miz o) for
Zoo € R and da’ db’ is the self-dual measure with respect to this Fourier transform.

Let ¢ be a Schwartz-Bruhat function on Dy. Following [Hi4, (2.18)], we
choose ¢ such that ¢ = ¢(*) @ ¢ with ¢(=) : DI*) — C and ¢uo : Doy — C
given, for (7,2,w) € $H3, by

s (73 2,0)(v)
(15) Im(7)[v; Z,w| Im(7)

- Im(T)( Im(z) Im(w) 2Im(z) Im(w) Ilv; 2] |2)
for e(x) = exp(2miz) and [v;z,w] = —Tr(v* - (2,1)(w,1)J) = —(w,1)Jv(]) =
(z,1)Ju(Y{) =wcz —aw +dz — b with J = (% §) and v=(2}). We have
(

)ke<— det(v)7 + i

g™ vhs z,w] = [v;9(2), h(w)] det(g) "5 (g, 2)5 (h, w),
Y IC R CD) NN VA TN
g~ ohsz ] () A(w))

() mw) o P (oG TG (w))

where j((¢%),7) = cr +d. Consider Siegel’s theta series 0y (¢(>))(r;2,w) =
> vep @(v). As shown in [Hi4, Proposition 2.2], Poisson summation formula tells
us the following.

LEMMA 1.3
We have Gk(q-,z,w7¢(00)) — 6k(Z,T,’LU,¢*(OO))

By Lemma 1.3, we get the following version of [Sh3, Part II, Proposition 5.1] (see
[Hi4, Theorem 3.2]).
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THEOREM 1.4

Suppose that f is a holomorphic cusp form of weight k > 0. Let T be a congruence
subgroup of SLao(Q) fixing f(7)0(¢)(7). Then we have

O (%)) (75 2,w) () dp(7)
r\$
= (2i)F Z 6" (ea) exp(2midet()z) f|re(w),
ael\M2(Q);det(a)>0

where du(T) is the invariant measure n~2dédn on $) for T=E+in, e= (' Y),

fe(z) = f(=72), and flro(w) = det(a)* " f(a(w))j(e,w) ™" for o € M2(Q) with

positive determinant.

1.4. Optimal Schwartz-Bruhat function

Let N be a positive integer, and let K be an imaginary quadratic field with
discriminant d(K). Define do(K) to be d(K)/4 or d(K) according as 4|d(K) or
not. We split the set of prime factors in N - dy(K) into two disjoint sets A and
C=CoUC (so AUC={l|N-do(K)}). We put C; ={{|dy(K)}. Decompose
N =Tlrcavc 2*® and assume that ¢ € A= v(f) >0 (but not necessarily the
converse). Also, v(¢) could be zero for £ € C.

DEFINITION 1.5
Let

A=2Ay(A,C;N)=A¢(A,Cy,C1; N) C My(Z) N GLy(AC))

be the semigroup made up of elements (¢ %) € My(Z) satisfying the following
conditions:

(a) a—1€ NZ,
(c) co€ N}Zy for L€ A cp € 6V NyZy for L € C; for j=0,1,

where N, = () is the (-primary part of N.

We put N1 = N [[,cq, £ Write dx for the characteristic function of a set X.
Take s,t € Z* witht=s=1 mod NCZ7 where N¢ is the C-part of N. Define
¢* = ¢} , to be a Schwartz-Bruhat function on My (A)) given by

«(a b A if 0 ¢ A,
Ln ¢ ( d) — A . ¢
¢ O(sp+N,20)(@)0z, (0)ON, (1,4 N,z,) (€)0z, (d) if £ € A.
Then ¢y, depends only on (s,t) mod N and is the characteristic function of
757t£("47 C; N) for Vst = (8 591 )(Sth (1)) € SLQ(Z) Let

I'(4,C;N)=SLy(Z)NA(A,C;N)  and
(1.8) [(A,C;N) =SLyo(Z) N A(A,C; N),
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U(A,C;N)
- { (‘z Z) € A(A,C;N)NGLy(Z) | ag=dy mod NoZy for £ € A}.
Note that 7, ; normalizes U(A,C; N), f(A,C’;N), and I'(A,C; N).

Define ¢, ,(z) := (¢ ;)*(ex). Then by [We3, Chapter VII, Section 7, Propo-
sition 13|, we have

a b
d)f (C d)

(1.9)
5M2(Z@) if£¢AUC,
= § 0z (a)ee(=sb)dy 17, (D)0, (t4+-N,z,) (¢)0z, (d) if £ € A,
0z, (@)er(=b)d 17, (0)0¢i N,z,(¢)0z, (d) ifteC; (j=0,1),

where e;(x) = exp(—2mi[z]¢) for the fractional part [z]; of x € Q. This shows

(1.10) ¢o1(v)=11(0; vay)  and @l (v) =110y BT )

for oy = (§9) and 3, = ({ ¢). By computation, we conclude that ¢, ,(yzé ') =
@, () for 7,0 € T'(A,C; N). Write, for Uy, in (1.5),

eS,t(T; Z, U)) = @(d)s,t & \Ijk)(T; Z, w)
Then, by [Hi4, Proposition 2.3],
(1.11) 05, (7(1):c(2), B(2)) = (1, 7) " (0, 2)* 5 (B, w)* B4 (73 2,0

=J )
for (v,a,8) € T(A,C;N)? and j((24),2) = (cz +d). (Recall also J((24),2) =
(ad —be)~Y2(cz +d).)

LEMMA 1.6
Suppose f € Sp(Lo(N1),v) for Nv = N]],cq, €. Then we have

Z ¢ 1(ea)e(det(a)z) flra(w)

a€l'(A,C;N)\M2(Q);det(a) >0

=¢(s)' Y e(n2) f|T(n)(w),
where e(z) = exp(2miz).

Proof

Abusing notation, we take an element v in SL(Z) with v =+, mod N? (by the
strong approximation theorem) and define f|,7vs,¢ by flx7y. Also, pick o5 € SL2(Z)
with 03 =7, mod N. By definition, we have

> #%,(ea)e(det(a)2) flro(w)

a€l'(A,C;N)\ M2 (Q);det(a)>0

_ 3 e(det(a)z) (f|kVs,)(w)

a€T(A,C;N)\ M2 (Q)NA(A,C;N);det(a) >0
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=(s)7t Z e(det(a)z) flrosa(w)

a€l'(A,C;N)\A(A,C;N)

1Y e(na)f|T(n)(w).

n=1

Thus if f is a normalized Hecke eigenform with f|7'(n) = a(n, f)f, we have
(L12) ©4,,(f)= / 0,1 (75 2,w) fo(r) du(r) = (20)* () ™" f(2) f (w).
T(A,C;N)\H

This is a version of a formula in [Sh3, Part II, Proposition 5.1] (see also [P,
page 923]).

1.5. Adelic theta series
Recall that S = SL(2),7. Regard (g,h) € S(A)? as a linear automorphism of
D ®qg A by £(g,h) : v— gvh™! in Op. This gives rise to an isogeny S x S — Op.
We pull back to S(A)? the theta series 5(¢)(x;9,h) on S(A) x Op(A) by this
isogeny, and we still write 6g(¢4) for the resulting automorphic form on S(A)3.
As for the classical Siegel’s theta series, we first extend 6,(¢(°))(7; 2,w) to
S(A) x S(A) x S(A) as in Section 1.1 and write it as 6 (¢(>))(z;g,h). Thus
0x(6(>)) is a function on (S(Q)\S(A))?. We have the following.

LEMMA 1.7
Suppose (Z)( ) () (v(> )\I/k(z,z7l)(voo) Then for (x;g,h) € S(A)?, we have

Proof

First, suppose that () (Zo0; goos hoo) = 05(0)(Tooi goos hoo) by definition.
Thus they coincide on (S(Q)S(R))?. By the strong approximation theorem,
(S(Q)S(R))? is dense in S(A)3; thus they are equal on the entire S(A)3. We need
therefore to show 65(¢)|sr)s = Gk(¢(°°))|5(R)s. Note that ¢oo(v) = Uy (4;4,1) =
[v; —i, —i]*e(det(v)i + (i/2)|[v;1,1]|?). Let g, = Im(T)il(ImO(T) Rel(T)) for T € 9,
s0 g, (i) = 7. Note that 6;(¢(>)) is of weight (—k, k., k) in (7, z,w) (cf. (1.11)),
and hence

gk(d) g‘rvgzagw quk 7— Z, w (g‘r» ) J(gzvi)ik‘](ngi)ik'

We take the quadratic space (D, —det). From (1.6) and (1.1) we get (see also
Section 3.1)

L(9z,9u) (r(g-) Ui (i34,1)) (v) = Wi (75 2,0) T (97, =0)* T (g2.7) " T (9w, 8) 7.
This shows

05(0)|sm)s = ZL(gmgw)(r(g‘r)\I/k(i;iyi))( ) = 0k(6°) | 5wy

as desired. 0
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We further extend 0(¢)(z;g,h) to
G(A) = {(z,9,h) € GL2(A)? | det(z) = det(g)/det(h)}
by

(:9.1) = O5(y.0) (2 (3 deto(x))l 11)

= 95(¢g,h)(17 L (é deto(a:)> . x>

for ¢g.n(a) =|det(h)/det(g)|ad(g~ ah). We write the above theta function on
G(A) as ©(6)(z; g, h).

Note that the action (g,h)v = gvh~! for v € D gives rise to an isogeny
from G to Gp and that we regard 0g(¢)(x;g,h) =0s(¢p)(zs;9,h) as a function
on G(Q)\G(A) by pullback. Note that 0c(¢)(g, h;x) can be defined using the left
projection GL(2) 3z +— gz € S. By (1.2), it turns out the two definitions pro-
duce the same function (). In this sense, we write ©(¢)(g, h;z) = 0c(g, h;x)
if we adopt this left projection.

(1.13)

LEMMA 1.8
The function ©(¢)(x;g,h) is an automorphic form on G(Q\G(A) and is equal
to O (d)(x;9,h) = 0c(d)(g, h;z). Moreover, ©(p)(x; g, h) = O(p)(x;g,h) for
ceZ(A).

Proof
For £, € Q, we have

®(¢a§g,anh)(a59? anh§ O‘fnflx) = Z ¢x(g_1ag_lva’r7h)

for a Schwartz-Bruhat function ¢, dependent only on x € S(A) (given by the
Weil representation r(x)¢). Since v — aglvan is a linear automorphism of D,
we get

®(¢agg,anh)(a§gv ayh; O‘{nflx) = ®(¢agg,anh)(gv h;z).

Thus we only need to show O(¢)(ax; g, vh) = O(x;g,h) for a, 8,7 € S(Q). This
follows from Weil’s generalized Poisson summation formula (see Theorem 1.1).
Thus 0 (¢) = O(¢) on S(A)? by Lemma 1.7. Then the way of extending the two
to G(A) is the same, so we get Og(¢) = O(¢). The last assertion follows from

00,1 (v) = | det(h)/ det(g) aé(g~ vh) = |det(Ch)/ det(Cq)lad(g~"¢ vCh)

= ¢cg,cn(v),

as ( is in the center. O
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1.6. Adelic theta integral

For a Dirichlet character 1) modulo N, we define 1* : AX /Q* — C* by ¢*(s(N)) =
¥(s) for positive integers s prime to N. Recall that ¢ = *| - \gk. Write
Oacn for ©(p) =0c() for ¢ = ¢y, @ Ui(izi,i) given by o ¢y (2(>)) x
Wy (33,7) (Too). For f € Sp(To(Ny),1), we define f.(z) = f(—2) € Si.(To(N1),v)
and lift them to adelic modular forms on GLy(A):

fc(goo) :j(gooai)_kfc (goo(z)) € gk(NhE)

and

£(goo) = 7 (goor ) 7" F (900(1)) € Sk(N1,9p).
We then have

£((vgoot) = ()P (dN)E(900)  and  fe(Cygoou) = P(C) Y (dN)fe(900)

with ¢ € Z(A), v € GL2(Q) and u=(2}4) € To(V1) (see [Hi3, Proposition 3.5)).
The following result is the reason why we call our choice of the Schwartz-
Bruhat function optimal.

PROPOSITION 1.9

Let X == S(Q)\S(A)/SO3(R), and take the subgroup U =T(A,C;N) C SLy(Z)
firing the product GA,C)N(xadet(gflh);g,h)fc(a;). Write du(x) for the SLa(A)-
invariant measure on X inducing X/U =T(A,C;N)\$ the measure (1/2) x
Im(7)~?|dr A d7|. Suppose that f € Sp(Do(N1),v) (for Ny = N],ee, t) is a
normalized Hecke eigenform. Then we have

/X 04,08 (T0der(g-1h); 9> h)Ee(x) dp(x) = (2i)*4p (det(g))

1

f(g)f(h).

Proof
Since U N SLy(Q) =T'(A,C; N), we have from Lemma 1.6, for g1,h; € S(A) and
s,te L™,

/X 05(s 0) (5 g1, I )Eel2) dp) = (20)"40(s) " £(g0)E ()

= (2i)k¢*(5N)f(91)f(h1)
as du(z) is the pullback of the measure du(7) = (1/2) Im(7)~2|dT A d7| on T'\$.
Recall that oy = (3 9) for t € A% with to, = 1. Since GLy(A) = GLy(Q) GLy(Z) x
GLj (R), we may assume that g, h € GLQ(Z). Then, for t = det(g) and s = det(h),
[tla=|s|la=1,and ¢ = ¢1,1» we have ¢, (v) = ¢1,1(9717}h) = ¢)1$1(a;1g§1vh5 X
ag) = ¢Syt(g§10h5). Thus we have, for gg,hg € S(A),

/X Oy 1) (war1: 9, W (@) dia(a)

=/X93(¢s,t)((9506t715)s;957hs)fc(x)dﬂ(x)
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- /X 05(, 1) (: 95, hs)Eolon () dp)

— (20)F" () (g5)E (hs) = (200" (sn)E(gay DE(ha; ")
— (@0)F (s () " 0" (s0) T E()E() = (20)F4p (det(g)) E(g)E(R)

as * (t) = ¥* (tn) = (t) since t € Z*. The left-hand side and the right-hand side
are both functions on GLa(A) x GLa(A) left invariant under GL2(Q)?, invari-
ant under the diagonal action of Z(A), and right invariant under To(Ny) (by
Lemma 1.8), so they must coincide over GLa(A)?. O

1.7. Adjustment of Schwartz-Bruhat function for convolution

We now modify the theta series so that our computation of a Rankin convolution
is easier. Recall the fixed imaginary quadratic field K of discriminant d = d(K).
Let do(K) be d(K)/4 or d(K) depending on whether or not we have 2|d(K).
Let N1 = N ][], £~ Write Ny = v and we assume that £|do(K) = (€ C.
Let ¢ ={f € C |ord;(N1) > 0}. Note that C, D Cy. We decompose Cp =
C; UCsUC, so that C; is made of primes inert in K and C, is made of 2 if
4|l d(K) and v(2) > 0 (so C; is made of split primes). Since C; UC, UC is made
of primes in C nonsplit in K/Q, we often write C,,; for C; U C, U Cy. Define a
new function ¢, (¢ %) given by

S0y (Z2) if¢¢g AuC,
6z, (a)ee(—sb)dy T2 (0)On, (1+N,2,)(€)z, (d) if L€ A,
(1.14) oz, (a)er(=b)oy-17,(b)dN,z, ()
x (0O 540z, (d) — 0O 10000 14,(d)) if £ € Cy,
0z, (a)ee(—b)d 17, (b)ON, ,z,(c)0z,(d) if £ Cps,
where e,(z) = exp(—2mi[x]¢) for the fractional part [z], of z € Q. Then ¢}, is
given by
O My (Z0) if¢¢g AuC!,
0s+N,2,(@)0z7, (b)0 N, (14 N,2,)(€) 0z, (d) if L€ A,
(1.15) 01+n,2,(a)dz,(b)oN,z,(c)
x (0"O6puz, (d) — /O 00 15,(d)) if L€ Cy,
014Nz, (a)0z,(b)ON, ,z,(c)0z,(d) if £ € Chps.

Since for £ € AUC we have A(A,C; N)p =22 A(A,C;N) (5 5)AA,C; N,
we get
—~ ° ~ 1 ~
Supp(d)s,t,é) = Vs,tA(A7 C? N)f = |_| ’YS,tA(A7 C7N)Z< (0 gg) A(A7 C’ N);’
j=0
and Supp( S+NeZz( )622 (b)éNz(H-NzZz) (0)55521{ (d)) = I_l;io ’ys,tﬁ(Av C; N); X

(0 Z]F) (A,C;N)/. By Lemma 1.3 combined with [Hi4, Proposition 2.3], this
shows the following.
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LEMMA 1.10
The theta series 0c(p1,1)(z;9,h) is an automorphic form on U(A,C;N) with
respect to the variables x and h.

We write @ 4.¢c n(z;9,h) for Og(p1,1) and @(N)(f) for fX O 4,0,N (TQget(g-1h);
g, h)f.(x) du(x). In basically the same way as in the proof of Proposition 1.9, we
get the following.

LEMMA 1.11

Let the notation be as in Proposition 1.9. Let M = HZGCS Ny. Suppose that
f € 8k(To(N1),v) for Nv = N]lcq, ¢ is a normalized Hecke eigenform. Then
we have

O (£) = (2i)*4p(det(g)) Y u(t)a(M/t, £)(M/t)E|[B 7] (9)E ()
M
for the Mébius function p of Q, where f|[ﬁt ]( )= f(gﬁt(ﬁ/}) for the finite part
Byt € GLa(AC)) of Byyar = (VM 9) € GLy(Q).

Proof
Since (f|[M/t])(goo())j(goo,i) F = f(gﬂgﬁ}), the proof is exactly the same as
that of Proposition 1.9 if we get

/ I SCRCERDIACEC)
(1.16) ( "
(2008 S u(t) (M /t)a(M /1, £) FIIMH (=) f (w)

M
for a Hecke eigenform f € Si(I'o(N1),%). Note here that
> M)z = [ @O0z, — /O 5p0-17,)
M teC,
for Zn = [Ic auc Ze- For a positive integer m, define
Am(A,C;N)={a € A(A,C;N) | m|det(a) >0}.
By Theorem 1.4, the left-hand side of (1.16) is equal to

> ulb) > 1 1(ea)e(det(a)z) flra(w)

t| M Q€ (A,C;N)\ (M2 (Q)Nv1,18 01 /4(A,C5N)
M
= Z M<t)7 Z e(det(a)z) flra(w)
t|M a€l(A,C;N)\A /e (A,C5N)

o0

=SS S el T w)

t|M n=1,%|n
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=S XS a1/, £e(n(a/1)2) f(w)

=S ut) L aaa e, M/ F(w),

t|M

as desired. O

2. Splitting of quaternionic theta series

Let K be an imaginary quadratic field with discriminant d(K). Write O for the
integer ring of K. We split the quadratic space (D,det) = (K, N) & (K,—N) for
the norm form N = Ng,q and accordingly split the theta series into a product
of theta series of K.

2.1. Torus integral
Choose z; € O such that O =Z[z] with z; € 9, and define p: K — M>(Q) by a

regular representation:
21\ _ 21§

and consider D as a right (K* x K*)-module by (£,n)x = p(£)~txp(n). Note
that p(b) = p(b)*. Let T be the algebraic torus defined over Q whose Q-points
are K* x K*. We embed T into G by (£,7) — (an(ey-1); 2(§), p(n)). We then

choose g1 € GLa(A) and g1 00(i) = 21.

LEMMA 2.1
Let x : K /K* — C* be a Hecke character with x~!|yx = and x(as) = ak,.

Then a — f(p(a)g1)x(a) factors through I := K /K*A*KZX (the anticyclo-
tomic idéle class group).

Proof

For z € Z(A), we have f(zz) = 9(2)f(x), so a — x(a)f(p(a)z) factors through
KX\K/A*. Let K! be a torus over Q given by K'(4) ={¢ € K®g A | =1},
where the complex conjugation & — £¢ = £ is induced from K. We take a., € KX .
Then p(aoo)g1,00() = p(aco)(z1) = 21, and we have, writing f’ for fg§oo> as in
Section 1.1,

F(p(a00)91) = F' (P(a00) 91,00 (1)) (p(00) g1.0001) "
F1(p(ase) (21)) 3 (P(ase)s 21) (91,00, 1) "

. —k . N _

= ["(z1)7 (place), 21) " (91,00:1) F =E(g1)ac
Since x(as) = ak,, we have f(p(as)g1)X(ao) = £(g1). Thus the function factors
through 1. |
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Let F' be a number field with integer ring Op. Normalize the Haar measure
dpa on FJ/FX so that f(’jx d*a=1. Then taking a fundamental domain ® C

FYJF% of Ip = F*\F; /FX, we get the measure dja on Iy induced by dja on
®=TJp. Thus [5x /0% dFa— 05|71 for F=Q and K. Write d*a for dj-a. We

have an exact sequence: 1 — Ig — Ix — I — 1. We define a measure d~a on I
by fI dxa—fl f] ¢(ab)dzbd~a. Fix a Hecke character x : K /K* —
k

C* with x~!|4x = . Taking y as above such that x !4« =% and x(as) = a®,
We put, for f € S;(N,v),

Ly(f) = /1 £(p(a)g1)x(a) d*a,

SO

| Ho@m)x(@da=vol(le) L, (5) = 2L, (0).

K
where vol(Ig) f] dya=1/2. Then by Lemma 1.11, writing 7 = T(Q)\T'(A)/
TR)=1k x Ig for simplicity, we get
(20)" > p(a(M/t, £)(M/t) Ly (E][B{75]) D (£)

0<t|M
(2.1)

- /7 (N (a) det(g1)) O™ (£) (p(a)g1. p()r ) x(a)x(b) & a d*D.
We have, for t = N(a~'b),

/ (N (a)det(g1)0™) (£) (pla)g1, p(b)gn) x(@)x(B) ¥ a ™D

//¢ a)det(g1))

x @ a,c,n (zas; p(a)gr, p(b)g1) x(a)x(b) d*ad*b- fe(z) du().
y (1.13), we have, for t = N(a~'b),

(22)  ©acn (o pla)gr, p(b)gr) = tla Y r(x)(p1.1(gr " pla)  op(b)gr)).

veED

2.2. Factoring the theta series

We now study © 4,¢ n(zay; p(a)gr, p(b)gr). Choose € € GLy(Q) so that (1,¢€) is
a basis of D over K (& D = p(K) + p(K)e), €2 =1 and p(K) L p(K)e under
s(z,y) = Tr(ay*) and ep(€°) = p(§)e for £ € K and (¢) = Gal(K/Q). The norm
form of D induces two quadratic forms on K: one @}; by pullback via p: K —
D, another Q. by pullback via p-e: K <— D (p-e(v) = p(v)e € D). Let T}/
( =1,€) be the orthogonal similitude group of (X, Q;), which is a torus whose
group of Q-points is isomorphic to K*. We have (a,b) € (K*)? acting on D by
x+—x- (a,b) = p(a) "tap(b). Thus we have

(p(x) + p(y)e) - (a,b) = plab™") " pl) + plab )~ ply)e.
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The morphism 7 : T — T} x T, is given by (a,b) — (ab‘l,agil) = (a, B) identi-
fying 71(Q) = K* and T.(Q) with K* by p. Note that Ker(n) is the diagonal
image of G,,, /g in T. Let T" =T} x T,. Assume the following two conditions.

(S1) The equivalence ord;(d(K)) =1« £ € Cy, C, is empty or a single-
ton {2} according as v(2) =0 or 4| d(K) and v(2) > 0, where ord, : Qy — Z is
the discrete valuation with ordy(¢) = 1.

(S2) All ¢ € A splits in K.

PROPOSITION 2.2
Assume (S1) and (S2). Then we have a decomposition

©a.c.n (23 p(a)gr, p(b)gr) = (=20)"0(¢1) (x, @)0(d) (x, )

Jor theta series 6(6;) of Q. Here &\ (g7 (p(v) + p(w)e)gr) = 61 (0)6t™ (w),
and the explicit form of ¢; and the choice of € and g1 € GLa(A) at each place are
given in the proof.

For the splitting in the proposition, condition (S2) is an absolute requirement.

Proof

We now prove Proposition 2.2. We start with the infinity place. By Lemma 1.7,
the infinity part of the Schwartz-Bruhat function defining ©4 ¢ n is given by
Wy (i54,4), and L(g,h) or(2eo)Wy(i;i,7)(v) is given roughly by W (7;i,4)(g~*vh)
if zoo = ¢, (7 € 9H) as in the proof of Lemma 1.7. More precisely, we have,
by (1.6),

U (754, 8) (97 00 V91,00
Im(7)

Im(7)
2

97 2091, 0031:7]12)

Im(7)[v;Z1,721] Im(7)

Hon i) (P e (et 0) () 417 g v i )

_ (%Z)ljl])ke@et(v)(—ﬂ +¢@l[9£;vgwivﬂ|2)v

= (Im(r)[giéovgl,oo; —1, —i])ke(det(v)(—?) +1

where g1, = m (Im(zl) Re( zl) ). Write v = p(&) + p(n)e for € € D with
ep(&)e™t = p(€). If K =Q[Vd, takmg 20 = \/Eil, we may realize po(a+ bv/d) =
(&%), 50 po(n)(F)=(""). We take € for pg to be eg=(7'"), and hence
(p0(€), po(n)eo) = — Tr(po(§)eopo () = — Tr(po(én)eo)
=—a+a=0 (= po(K) L po(K)eo)
if &9 =a+ bvd. Since any p is a conjugate of pg : a + bv/d — (&), writing

p=apoa~! for a € GLy(Q) with 23 = a(zg), we have (p(£),p(n)e) =0 with e =
aegar™t. We thus have
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(p(€) + p()e, p(€)) + (' )e) = (p(€), p(&))) + {p(m)e, p(n)e) = Tr(€E') — Te(niy).
Thus the corresponding positive majorant is given by
(p(€) + p(me, p(&") + p(i')e)+ = Tric/g (€€ ) + Trxe o (7),
and defining p(z,w) = —*(2,1)(w,1)J (see [Hi4, (2.11)]), p(21,21) + p(z1, 21) and
ip(z1,21) — ip(z1,21) span p( K )€ (see [Hid, Sections 2.1, 2.2]). In other words,
[p(&) + p(n)e;Z1,Z1] = (p(§) + p(n)e, p(Z1,71)) = (p(n)e, p(Z1,71))
(2.3) = (Z1,1)Jp(n)e'(71,1) = (71, 1) Jep(m)' (71, 1)

= nl€;z1,21]

as p(n)t(z1,1) =n'(21,1), where we recall J = (9 }). Similarly, we get

(2.4) [p(&) + p(n)e;Z1, 21] = &[1;Z1, 21] = —2i£ Tm(z1).
Note also that
(2.5) [6:Z1,71]Im(z1) "t = —2¢/—1.

Since for v = p(§) + p(n)e we have

Im(7) )
m“% 21, 21]\2>

(2.6) = (=2i)* Im(r)**1pke (% (—(v,v)Re(r) + i Im(7) (v, v>+))

= (=20)* ()"t e(—€€7 +napr),

we now set

Tm(7)k+! Im(zl)*’c[v;zl,zl]ke(det(v)(—?) ti

B1,00(€) = b1,00(&;7) = Im(7) "/ 2e(—££7),

00 (M) = Be,o0 (1 7) = Im(7)* /2 ke (nir).

For the quadratic space (K,—Ng/qg), we have r(g;)d1,00(&)J(gr, —i)71
#1,00(7;€), and for the quadratic space (K, Ng/q), we have r(g;)deoo(n;1) X
J(g‘ni)_k = ¢e,oo(7-§ "7)'

Now suppose that ¢ is a prime split in K. Choose a prime factor [|¢ in O,
and identify Ky = K| x K;=Q; x Q,. We write ¢ = ¢, for the projection of K, to
the left factor K| and co ¢y for the other. We make explicit later the choice of I.
Take hy e such that hyjp(a)hye = (5 c(orlayy) For example, hyy= (% 7)€
GL3(Zg¢) does the job. For one choice of € with ep(&)e™ = p(€) for &€ € K, all
other choices fill the double coset p(K Jep(K ). Adjusting this way, we may
choose hy ¢ such that sehie=(93) and det(hy ) =1, as det(p(K,)*) = Q).
Then we define g1 = hy (¥ v (® u) foru=1if L€ A and u=0 if £ € C;, so
det(g1,¢) = £”. We simply erte L@( )=a and ¢(¢(o)) =@. Thus we have

(2.7)
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gfz} (p(&) + p(n)€o) g,e

=1 €7V (=) +L7V(E-E) :
( ] &+ ) if e 4,

(55 if6eC,orl¢ ALCU {0}
S

We define C; (resp., A) for the set of this choice of split primes [ over Cy :={{f €
C | v(£) > 0} (resp., over £ € A). For nonsplit primes over C, there is a unique
choice of primes over ¢ in K. We write C,s for the set of nonsplit primes of K
over Cy. Then C =C;UC,;s. Note that g1 ¢ € GL2(Z,) if £ ¢ AUC U {oo}. Then
by definition, we get the following facts.

LEMMA 2.3
Suppose that £ || N and ¢ splits in K, and recall that e,(z) = e(—[z]s) for
A @g,

(1) If L€ A, we have
1,16 (91_}(0(5) +p(n)€)g1.¢)
=00, (m)8(1+ev0) (mr)ee (€77 (1 —m))do, (Ee)ee (077 (& — &))-
(2) If £ €Cy, we have
e1.1.0 (974 (p(&) + p(n)€)gu.e)
=60, (£0)00, (ne) (N (D)6 (&) — N (DY 601 (&) ee(—€ " ny).
(3) Ift¢ AUC, we have v1.1.4(g1 4 (p(€) + p(n)€)gr.e) = b0, (ne)do, (&)

Proof
Assertions (2) and (3) are plain. We prove (1). Since ¢1,1,0 = ¢ 1 4, We need to
analyze

Oz, (&= n0)0z, (0 — 10 + & — Eee (€7 (1 — i+ & — &) d1vevz, (1) 0z, (& + 707)-
If 61400z, (nr) # 0, we get
0z, (& + 1)z, (& — mr) # 0 = o, (&) # 0.
Thus we get 6z, (& — 1m7)0z, (& + 1) 014042, (07) = 60, (&)0140v2, (7). Then we see
0z, (& — mp) 0z, (m — 117 + & = &) 014002, (1) 9z, (& + 1)

=060,(8e)0z,(n)014-2v2, (17)-
O

We now deal with the case where ¢ is inert or ramified in K with £¥ || N. First we
suppose that Ky = Q[v/do] with Oy = Z[\/dy] is the f-adic integer ring of K.
Thus dy = d(K) if ¢ is odd and dy = (d(K))/4 if £ =2. For the moment, we
suppose that 2 is not inert in K/Q. Write ord,(dy) = j, and suppose that ¢ € C;
if j > 0. We may take g; ¢ such that
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_ a v y
gripla+0y/do)gre={ ,, and det(g1,0) = 0".
’ Y4 d()b a
Thus again g1, € GL2(Zy) if £ ¢ ALC U {oo}. Again by definition, we get the

following.

LEMMA 2.4

Suppose that [K; : Q) =2 with £* | N and Oy = Z[\/do] for do = (d(K))/4 € Zy.

(This implies that 2 ramifies if £ =2.) Writing ord,(dy) = j, suppose that £ € C;

if >0 and £=2¢€ Cy if orda(d(K)) > j =0 and v(2) > 0. For v=p(€)+ p(n)e

with £ = a+by/dy, n=a’ +V'\/dy, and e = (' ), we have, for § =6z,,
©1.1,6(97.v91.0)

do,(E)ee(—L7" Tr(§/Vd))do, (1)
= X eg(—0~" Tr(n/Vd)) if € Cps and v=v(l) >0,
b0,(&)do,(n) if v(0) =0.

Proof
We find p(€) + p(n)e = (é”d(z)Zba—/b/) Z_;:f’:,b,)) for € =a+bVd and n=d + V' Vd.
Suppose £ € C,s or v(£) =0. Then

©1,1,0 (P(f) +P(77)€)
0(a—a)d(b+b)e(—LV(b+1))
= X Opvdoz, (£ do(b—0))dz,(a+a’) if v>0,

0(a—a")d(b+b")dayz, (do(b—b"))o(a+a’) otherwise.
Since a+a’ € Zy and a — a’ € Zy < 2a,2d' € 27y < a,a’ €Zy (as a+ad =a—d
mod 2 if £ =2), we find that d(a — a’)d(a + a’) = d(a)d(a’). Similarly, 6(—b—
b4z, (do(b—1b")) =5(b)d(V'), so we have

d(a —a')d(a+a')dg,z, (do(b — b)) = 8(£)d(n).

This proves the formula when v(f) = 0. Note that b= (1/2)Tr(¢/\/do) =
Tr(¢/+/d) and b’ = Tr(n/+/d). This proves the other case. O

LEMMA 2.5

Assume that [Ks: Qo] =2 and K2/Q is unramified. Then we can find g1 ¢
for £ =2 and units ui,ue € OF such that det(g1,0) =€, p(O¢) + p(Op)e = apr %
My (Zs2)a,', and

p(&) + p(n)e= (: Z_V(Tr(ulf\/ail) + Tr(uen\/al))>

*

for all (§,m) € Op @ Oy.
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Proof

First, we assume that v =0. We pick a representation p; : Oy — My(Zs) by
choosing a basis of Oy over Zy. Since 2 is unramified in K, we have Oy ®z,
Oy = 05 ® O by (a ®b) — (ab,ab). Since My(Z3) is a module over Oy ®z, O
by (£ ®n)z = p1(§)zp1(n), regarding Mz(Z2) as an Oz-module by &z = pa(§),
1 € M3(Z5) is an eigenvector under this action: (£ ®@n)1 = p(&n)1. Thus we have
one more eigenvector €; such that

(E@n)er = p1(§)ep1(n) = p(EN)er-

We may choose €; such that Ms(Zs2) = p(O2) @ p1(O2)er. By reducing mod-
ulo 2, we get a representation p; = (p; mod 2) : Fy — Ms(F3) and the above
decomposition indices p;(F4) @ p,(F4)e; = M3(F3). Take any nonzero linear
form L: My(F2) — Fo, Lop, #0, since otherwise p; factors through B ={«a €
M5(F3) | L o a = 0} making it reducible, a contradiction. Taking the linear
form b: My(A) > (2Y) — b, we find that b|p; (F4) # 0 because of this fact. So
b: py(Fy) — Fy is surjective. Similarly, b: p;(F4)€; — Fa is surjective. Then by
Nakayama’s lemma, we have b: p1(O2) — Zs and b: p1(O3)e; — Zy are surjec-
tive, so we find uy,u. € O5, as desired. For v > 0, we just conjugate p and g; ¢
for v =0 by agv. They do the job. O

We choose g1 ¢ as in the above lemmas. Then we have

@1.1.0(91.0 (p(€) + p(m)€)g1.e) = 1(€)¢e ().
Indeed, for the discriminant d =d(K) of K/Q, we have

d0,(£) if v(£) =0,
b1.4(6) b0, (§e)ec(t™ (& — &) if f €A,
’ 80, (EN(N ()6 (&) = N(O)* 61 (&) if L€ Cs and v =v(¢) >0,
80,(&)es(—0~" Tr(Vd ulf)) if e Cps and v=v(¢) >0,
(2.8)
00, (n¢) if v(¢) =0,
bealn) = do,(Mm)direvo) (m)ec(d™(1—m)) if L€ A,
" 8o, (ne)ee(—0"ny) if e Cy and v=v(¢) >0,
do,(n)ee(—L~" Tr(\/a_luen)) if teCys and v=v({) >0,

where u; and w. are units in O, and are equal to 1 except for the case where
¢=2 and 2 is inert in K;,/Qy.

REMARK 2.6
We note that e,(x) = e(—[z],) for € Qp, so if we replace ey(z) by e([z]¢), we
need to change the sign inside e.

From the above consideration, for ¢ = ¢y 1,

Bp(@gn oy (P(@) + pW)e) = IN(@) 26107 2)IN(B) 71} 0 (B~ 1y),
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and we conclude that ¢, a)qup(b)ql( () +p(y)e) = 01.0()de g(y), where ¢o(z) =

IN(a)l;"¢(a™"a) for ¢ = g7 with 2= Le. Thus 0(9)(w50) = 3¢ (r(s2)
?)a(v) for ¢ = ¢7 with ?=1,¢. This finishes the proof of Proposition 2.2. |

2.3. CM theta series
Recall that 7/ =Ty x T, and the character y: K /K* — C* with x }|4x =

and x(aso) = a.. We have an exact sequence 1-G,—-T5T %G, —1 Wlth

v(a, ) = N(a/B) and W(a,bljl (ab=t,ab )— (o, B). Since (N (a))x(ab) =
x(a@)"Yx(ab) = x(@ 1b) = x(B ), by Proposition 2.2 we have, for t = N (a~'b) =
N(a)_l = N(B)_la

/ (N (a)det(91)) O a0~ (zau; pla)gr, p(b)gr) x(ab) d* ad*b

) 4 (det(gy)) / 0(61) (zas; agn)0(6e)wan: Bg ) (B ) d*ad” 3
(2.9) T (Q\T'(A)

= 1p(det(g1)) /T PRV 0(¢1)(zay; g1) d* o

x / 0(6) (s B9 )x(B ) d* .
(Q\Te(A)

Strictly speaking, the identity at (x) has to be between the integrals over the
image
Im (T(Q)\T'(A)/T(R) 5 T'(Q\T'(A)/T'(R)).
However, for the following reason, the identity (x) is valid. By our way of extend-
ing the theta series to S(A) x Oy (A) to Gy (A) for V =D and K, after the inte-
gral over O X O C T’ is done, the result is just constant over the compact set
Coker(T(Q)\T(A)/T(R) = T"(Q)\T"(A)/T'(R)) = Iy whose volume is canceled
by the equal volume of
Ker (T(Q\T(4)/T(R) = T'(Q\T"(A)/T'(R)) = I

Write x(z ) (z71), and write ¢ for ¢.. In this section, we write
fT (QT. R\T.( A) 0c(¢)(x; B)Xx(B) d* 3 as a theta series of a Schwartz-Bruhat func-
tion ® on K. By (2.7), the infinity part of ¢ is given by ¢uo(n) = n*e(nmi).
For g, as in the proof of Lemma 1.7, t(g7)boo (1) (g7, —i) ~F = Tm(7)F+(1/2pk x
e(nmr). Then for e KX, (z,0) € Gy(R) for V=K, and 7 = z(i) € §), we have
sx(i) = aN(B) x(i) = N(B)7. We may assume that x5 = gn(g)-. Then

r(52)boo (M) (s2,—1)"* = r(gn ()7 ) b (1) T (g (5)7, —1) F
—Tm(N(B8)7)" P ke (N (8)7),
L(B) o r(s2)doo(n)J (s, —i) ™F = Im(7)F T /2D N (3)* 3~ n e (ir)

—k . _
= Im(7)" /23 ke (nir).
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Thus the function §— 9(¢)($;ﬁ)x(ﬁfl) factors through K /KX for ¢uoo(n) =
cn®e(nmi). Now regard 6(¢)(8; an(g)z)J (¥, —i) ~* as a function of z € S(A) for
which we integrate. Let 2o = gr (= T =2 (7)), and write

0(0)(3;7) := 0(8) (B an(8)Too) T (Too, —1) F = 05(0) (85 T ) I (Tos, —1) F
(210) =) (L(B) or(2e0)$) (1) (oo, —1) *

nekK

_ k+ 1/2) 1
= IN@B)[2 " Im(r) 2T 6 (5 1) (81 ) e (N (Boo) ).
neK
Decompose T.(Q)T. (R)\T.(A) = |_|?:1 a;T.(Z)]O* for a; € K[ witha; y =1
and |N(a)|s = 1. We can achieve |N(a)[s =1 just taking as = /N (a) € R} for
a=aON K. Then we have

6(6)(B;7)R(8) 43 = [0% | IZ / T)R(5) " .

/Ts (QT(R)\T(A) iTe (Z

Pick a € K with ay =1, |[N(a)|sa =1, and a € R}, and look at

/ ' 0(6) (Base; )R Bace) & = K(a) / B(6a) (5:7)R(5) & .
aTe(Z) T

. (Z)

where ¢, (v) = |N(a)|&1/2¢(a_1v). Then 0(¢a)(B;7) = 3, ek ba(B71n;7), and
hence

/m 0@ BTROB=3 [ a8 DU

nekK
Write ¢(7;T) = doo(Moo; T) [ 1, e(n¢) for local function ¢, : Ky, — C with

Goo (03 7) = Im(7)*+ /2 (nir).

Then we have, since as, could be a nontrivial scalar with N(as) = a?, = N(a)
fora=aONK,

/T(i)(r(s(amgm)woo)qb)) (B 'n)x(8)d* B3
= un i) ]| /T . GealB OB 6,

for zoo = Im(T)il(IméT) Rel(T) ) (=T =120(i)). We write as ®, ¢(n¢) the indi-
vidual factor fT(ZE) b0.a(B; ) Xe(Be) d* B

We have written the set of primes as AUC for 4 made of prime factors one for
each over ¢ € A, and we have written C for those over {¢ € C'|v({) > 0}. Recall
that v =v({) is the exponent of £ in N. The prime [ in AUC was tentatively
chosen (before stating Lemma 2.3) when we defined g; ¢. Here we make a specific
choice depending on the conductor € of the characters x and x,, we introduce
later.
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DEFINITION 2.7

Pick a conductor ideal € of O, and assume that N(€)|N# for > 0. We choose
A and C so that € = [[,ce. VT Ty VT TTice, V' with v(€) > f;> fi >0 for
le Aand v(¢) > f; > fi=0 for [€Cs. We also put Co ={leC|v(¢) > f;=0},
Ay ={le A| f;>0},and CL ={leC| f;>0}.

We take € to be the conductor of x. Here is the explicit form of the function ®, .

LEMMA 2.8
Assume (S1) and (S2), |IN(a)lsa =1, and ay =1, and write x°(z) = x(T) and
X(@)=x@").

(1) If £ is a prime with v(¢) =0, ®,¢(n) = |N(a)|21/2502(a_1n) for the
characteristic function do, of Op. At oo, we have

X(a00)®a,00 (157) = N (a) 7F= /D T (r) "+ 2k e (N (@)~ agiyr)
where a=aONK.
(2) Ifte A (so ¢ splits in K/Q) and €; = VT with 0 < fi, f <v, we have
[(O/t)*|%e(—£7")G(x})
X N8 5100 ()00 x (m0)Xe (ne)Xe(E77) - if fr>0,
[(O/1)%|"2e(—L7")
x (N()"0o, = N()" " op-10) ()dox (mr) if fr=0,

where for a character ¢ of O of conductor IV, G(¢) = Zaeo/[f ¢(a)e X
(Prass i)y
7]

(I)a,f(n) =

and dx is the characteristic function of X C K.
(3) IfteCs and v(£) > 0, writing &; =1 with 0 <f<v,

[(O/)*[71G(xF)

X N([)V*ﬁfseu—fo[X (m)do, (m)Xe(n)x (¢F7) if f >0 and & =1,
Pae(n) =4 [(O/1)*| 71

X (N(1)"0er0, = N()" " 1op-10,)(m)do () if C=C =1,
0 otherwise.

(4) If £ € Cpy with v(£) >0, writing €, = ¢/ with 0 < f <v, we have

)
B0 4(n) = {I(Ot/[”)xl1G(X?)N([)”f5gufo; () Xa(uen) i (£ =) if £ >0,
: O/ [N (1) b0, = N~ 80-10,) (1) ife =1,

where u. € O as in Lemma 2.5 is equal to 1 except when £ =2 is inert in K;/Qy.

Proof
The assertion (1) for finite place ¢ follows from the definition. As for the infi-

nite place, note that 8 € T.(Z); so B =1, and we get, from (2.10), @, (1) =
[N (aoo)| = 2actnbe(N(a) " nmr).
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We now prove (2). As is well known (see, e.g., [Hi2, p. 259, (4b)]), we have,
for z € Oy,

> éle((Tr, o, (anvd )/1),)
acO0/1v
_ {N(t)Vwa)apm[x ()o@t ) i f >0,
[(O/O*|"HN(W)dewo, —dpw—10,)(x) if f=0.

Since ¢ € A splits in K/Q, we may write 5= (a,b) for a € Oy =7y and b € O; = Z.
Then, for £ € A, we have, noting that e,(—¢~"n;) =e([¢""n(]¢) (see Remark 2.6),

(2.11)

D o(xesme)

= / b s 5 00)T(8) d* 8
Te(Zy)
=[(Z/C"Z)" | Pes(t) Z Xi(a)x7(b)do, (@™ )
a,be(Z/ v T) ¥
X eg(—éiljailn[)(&l_’_guoﬂ (bil’lﬁ)

=z/ez)* (=) > X(a)do, (e m)e([C a o)
a€(Z/ v L)

x> Xi0)daseon (b )
be(Z/¢vL) >

(2.11) e(—f‘”)%f(m)%; ()

(@/e2)¥]
y {|<Z/efrZ> I TIRX (TGSt (m0) i fr>0,
(@/2)* |7} (80, = be=10,) (m) if fi=0.

We prove (3). Write &; = . We have

IWICTHTY

= / be(@e; B n0)R(B) d* B
Te(Ze)

=z/en)* [ Y X@Xibed =L a  n)do, (¢ n)do (b )
a,be(Z/Lv7Z)*

(Z/¢7Z)* |7 X )X ()

(2.11) X G(X[c)éeu,fo[x (m)do-(n) if f>0and € =1,
(ZJL) |7 (Ldpv o, — Opv-10,) ()00, (m)  if € =C;=1,
0 otherwise.

We prove (4). We have ¢.(n) = do, (n)ee(—0~" Tr(ucn/Vd)) = do,(n) x
e([7" Tr(uen/V/d)]) and
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D 0(e;me) ;:/ Geo(e; 87 me)X(B) d* B

T. (Zl)
= [(0e/t0)*|7t Y- Xela)e(le™" Tr(a™ uen/Vd)]e).
a€(O0g /v Op)*
Then the same computation as in (3) produces the result. g

We embed T into G(A) by (£§,n) — (zane,-1); p(§)g1,p(n)g1) for the choice of
g1 € GL2(A) we made in Section 2.2, and we compute the pullback integral of
0c(¢1.1). The corresponding embedding of the quadratic space K3 < Dy is

given by (§,1) — g7 (p(€) + p(1)€)g1-
To state the result, we fix some symbols. Write €; = [/t. Let Co = {l € C | f; =0,

v(l) >0}, Ag={le A| fy=0}, Cy ={leC| f>0}, Ay ={l€ A fy>0},
Ay ={le A| f; > 0}. We then define

(— H [U(Z)_[V(Z) H -[v(é) H GON

leA LeCs LEChs

s= [ v@,  and  s= J[ ¢,

e AuC leApgUCo

L=Tlcavc.uc, b ax=Tleal a5 =Tlics 1, 57 =5/as, and sg s = so/a; for a
subset J C AgUCy, where ag = O. For each Hecke character A with A\(z) = 2F
and for each ideal a prime to the conductor ¢ of A, we have the corresponding
ideal character given by A(a) = A(a(®), where a is an idele a with a = K N (a0).
We agree to put A(a) =0 if a4 ¢C O. Then we define

O\ (1) =) AMa)g"®

aCO

for ¢ = e(7), where a runs over O-ideals prime to all H[eAi- For any positive
integer m and f: $ — C, we define f|[m](7) = f(m7). Then the result is the
following.

LEMMA 2.9

Let x: KJ/K* — C* be a Hecke character of conductor € with x|yx ="
Put \(x) = f(x)’1|N(x)|gk = mA (50 Mzoo) = 2 and \* := A\ = x ).
Decompose € =[] c 4c. (it [lice, V' with0 < fi, fy <v(£) as in Definition 2.7,
and assume that fi =0 if either L€ C is split in K or £ ¢ AUC. Then the classical
cusp form giving rise to the theta integral fTE(Q)TE(R)\Te ) Oc(de)(x; ﬁ)x(ﬁ_l) d*p
is a CM theta series given by

CTm(7)* 23 " e (9) N (5/9) A(s0/0) O (V)| [N (s/b)]

y|so

for a constant C = e(—N")|(O/)*|~} (HI€A+UC+ N(D)E@O=FO (O Fr x
uZ )G (xt OC)), where Na = [[,c 4 Ne, ue is as in Lemma 2.5 and is equal to 1
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unless [|2, and the Gauss sum G(x(oc)) is as in Lemma 2.8(2). Here uk is the
Mobius function (for K), and d* 3 is the Haar measure with fT d*p=1.

Proof

Each term of (¢)(x; 8) is given by @, (x;€), which was computed in Lemma 2.8.
By our choice, a; y =1 and |N(a;)|s =1 with scalar a; € R}. Since 6(¢)(af3;
57) = 0(¢us)(s7) With ¢a(z) = |N(a)|,"*¢(a~17) = ¢(a~'x), we may forget
about the factor |N(a )\Al/ (and we disregard N(a)™'/? in @, ., in Lemma
2.8(1)). Note that N(sg)" = []c.a, ue, N(OFO=/D and

H N([)V(z)iﬁ(s@u(e)ff?o[ H (N([)V(l)(Sgu(e)o[ — N([)V(e)715gu(e)0[)

le A UCL e AgUCo
= Z (_1)‘J‘N(5J)55J05 :ZMK(U)N(5/U)65/\)OE-
JCAqUCo ylso

Then we have

Im(7)~F=(1/2)9,(®,)

= X(a;)N(a;) "2 Im(r)~F-(1/2) / 0(¢a,)(B;T)X(B) A B

T.(Z)/Ox

= CN(sg) HO* 7X@ )N (@)™ 7 (~1)VIN(ss)
JCAoUCo
x> Xel©)eFe(€N(a) ),
§€(ssa:)
where (s7a;)* is the subset of 5;a; made of elements { with {O; = Oy forall [€ A
and {05 = sg. If € € (550,)%, £e0¢ = 5¢, and we have Xg(€) = N(sg)* A" (€)
from Y\ = |N(-)|;*. Similarly, ¥(a )N (a;)~F = A~1(a!>). Thus we have
0:(Pc) x =1 [J|y—1/ (o)
RN LA -1 TN
Im( )k+(1/2) C|O ‘ JC;UC ( ) A (az ) (5.])
x> AFN ke (EEN (@) ).
§€(ssas)™
Since Az (HATHEE)EF =1, 5555 = 50,7, and AL(EE)) = A7} (gs ") for
€€ (sya;)™, we have
0:(2e)

W—CW Y CDYINGEDAT @) A(s0.0)

JCApUCo
x> MésyMe(SEN(a) T ).
§€(syai)
Then by computation, we get

AH@) 3T AEsy e (€EN (a;) 7 r)

£€(sya:)x
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N(éa;'s;"
— > A(fa]lsjl)e((fl—,l‘])ﬁ.
Ea—15—1co §a_1+u7*0 N(EJ )
i J Ehhet} AT
Changing variable ¢a; 's;' — a, this is equal to >, A(a)e(N(as;)7) = OF(\)|
[N(s;)], where a runs over all integral ideals prime to s; equivalent to a; 's '
Summing up over ideal classes a;, we get the desired formula. O

COROLLARY 2.10

——1 . .
The cusp form fTe(Q)Te(R)\TE(A) Oc(pe)(z; 8)x (B ) d* B is on To(N,) with Neben
character " lxkx for xx = (m), where Ne = |d(K)|TTieaue N(D"H x
iea, M) TTiea, N O

Proof

The primitive theta series @(\) associated to @(A) is on Iy(|d|N(C)) with
character \|ux xx =% 'xx (see e.g., [Hi5, Theorem 2.71]). Replacing @()\) by
©4(X), the level adds up only for a single power of [ € Ay. Thus ©|[s] has the
highest level: d- N(€)N(s) [[;c 4, N(I) for d=d(K). Since

|dIN(Q)N(s) = [dIN(@N(s)=d| [[ N(OTHNQS)

le AuC
=ldl T ~@©"@ IT ~v,
le AUC Te A,
we get the desired result. O
2.4. The Siegel-Weil formula
We now compute the first integral:
/ Gg(gbl)(m;a)dxa:/ Oc (1) (z; ) d™ ax.
T QT (R)\T1(4) KXK\K [

In this section, we write ¢ for ¢,. By (2.7), we have ¢o (&) = Im(7)/2e(£€7). By
the same computation as in Section 2.3, we can verify that the func-
tion o — 0g(¢)(x; ) factors through K /KZ, and the above integral is well
defined.

Let KS) ={z e K | |N(z)|a =1}. Then Kg)/K‘é —Qf by N:zr—
IN(@N)|; ' = N(200). If £ € QF is in the image of N : Kg)/Ké —QfF, {is
local norm at every finite place up to units, and Im(N) = \N(Kg(oo))m. Thus
we have

N(KR)  _NECKXKY)  NE) .7
N(EXN(KX) ~ NEXEX)  NEK<KS)NNED)
In particular, 7; is a compact topological group. Indeed,
N(K[)
N(K*)N(K&)N(O%)

T/N(O*) =
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is a quotient of the class group Cl.
We have

[ eenwarta= [ [ o@amag)aad,
KX KI\K) T JKVKL\K}

where N (&) =t with [N(¢)[s =1 and K' = Ker(Ng/g). By the Siegel-Weil
formula (see [Wel], [We2]),

[ b@emsag)dta= B
K1KI\K}
where E(¢1)(cwx) =3, c 5o sL. (@) (@ (e, &) 91)(0) for z € S(A) and

L) () (v) = ¢ (v) = IN(@®)|5 2 p1 (67 0) = 61 (&7 v)
as |N(t)|a =1. Thus we get
/ 061 anom ) e = | B(r) (o) d*t.
KX KZ\K S T

As explained in Section 1.2, we have

(w<<3 a?1> at%ﬁt)d’l)@)
(2.12) - <w(at (g ab_t1> m&)qﬁl)(o)
- (ser((§ 1) 2)er) 0= e (r0) 0

since w(w, € a)) = 20051 ) EEaer(or) = Dlaer(a) (@3 ) (see (1.2)). This
shows that E(¢1) is well defined and is independent of ¢ € 7;. We have proved
the following.

LEMMA 2.11
We have fKXKOXO\KAX Oc(¢1)(z;a)d*a= [, d*t- E(¢1)(x).

2.5. Explicit form of weight 1 theta series
Strictly speaking, the Siegel-Weil formula we used is in the nonconvergent range
that Weil [We2] did not cover (although it is briefly explained in [Wa, Chapter I,
Section 5]). To show that it actually works well and to exhibit the explicit form
of the Eisenstein series we need, using a result of Hecke [H], we compute the
theta series

/ 0 (6n) (:01) d*a

T1(Q)T1 (R)\T1(A)

in the same way that we did in Lemma 2.9. As before, in this section we
write ¢ for ¢ for simplicity. By (2.7), the infinity part of ¢ is given by ¢ (§) =
Im(7)Y/2e(—£67).
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Decompose Ty (Q) Ty (R\Ty (A) = ||"_, a;, Ty (Z)/ O fora; € K with a; x =1
and |N(a)|a = 1. Then we have
h

KO a=077Y [ @ meda

/Tl (@T: (R)\T1(A) i=1

Pick a € K with ay =1, |[N(a)|s =1, and as € R}, and look at

[ tow@ada= [ oewada

aTl(Z) Tl(Z)

where ¢,(v) =|N(a )|A1/2 (a™'v) = ¢(a™v). Suppose that ¢ =[], ¢, for local
function ¢, : Ky — C and 2(°) = 1. Again we have, since as could be a nontrivial
scalar with N(ao) =a% = N(a) for a=aONK,

/T . (r<s(aN<aw>xoo)¢>)a<a—ls>d*a:\va,w@wm)l;[ /T , fealo7 G0,

for oo = Im(T)_l(ImO(T) Rcl(f) ) (= T =20(7)). We write as ¥, ¢(&) the indi-
vidual factor fT(Zz) (72527(1(05@_15@) d* ay. Recall the prime factor [ of £ € AUC that
we chose when we defined g1 ¢. We write this set of primes as AUC for A made
of prime factors over A, and we write C for those over C. Write the conductor
of x as €. Recall that v =v(¢) is the exponent of ¢ in N. Here is the explicit
form of the function ¥, 4.

LEMMA 2.12
Assume (S1) and (S2) in Section 2.2, and assume ay =1 with |N(a)|s =1. Then
we have the following.

(1) Ifv(£) =0, ¥e (&) =|N(a)|, 1/2(502( ~1¢) for the characteristic function
do, of Oy. At oo,

Wa,00(67) = N(a) /2 Im(r) "/ 2e(—N (a)7'¢67),

where To0(i) =7 and a=a0 N K.

(2) If L€ Cy, Wae(&e) = 61,6(60) = 00, (&) (N (1) 6+ (&) — N(1)" ' op—=(&))-
(3) If L € Cps with v(€) >0, we have ¥, 4(§) = |(O@/[V) I"Y(N(")dwo, —

N(=1dw-10,)(&)-
(4) Ifte A, we have W, 0(§) = Vo (§)V, 1(§) for prime factors [[£, and
Voi(§) = [(0c/t)|H(N(")d1v0, = N(I")dp-10,) (&),
W, 1(6) = [(0/1)| LN ([ )owo, — NI )op-106.) (€0)-

Proof
The proof of assertion (1) is the same as the one for Lemma 2.8(1). Assertion (2)
follows from the fact that fO[x Semo,(a71z)d*a = 6mo, (7).
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We prove (3). Suppose that £|N is nonsplit. We have ¢1(&) = do, (&)e([(™Y x
Te(ur€/Vd)],) and

/ o10(ve;a &) d*a
Tl(Z@)

=10/ O [T Y Xela)e([07" Tr(a™ wé/Vd)e)

aG(OZ/ZVO()X

(O/)*|7H(N ()b 0, = N("")dw-10,) (&)-

As for (4), the computation is the same as in (3), replacing e([¢~" Tr(a~tu:&/
Vd)];) in the above formula by e([¢(~"(a; & — a-'&)]e). This finishes the proof.
]

(2.11)

Recall that t =[],c 4 o7 ® [Toec. ! [ [eec,. (O and define T = ;. , " x

[ [liee,. ", ay =1, or asubset J C J := AUAUC,UCps and t; =t/ay,
where ag = 0. We define ©(1) = (h(K)/|O*]) + > o1aco gV for the class
number h(K) of K.

LEMMA 2.13

Let 1: K /K* — {1} be the identity Hecke character. Then the classical
modular form giving rise to the theta integral [(O/T)*|Im(r)"/? x
le QT2 (R\T4 (4) 93((;51)(37; ) d*« is an antiholomorphic CM theta series given by
i ik @ N(t/1)O(1)|[N(t/r)]. Hered™ o isthe Haar measure witthl(z) d*a=1.

Proof

Each term of 6(¢)(x; a) is given by ¥, (z; &), which was computed in Lemma 2.12.
By our choice, a; v =1 and |N(a;)|s =1 with scalar a; o € RY. Thus writing
v, for ¥,,, we have

[(0/%)* | Im(7)~1/20,(1,) :N(ai)’l/Q/ 0 0(p1)(ajoss ) d* o

=107 (D)YIN(t) D e(—€EN(ay)7'7).

JCIT Ee(tyay)

Making variable change £a; !~ a and summing up over ideals classes a;, we
get

> D e(=N(ga)7) =D e(-N(aty)7) =OD)|[N(ts)),
i otylgart a
where a runs over all integral ideals. This shows

[(0/%)"[Tm(7 1/229 = > (DO )N ()]

JCJ

= > ux(®ONE/DOQ)|[N(t/),

rt
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as desired. O

COROLLARY 2.14

The modular form fT Q)T (R\T1 (A) GG((j)l)(x;a) d*« has character xx and level
= d(E)| [Tice N(D*O T, 4 0?9, and hence NN’ and M|N' for M in

Lemma 1.11.

Proof

Since ©(1)|[t] has highest level in the summand over J C 7, the level of ©(1)
is |d|, and the operation [t] adds the level N(t) as recalled in before Lemma 2.13.
Since ©(1) has Neben character x g, the character of the integral is the same. [

2.6. Explicit form of Siegel Eisenstein series
Recall that xx = (K—/Q) = (M) By definition, the Mellin transform of (1)
is given by Cx(s) =((s)L(s, xx ). Then by Hecke [H|, we can write ®(1) as an
Eisenstein series:
d(K)
2me
Here for a positive integer L and d = d(K),

1 xxk,L(n)
Eyp(t8) =3 Z %l 2s
2 (moez? (dLmt +n)*|(dLmT + n)|

(2.13) 01)= Ei11(7;0).

(2.14)
= LB (1+2s,xk)E; (135),

where xx,(n) = xx(n) if n is prime to Ld and otherwise xx(n) =0, and
Eii(ris)= Y xx(Mitnm) i)
€T (Ld) /T
with xx (1 5) = xx(0). Here oo = {£({T) |m € Z}. We have a relation (see,
e.g., [Sh2, (3.3)])
(2.15) Ern= Y pt)xxt)t " Epq|[L/1].
0<t|L

We now write down the integral as a linear combination of E; .

LEMMA 2.15

Let n be an integral ideal of K. Decompose n = IFFSR so that T is a product
of primes ideal inert over Q, R is a product of primes ramified over Q, and
S+ 35°=0 with §. D F° for the complex conjugation c; so F§. is a product of
prime ideals split over Q. Write I := N(J), R:= N(R), and S:= N(F.). Then
we have

)Y uk@N /0O N /o) = YEEON® S~ 1B, v e

271
rin a|lIRS

where p (resp., pr ) is the Mébius function of Q (resp., K ).
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Proof
First, suppose that n+n°=0 (< IRS =1 JRF. = 0). Then (O1) can be
rewritten as

27i Z u(t)m(a(l)wm} (2.13) Z “(t)NEn)ELlMNEn)}

4N ) t|N ()

(2.15)
Ey Ny

Now we proceed on induction on the number (counting with multiplicity) of
prime factors of JRF,.. Pick £|TRS and the prime [ over £. Let n’ =n/l. Write R’
(resp., I', S") for the corresponding factor of N (n’) for R (resp., I, S). We assume
that

S uk@NM /DO)|IN (W /o)

[N ()

== ZZZM ZTS)_lEl,N(n’)/irs-

2m
s|S’ I’ r|R!
By applying (N(n)/N®w))[¢] if ]I and (N(n)/N(n'))[¢] otherwise to the above
identity, we get
>N ©/HO1)|[N(n/p)]

r[n’

(2.17)

(2.16)

VAE) Vip) Z SOl 8)(ir5) " By n(wr) jirs| [N (D)]-

271'1
i|I’ s|S’ r|R’
If €|N(n’), by (215) we have ELN(I‘L')/WHN([)] = ELN(n)/ir' Since
{T|I’R’S’ ‘ w(r) # O} = {r|IRS | w(r) # 0},

we are done.
Suppose that [1n'; so n =n'l. We can rewrite (O1) as

Y ux@N©O/EHO@)[N(0/D)]+ Y ()N (n/t)O(1)|[N (n/z)]

i i
©2) = (LN m/mMOWING /)] ) IN )
- Zux(x)N(n’/x)@(l)\[N(n’/;)],
which is, by inci:ction assumption, equal to (\/d(K)N(n))/(2mi) times
2 TN (Bl INO) - L)

Then we need to show, for a prime ¢|IRS,

1 1
Ey Ny [N (D] = N—([)EI,N(n’) =E1 Nwm) — N—([)ELN(n)/Z-
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When€|RS, by (215) we have ELN(n’) ‘ [N([)] = ELN(n’I) = ELN(n) and El,N(n’) =
E1 N(ny/e, and hence the result follows. Assume that £|I. By (2.15), E1 yn) =
El,N(n/)Héz] + (1/£)E1,N(n’) ‘ [f] and El,N(n)/f = El,N(n’)Hé] + (l/f)El,N(n/)- From
this, the desired identity clearly follows. O

3. Derivative of theta series

3.1. Lie derivatives of Schwartz functions

Recall that J(g, z) = |det(g)|~'/%4(g, 2) for (g,2) € GLa(R) x §. For any function
f: 9 — C such that f(y(2)) = det(y)™J(7,2)*J(7,2) f(z) for a discrete sub-
group I' of PGL} (R) = GL7 (R)/Z(R) for the center Z of GL(2), we define f(g) =
f(g(i))J(g,3)"*J(g,—i)~" for g € SLy(R). Similarly, for a function f: GLJ (R) x
9 — C with f(v,9(2)) = det(9)™ f(vg,2)J(g,2)"J(9,2)!, we define f(v,9) =
F(7,9()J(g,i)*J(g,—i)~!. Then f factors through I'\ GLJ (R). Further, we
define

£(g) = f(7.9(0)5(g.9) *j(g,—i) ™" = det(g)~ D72 f(g).

Recall that [(254);z,w] = (2,1)J(2 5)(1) = (cw + d)z — (aw + b) = (cz — a)w +
dz —b. Table 1 shows the corresponding functions on $ and on PGLJ (R).

Table 1

f (m, k,1) f £
Im(z) (0,-1,-1) 1 det(g)
j(v,2) (—3,-1,0)  det(g)~"?j(vg,4) j(vg,i)
[v; 2, w] (£1,-1,0) ji:gfbi [g~ vh;i, i) Clle;(f}f; [g™ vh;i, i)
[v; %, 0] (£3,0,-1) e wh; —i, —i] det(g)[g ™~ 'vh; —i, —i]
e (£1,0,0) B lg whs i) g ks, ]
e(iilrilﬂl‘}“liiii])F ) (2,0,0) e(igei Im(r) e(igeioy Im(r)

x|[g™ whsd,i]|?)

x|l vhsd,i]]?)

Let Y € 5[(C), and regard it as a left-invariant differential operator Y, on
SLy(R) for the variable matrix g € GLa(R) (identifying GL2(R) with SLa(R) x R*
by the natural isogeny). Then we have

S

Y, (g~ vh) = 7 (exp(—tY)g~'vh) ‘t:o =Yg tvh,
(3.1)  Yu(g~tvh) = di(gflvhexp(sY)) =g twhY,
8 S=
2
Y, Yy (g~ tvh) = Tids (exp(—tY)g~'vhexp(sY)) 0T ~Yg tvhY.

LEMMA 3.1
Let X = (1/2)(} ) €sl(C) as an invariant differential operator. Then we have

(3.2) X flg) = —4nIm(2)op (¢ X [ = —4m (05 ) 4 XE = —4m det(g) (5x£) (),
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where 2midy, = 2mid,(z) = 211m(z) + & and (8,F)(g) = (31.f)(9(8))i(g,8)7* 2 x
j(g, =)L if f is of weight (2,k,1).

Proof

We have 2X = A —iB + 2iC for A= ({"Y), B=(2%{), and C = (3}), so
exp(tA) = (¢ %), exp(tB) = (%!, Snt), and exp(tC) = (§1). Let g=(§7),
so z =1z +iy = g(i). Suppose f(y(2)) = f(2)J (7, 2)* for y €T. Write F(z,y) =

f(x +1iy) as a two-variable function. Then

A8(g) = L (p(giNe®)| = L ryetige)| = (Fye)e)|
- (de%i—j(m, ye2)et* + ket F(z, thy)) L:O
=2y (2) + R =205 () 4 k(D)

pip) = WO g,

CE(g) = df(z +dgit+yi) _ :yaf(x BZH—M) _ :yg_i(z)

With these combined, we get the desired assertion. |

Let X =(1/2)(} %) € sl(C). To simplify notation, we write [v]+ + = [v; 4, %].
Then we have the following derivatives in Table 2.

Table 2
é Xq¢ Xno XgXno
l9™ vh]+ + ~[g7 o]+ —[g7 R4~ lg~ vh]-,-
g7 vh]— - 0 0 0
lg~ R4~ —lg~ oh]- - 0 0
lg~ vh] -+ 0 S G - 0
g~ vhlet*  —lg7'wh]-4lg7 0hl-—  —[g7'wh]y—[g7 vh]l-—  [g7wh]2 -

Using these, we compute Lie derivatives of the function (g, h) — Vy(7;4,7) X
(97'vh) considered in (1.5) roughly of the form: v [v]* _e(—det(v)T +
ia|[v]4+ +]?) with a fixed 0 < a € R (in our setting, a = Im(7)/2). Since det(g~'vh)
is a constant with respect to g,h € SLy(R), we may forget about e(—det(v)7).
We compute Lie derivatives of (g,h) — [v]¥ _e(ia|[g~ vh]4+ +]*), and we get

Xy (e(iallg™ vh]4 +]%))
= —2malg” vh]- 1 [g7 vh] - —e(iallg T vh]4 4 [?),
Xy (e(iallg™ vh] 1 +[%))
(3-3) = —2malg” vh] - [g7 vh] - —e(iallg~ vh] 4 4 [?),
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XnX,(e(iallg~ oh]y 1 %))
=2malg~ vh]2 _e(ia|lg~ vh] 1 +[?)
T (2ma)?llg~ oh]s, [Pl b2 _e(iallg~ ohs,

In general, we get the following by induction on m.

2).

LEMMA 3.2
For m >0, we have

(XnXg)™ (e(iallg™ vh] 4 +I%))

(3.4) = (2ma)>™[g oh)>™ e(iallg~ o]+ 4 ?)
% 3" ¢;(m) (2na)y =" |[g~ vkl |
§=0

for constants c¢;(m). Moreover, we have ¢, (m)=1.

DEFINITION 3.3
Let X =(1/2)(} %) € s1(C) as an invariant differential operator. We define, for
a normalized Hecke eigenform f € S, (N,v) and 0 <m € Z,

fn(g) = (—4m) 7" | det(g) ;" X" £(9), P (2) =9 (2) |2

and

O (£) (w3 g, h) = (4m) 72" |det(g™ )™ (X X )" O (£) (3 9, h).

m

By Lemma 3.1, 07'f(goo) = f1.(9o0) (and hence the value of f,,, at g1 has rational-
ity after dividing a CM period, see [Sh1]). By Lemma 1.11, we get the following.

LEMMA 3.4
For a Hecke eigenform f € S, (N,v), we have

O (£) (x5 9,h)
= (24) Zu a(M/t, f) (M/t)1+m¢ (det(g)) f |[ﬁt/M]( 9)fm(h).

t|M

Proof
The proof is the same as the proof of Lemma 1.11, once we note that

(—4m)™ £33 (9)

= | det(gB )" X (95 73)
= (M/t)™™ | det(g)| ;™ (X")(98,73))

= (M/t)~™| det(g)[; " X" (E(9553)))
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= (M/t)~™|det(9) [ X" (£1[B{731)(9))-

3.2. Lie derivative and derivative of Shimura-Maass

We take p: K — D = M>5(Q) and €, g1 € GL3(A) specified in the proof of Propo-
sition 2.2. Write (€,7) = g; X(p(€) + p(n)e)g1 € Ma(AL) for &€ K. We
summarize a consequence of the proof of Proposition 2.2, in particular, from the
computation in (2.6).

LEMMA 3.5

For simplicity, write ©(¢)(7;9,h) for ©(¢)(g-; 9, h)J(g-, —1)* for g, € S(R) with

9:(i) =7 € 9. Suppose that $(v) = ¢ (V) Im(7)* v ¥ _e(— det(vee)T +

(1/2) T (7)|[voo) .+ |?) for a Bruhat function $(°) on DXX)). Then we have
O(6)(rs9.h) = > 0 (g™ o)y~ vh]E _e(— det(v)7 + 3 Im(r)|[g ™ vh] ).

veV

Moreover, if ¢ (€,1) = ¢, (6(°)) - ¢ (n(>)) for Bruhat functions ¢1 and ¢. on
(o0)

Ky

, we have

(3.5) O(¢) (1191, 91) = (—20)" Im(7)**10(¢1) - b1 ()
for 0(d1) =Y e 1(60)e(€7) and (b)) =3, ¢ e b (™)) e(miyr).

Note here that (3.5) follows from the computation in (2.3) and (2.6), noting (2.5):

Im(21)"t[€;21,21] = —2i. Similarly, under the assumption of Lemma 3.5, we have
Xy Xn(©(9)(739,h))
Im(7)k+1
— Z ¢(g_1vh)[g_1vh]’377e(— det(v)?)
veV

(%, Xne (3 (o)l o+ )
(3.6)
— Z d(g~ " vh)[g " vh]® _e(—det(v)T)

veV

x (wIm(r)[g~"wh]? _ + (wIm(r)) [g~ ) _|lg~ vh] - ([?)
x (5 Im(r)|lg ™ vl + 7).

Note that g1,00 = Im(zl)il(lmg‘zl) Re(lzl)). For v = p(&) + p(n)e, we have

[ -1, ] (L6) [v;Z1,7%1] (2.3) [€;Z1,%1]
(3.7) g1 Y9 Im(z) Im(z) ’
’ = 2
_ 1.6) |[v;Z1, z1]]? 2.4) , —
g7 'oga] - 1> = losz1, 21)[" (2 AEE.

Tm(z1)?
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If (o) (&,m) = §, (£ - pe(n(>)),
Im(7) ™" (X, X1,©) () (7; 91, 91)
2/ [6%1,Z1)\ k12
= (2rIm(7)) (W) !
(3.8) B _
x> @(&n) ((ArIm(r)) "k 4 T2eg) e(—£E7 + mir)

(&mev

E2) (2 T(r))* (~20)*2014.2(6)3:0(61) (7).

m

In general, for m >0 and 6" = dk42m—2 - Ox+20k, we get the following,.

LEMMA 3.6
Let the notation and the assumptions be as in Lemma 3.5. Then we have

Im(7)* 72" X X O(¢) (1391, 91)
= (478)*"™ (= 20) Ot 2m (0e) (1)6720 (1) (),
if 9 (&,n) =¢1(£09)) - pe(n'>)).

(3.9)

Proof

We can compute explicitly by repeating the computation resulting in (3.8) and
get the result by induction on m. Here we prove this via a short-cut without
much computation.

By Lemma 3.2, (2.3), (2.4), and (2.5), we can write the result as 0x1om(Pe)
times a linear combination g of (7 Im(T))j’m(a%)JW for j=0,...,m. Thus g
is in the (weight 1) limit of the discrete series representation of SLa(R) gener-
ated by 6(¢1). In this representation, weight 1+ 2m vectors form 1-dimensional
subspace spanned by 07°0(¢1) (cf. [JL, Section 1.5]). Since g is an antiholomor-
phic modular form of weight 1+ 2m, ¢ is a constant multiple of §70(¢1)(7).
Then comparing the terms of (%)mH(d)l) in g and 0} 0(¢1), we get the result.

O

3.3. Torus integral again
Let the notation be as in Lemma 2.1. Recall that the central character of f,, is
given by 9, (x) = 1(z)|z|,*™ (see Definition 3.3).

LEMMA 3.7
Let x = xm : K JK* — C* be a Hecke character with x(zx) = W1 (2)x(x) for

m

z€ AX and x(as) = akF?™. Then a v £,(p(a)g1)xm(a) factors through I;; :=
K JK*AXKZ (the anticyclotomic idéle class group of K ).
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Proof
For z € Z(A), we have f,,(zx) =,,(2)f,(x), so a — xm(a)fn(p(a)z) factors
through K™\ K /A*. We take aoo € KZX. Then p(ax)gi(i) = plac)(z1) = 21,
and we have, writing f’ for I, glo) @S in Section 1.1,

JI1

—k—2m

£ (P(a00)g1) = [ (P(A00) 91,00 (1))  (P(A00) 91,005 1)

— 1/ (p(ace)(21))d (plaoo)s 21) 2" 5 (g1 00,8) F 2™

k2m

= f'(z1)j ( 1) J(91,00:7) " k- zm:fm(gl)a;’“%-
Since x(as) = akF?™ we have f£,,(p(a00)g1)Xm (@) = £m(g1), and it factors
through I.. O

We again put for f € Sp(N,v):

Ly, (fn) = /1 £ (p(a)g1) Xm(a) d*a

and

L, (6l 1855) = / £l 185 (p(@)g1) Xom (@) A%

Recall that M = [[,c. Ne. By Lemma 3.4, writing 7 :=T(Q)T(R)\T'(A) and
noting that f,, is of weight k 4 2m, we get

S uta(M/t, )M/ Ly, (£l [8737]) L (£)

0<t|M

— (i) / 1 (N (@) det(91)) O (£) ((a)g1, p()g1) Xom (@)X (b) 7 a d<D.

We note the following.

LEMMA 3.8

There exists &/ € KA<OO) such that fm(p(a)glﬂt(/o;}) =fn(p(a/nr)gr). The pro-
Jection &y € Heecs K[ of & /v 18 uniquely determined by ﬂt(ﬁ} and satisfies
Erm&r v =Eg00,m for fractions J and J' with MJJ' € Z. So Ly, (fm|[ﬂ(°°)]) =

/M
Xm (E);}\/LM)LX'IH (£m)-

Proof
Since M is a product of primes split in K, at ¢|M, gi}p(a)gu (¢ al) we find

Be/nye € gl_,l}p(KZX )g1,¢. We remark that ﬂg%f) eT1(N-d(K))™). Hence we can

find & /0 € K such that p(&/ar)g1 = 916 /mu with u e fl(N -d(K)). By our
construction, &y as is uniquely determined, and indeed, & /a0 = ((t/M)¢,1) €
K x Ky for [€ AUC; over £. This &5 does the job. The last assertion follows
from the variable change: a+ & /y ara of the integral defining L, . O
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By Lemma 3.8, we have

(3 w®alM/t, xon(€onnan) ™ (M) Ly, (£)?

(3.10) — (2i)* /T ¥, (N(a) det(g1))

x O (£) (p(a)gn, p(b)g1) x(a)x(b) d* ad*D.
Since &/ = (t/M,1) € K¢, x Kz for Ke, =[], Ki and Kz =[] e, K7, we
have yom(€r/a,)~ = X (PO, and assuming a(¢, f) 0,

> uaM/t, £)xm(Eeynaar) " (M)

0<t|M

1
= v () vy pr(O(A+m) (1 _
eg,aw e (- @)

If a(¢, f) =0 for one prime factor ¢ € Cj, the left-hand side of (3.10) vanishes.
Thus we hereafter assume that a(¢, f) #£0 for all £ € C;.

(3.11)

3.4. Factoring again the theta series
We now study

©4a.cNm(T;9,h)
(3.12)
1= (4m) 72" det(g™ ) [ (Xgo Xno )" @ a0 n (23 9, B).
By the same computation as in Section 2.2 combined with Lemma 3.6 (for the

infinite place), we get the following.

PROPOSITION 3.9
Assume Section 2.2(S1) and (S2). We have a decomposition
IN(a™"0)[7'O®a,c.nm (x5 p(a)g1, p(b)gr)
= (Qi)k(_l)k+m9(¢l,m)(x7 O‘)9<¢6,m)(xaﬁ)'

Here
D1,m,00 (&) = P1,m,00(&5 1)
1) Jor é1m,00(&7) = Im(7) /257 e(¢ET),
De,m,o00(11) = Pe,m,o0 (151)
for Gem oo (m; 7) = Im(7)F 2D t2m e ()

The finite part of ¢ m for j =1, € is independent of m as the differential operators
affect only infinity type, so its explicit form is given by (2.8).
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For the quadratic space (K,—Ng/q), we have r(g;)d1,m o (§)J (g7, —1) 172 =
#1,00(7;€), and for the quadratic space (K,Ng/g), we have r(g:)deoo(n) X
J(Q‘rai)ikizm = Ge,00(T37).

Since 4, (N (@) xim (ab) = Xom (@)~ X (ab) = Xom(@'0) = (B ), by the
same computation as in (2.9) we have again, fort = N(a=1b) = N(a)"t = N(8) 7!,

/ Vo, ))O©a.cn,m (wows; pla)gr, p(b)g1) xm(ab) d*ad”b
- / IN (@I 0(01,0) (revs a91)
T (Q\T’(A)

(3.14) % 0(em(was; Bg1)) xm (B ) d*ad*

=) NE@IROm waiag)
T1(Q\T1(A)
x / 0(bem)(was; Bg1)xom (F~1) 4 5.
(Q\Te(A)

3.5. CM theta series of higher weight
In the same manner as in Section 2.3, we again compute

/ 06 (Bem) () (F1) 5.
Te(QTe(R)\Te(A)
In this section, we write ¢ for ¢, ,,. By Proposition 3.13, the infinity part of ¢

is given by

oo (1) =Tm(r)FFT2m+ (/2 pht2me (ypr).

Let 2o = Im(T)il(IméT) Rel(T))(:> T=12x(7)), and as in (2.10), write
0(¢)(B;7)
=D (L(B) 0 x(w00)9) (1) ] (oo, =) ~H 72"
nekK
(3.15)

= |N(B )|A1/2 m(r )k+2m+(l/2)

x Y (BB e (N (Boo) ).
nekK
Write X, (%) = Xm(Z7!). Then the computation resulting in Lemma 2.9 by
using Lemma 2.8 is the same because of ¢£°ﬁ1) = ¢>§°°). We thus have the following.

LEMMA 3.10

Let the assumptions and notation be as in Lemma 2.9. Let xp, : K /K> — C*
be a Hecke character of conductor € with x|ax =" Put A () = Xom(x) ™ X
IN@) 2™ = X @) (50 A (To0) = 222" and Am| s =Xl ) Then the
classical cusp form giving rise to the theta integral fT (QT. (R\T. (A) 0c(Pe,m) X
(z;8)xm(B~1)d* B is a CM theta series given by



Central critical values 817

i I (7) M2+ AD S 7 (9) N (5/9) A (50/9) © 2 (A ) [N (/)]

9]so

for the constant C,, given by

e(—NZl)‘(O/f)X|71( H N([)(k+2m)(l/(2)*fT)Xm’,[(gu(f)*fTu;c)G(Xm,[OC)>’
leALUCy

where u. is as in (2.8) and the standard Gauss sum G(xioc) is as in Lemma 2.8.

3.6. The derived weight 1 theta series
We look into

/ N (@) (61.0m) (w50) d¥a
T1(Q)T1 (R)\ T (A)

- / IN ()06 (61.m) (@3 0) d¥a.
KXKX\KS

In this section, we write ¢ for ¢; for simplicity. By Proposition 3.13, the infinity
part of ¢ is given by ¢oo(€) = Im(7)' /267 e(¢€7)|—i. As before, we get the
following.

LEMMA 3.11

Let1: K /K> — {1} be the identity Hecke character. Then the classical modu-
lar form giving rise to the integral |(O/%)*| le (Q)T2 (R)\T1(A) IN ()| 0 (1,m)(z;
a)d*a is an antiholomorphic derivative of a CM theta series given by
Im(7) /2 30 i ()N (4/2)07 O (1)[[N (/1))

4. Main theorem

Let fo € Sp(T'o(No),%) be a normalized Hecke eigenform with corresponding
adelic form fy € Sk(No,v). Assume that fo has conductor Ny. Recall that
K = Q[\/d(K)] with the discriminant 0 > d(K) € Z. Write d = |d(K)|, and
recall that do(K) = d/4 if 4|d(K) while do(K) = d otherwise. Pick a Hecke
character x,, of K with conductor ideal € of O and Y, (as) = akF?™. For a
suitable normalized Hecke eigenform f in the automorphic representation gener-
ated by the unitarization £}’ (depending on €), we compute the L-value which
L., (£,,)? represents by a version of the Rankin convolution method, where f,,,
is the mth derivative defined in Definition 3.3. The form f is in Si(N’,v) for
the least common multiple N’ of N and dy(K) for a suitably chosen multiple N
of N0~

To specify N, recall the prime factorization € =[], [fi. If ¢ is a prime factor
in N(€) splitting in K, we choose a prime factor [|[¢ in K so that 0 < f{ < fi.
(We tacitly agree to write f{ = f; if [=1.) Let A= {[| f >0,[# [}, and define
A={N(l) | 1€ A}. Let C be the set of rational prime factors in N(€)dy(K )Ny
outside A. Define N =[], 4., ¢*¥) for the exponent v/(¢) given by

(4.1) v(f) :max(ff, ordg(No))7
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where for any nonzero integer n, its prime factorization is given by n =[], gorde(n)
The sets A and C are already given. Recall Na =[], 4 0¥ and other finite
subsets Cy and C7 of C defined in Definition 1.5 relative to N: C; is made up
of all prime factors of do(K) with C=CoU Cy. Then CL ={fle C|v({) >0}
contains Cy. We decompose Cy = C; LI Cs LU C,. so that C; is made of primes inert
in K and C, = {2} if orda(d(K)) =2 with v(2) > 0, and otherwise C, =0 (so
C; is made of split primes). Since C; UC,. U C is made of primes in C' nonsplit
in K/Q, we write C,,; for C; UC, UC;. We chose a set Cq of prime ideals of K
so that [€Cs & f;> fi=0 and [ # [. For nonsplit primes over C, there is a
unique choice of primes over £ in K. We write C,s for the set of the nonsplit
primes of K over primes ¢ € C,s N Cy. Then we put C =C; UCps. Decomposing
€ =TTiee, U TLea T Tliee, V', we put Co={l€C| fy= fi = 0,v(¢) > 0} and
Ci={l€C] f;>0}. We introduce C? =CsNCy and CJ =Cs NC, anew.

4.1. Statement

The L-value in question is L(1/2,7¢ ® x;,,) for x,m in Section 3.3. For a positive
integer S, we write L) (s,7¢ ® x;;,) for the imprimitive L-function Euler factors
at primes dividing S removed from the primitive one. For the starting normal-
ized new Hecke eigenform f € Si,(T'o(No),v) with fo|T'(n) = a(n, fo) fo, we define
oy, B € C for each prime £tNy by a(l, fo)/0F~D/2 = oy + B and afy = (£).
If £| Ny, we simply put ap = a(l, fo)/¢#~1/2 and 3, = 0. Write f; for the adelic
Hecke eigenform in S(Np, 1)) corresponding to fo. Let m¢ be the unitary auto-
morphic representation generated by the unitarization fj whose base-change lift
to K we write as m¢. Write the primitive L-function L(s,7f ® X;,,) as a product
[1, Ee(s) for Euler ¢-factors Ey(s). Then for primes ¢, the Euler factor Ey(s) is
given by

[(1 - 00) 1 — e

(4.2) E(s)={ x(1-2220)(1 - Bon®y]7t o
a2/e — 2/e — _ .
[(1 - %22(]?([)) (1 -2 e2§/wez([))] ifle= (£),

where y,. () =0 if [ is a factor of the conductor € of x;, (%) = Xm (Z)/|Xm|-

We now make f explicit out of fy. Recall N’ which is the least common
multiple of N and do(K). The form f is a normalized Hecke eigenform of level N’
with f|T(n) =a(n, f)f and a(?, f) = a(¥, fo) for all primes ¢ outside N’. So if
N’ = Ny, we put f = fy. Otherwise, we choose f such that for primes ¢|N’,
a(l, f)=a(l, fo) if £| Ny and a(?, f) = a0 =D/2 if 0fNy. (This is always possible,
and a(¥, f) # 0 for £tNy.) We write f for the adelic eigenform corresponding to f.
Then f* and ;' generate the same m¢. Since f and f are also Hecke eigenforms of
level Ny = N -do(K) (as £|N' < £|Ny), all the results proven for Hecke eigenforms
of level N7 can be applied to f.

Assume that a(¢, f) # 0 for all £ € Cs. Recall (3.11) for M =[], Ne:

> uta(2 )t ()"

t
o<t|M
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1
= il o (1P (O (m+1) (1
] o 1) (- @)
LeCs
in front of (3.10), which is equal to
v 1
(43) (m) Zg e ) el ))

The factor E”(m) could vanish if a(¢, f)xm ()™ =1 for one prime ¢ € Cj.
Since | Xy (1] = £~ F+2m)/2 "if this is the case, we have |a(l, f)| = £*/2)=1 so mp
has to be a Steinberg representation at £. If 7¢ is a Steinberg representation at £,
the primitive character 1)° associated to ¢ has conductor prime to £ and a(¢, f) =
+1/1° (€)¢F/2=1 Thus we must have x,, (1) = :I:\/wo(é)ilé_m_(k/z). Writing h
for the class number of K and taking a generator @ of [", we find that x,,(I") =
w~ F+2m)h i t0 roots of unity, and [ # [ prohibits x,, (1) = :I:\/wo(ﬁ)_lﬁfmf(kp)
from happening.

THEOREM 4.1
Let fo and f be as above such that

- folT'(n) =a(n, fo)fo for all positive integer n;

< a(l, fo) 0 for all L€ Cy;

. the adelic form £y (in 1.1) associated to fo has central character 1 with
1/)00 (aOO) = agok‘

For an integer m >0, put ,,(x) = (2)|z[,*™, and take a Hecke character
Xm : K JK* — C* with Xom|ax = b and x(ass) = akF2™. Suppose that
Xm has conductor € such that ¢*© || € for all L€ AUC,s (so that
(F) fi=fi=v) >0 for le AUC,;), Qﬂiyd) for all 1€ Cs, and € is
prime to | for all [ € Cy.
Let m¢ be the unitary automorphic representation generated by the unitarization
of £, set x;, () := (xm (2°))/|xm(x)| (the unitary projection), and write T¢ to be

the base-change lift of m¢ to K. Let £, be the derivative of f as in Definition 3.3.
Write L(s,Ts ® X.,,) for the primitive L-function. Then we have

Ik+m)I'(m+1) /1 1. _
2 _ Nd
Ly, (f,)*=c @ni)FiTem E(ﬁ)E’(m)L( )(§7ﬂ—f®Xm)’

The constant ¢ =c; - G -v with ¢; = e(—N')\/d(K)(2i)~F+2m) NF+2m s given
by

o= TLe0/ (a1 (- 1) L0 (4 5) (- })

LeCs LeA LeC;

< I (1)

LeCrUCL,v(£)>0

(4.4)
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= ((IT sy T AemeOion, (05960,
teavc ect ,

(H X, (1) GXo,, [))

where X, , = Xm|Q>< s X = Xlex ue =1 unless |2 and 2 is inert in K, and

(4.5)

if 1|2 is inert in K/Q, ue is a dyadic unit in Oy as in Lemma 2.5:

if 2¢d(K) or v(2) > 2,
if 4| d(K) and v(2) =
if 8] d(K) and v(2) =
if 2|d(K) and v(2) = 1,

Cy =

N = O =

and the modification Euler factors are

so= T(0-%) " (05670 %)

11£€C; l|d(K)
o7 v(0) g (0)/2,— ((v(£) 1
E'(m) = [iecr swm=romra=n7a [licco o ¢ X ()1 - aeélﬂx%(l))
= ) — v ® 1 '
Mece, o 0O (@) (1 - =)
REMARK 4.2

(a) Recall the conductor Ny of m¢. Theorem 4.1 covers the value L(1/2, 7 ®
x~) for all arithmetic characters x~ with anticyclotomic 12)(_ at least if the
conductor of x~ is prime to Ny, and the infinity type oo(x~) = k(c — 1) for
integers k satisfies || > k/2. We treat explicitly the case where k = (k/2) +
m > (k/2). Replacing f by f. and taking the complex conjugate of the value
computed, we get the result for k < —(k/2). To treat the case where |k| < (k/2),
we need to replace D by a definite quaternion algebra.

(b) For the conductor € of x,,, suppose (Ny) D €. Then condition (F) in
Theorem 4.1 is satisfied automatically for ¢ € C,,s. For split prime factors ¢, write
(WES U for ¢|No. Then we have f; = fy=v({) by the condition 9 = Xm&i if
(Nofl) D €. Thus (F) is satisfied if the conductor € is deep enough with respect
to Ny, and Theorem 4.1 covers such characters.

(¢) The only cases that the theorem does not cover are

(1) where ord(Ng) > f; > fi > 0 (as we can place £ in C' and take v(¢) >
fiif fr=0) for primes ¢ split in K and

(ii) where f; <ordy(Ng) for £ € Cis.
We can actually compute L, (f,,)? explicitly in such an exceptional case, basi-
cally by the same argument we give in the following section, but the outcome
turns out to be trivial (i.e., Ly, (f,)=0), so we do not give more details.

(d) We have the identities

Ly, (fn) =L 5.:(fn®X)  and  L(5,7 ® X;) = L(s, Frar ® A'x;0)
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up to finitely many Euler factors for a finite-order character A of A*/Q* with
A= Ao Ngjg: K /K* — C*. Thus we may assume, after a twist, that f is a
Hecke (possibly old) eigenform in the automorphic representation generated by a
primitive new form with character x gk if k is odd and with the identity character
if k£ is even.

4.2, Proof via Rankin convolution
Actually our computation goes through under the following assumption which is
milder than (F):

, m has conductor € such that orall le AUC, s e or
(/) X has conductor € such th "9 ¢ for all 1€ AUCps, 1" &

all [eC,, and € is prime to [ for all [ € C;.

However, as we will see, writing A’ for the subset of A such that /) C & for
le A, if A’ (), the integral vanishes, and this forces us to assume (F). Anyway,
for the moment, we assume only (F').

By (3.10), (3.11), and (3.12), noting that det(g;.¢) = £“) € Qy, we get

(20)*4p,,, (det<gl>>‘1E"<m>Lxm<fm>2

/w @(N (£)(p(a)g1, p(b)g1) Xm(ab) d*ad*b

= [ (] 1N 8570 covm (i plaen. b))
X

X Xm (ab) dxadx)fc(sc),u(x).

Recall that t = [];c4 o7 [Trec. ! [ Mleee,, () and sg = [[jee, M

Since the integrand of (4.5) is invariant under FO(N) for N= N (t)-d(K) by Propo-
sition 3.9 and Lemmas 3.10 and 3.11 combined with Corollaries 2.10 and 2.14, we
may integrate over X’ := Xy(N) in place of X =T'(4,C; N)\$, though, by our
choice of the measure du(x) in Proposition 1.9, we need to divide the outcome
by
[[(A,C;N) : T'(A,C; N)NTy(N)]

[Lo(N) : I'(A,C; N) N To(N)]
. C2 HZGC&, N

NHZ\N(l -y

By Lemmas 3.10 and 3.11, (4.5) is equal to, up to a nonzero explicit constant,
the following classical convolution integral:

[ SN /) s0 @) [N /)

9|so

[[(A,C;N) : [o(N)] :=
(4.6)

(4.7 _
<3 ur ()N (/05O [N (t/x)] - T, Im(r) 2+ dp(r).

r|t
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This integral is absolutely convergent as ®—(\,,) is a cusp form and 67°O(1) is
slowly increasing toward cusps.

To transform this integral into a Rankin convolution integral, we recall the
notation introduced in Lemma 2.15 for n=t: =] 4, w0 s = [lrca I4OR
and I =[], [2”(@. Thus we have

> nx (N /)T OL)|[N(/x)](7)

£t

Lemma 2.15 m A

ua 2m ZZZN irs)(irs) ' 67" 1 n (1) jirs (13 0)
s|S I r|R
(4.8)
2.14) VAE)N() - (n)
T
XY 3> ulirs)(irs) 0T By irs(T30)-
s|S I r|R

Note here that LIV (s, yx) = LIVW/79) (s ) if p(irs) # 0. Thus we want to

compute
Z Z Z wu(irs)(irs)™

s|S I r|R
(4.9)

< |00 BBy 7300 o) ()2
for 0 =3, s, w(0)N(5/9)Am(50/9)O1(An)|[N(s/9)]. Note that (see [Sh2,
(2.9)], [Hi2, Section 10.1 (13)]):

I'(s+k)

(4.10) A" S

5ZLE1:,L(T§ s) = E1:+2m,L<7'§ s—m).

LEMMA 4.3

Let the notation be as above. We have (0,F) = fXO(N) O Im(7)k+2m+l gy =0
for E:= 55"E1‘7N(t)/im(7';0) - fe(T) if a prime £ is either L)ir under (F') or L]irs
under (F).

Proof

Let N(0) (resp., N(E), N(®), N(f)) be the exact level of 6 (resp., E, © :=

O (M), f). We first show that ordy(N(©)) > ordy(N(E)) if there is a prime £|irs
and u(irs) #0. Note that N(®) = N(€)d(K) and by definition ord,(N(6)) >
ord¢(N(©)); under (F), ordy(N(0)) = ord,(N(®)) = (2/e) fi + ord,(d(K)) for
¢|SIR, and under (F'), ordg(N(0)) = ord,(N(®)) = (2/e) fi+orde(d(K)) for £|IR
for the ramification index e = e(l/f). The level of E} ; is L-d(K). Then E
has level N(E) at most the least common multiple of N(t)d(K)/irs and N(f).
By our choice, N(f) is a factor of N’ for the least common multiple N’ of
N and do(K), and for £|N’, ords(N(f)) =1 if orde(Ny) = 0, and otherwise,
ord¢(N(f)) = ordg(No) > 0. If p(irs) # 0, irs is square-free. Suppose that
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l|si. Then orde(N(t)) =2v(f) > v(f) + 1 =orde(N') + 1 > orde(N(f)) + 1 as
N(I) =2 for ¢|I (and ¢ € A < (|S). Thus, if £|si under (F) (resp., if £|i under
(F")), ordg(N(E)) < ordg(N(®)). Suppose that ¢|r. Then max(fi,ord,(Ny)) =
v(€) > 0. If ord¢(Np) =0, then f; >0 and ord,(N(t)d(K)) = v(¢) +ord,(d(K)) =
fi+orde(d(K)) > 2>1=orde(N(f)) by (F), so ord¢(N(E)) < orde(N(O)).
If orde(Ng) > 0, then ordy(N(f)) = orde(No) < orde(N) = orde(N’) = v(¢) and
orde(N(t)d(K)) = fi+orde(d(K)) =v(£) +orde(d(K)) > orde(N’) by (F'). Thus
we get ordg(N(®)) > ord,(N(E)) again. Since © is a new form of conductor
N(€)d(K), the Petersson inner product of § with E having strictly lower level
than © at the prime ¢ vanishes if irs > 1 under the assumption (F) or (F’). O

Thus we care only about the term with ir =1. Let A™Y C A be such that at
(€ A, 0 is a local newform. In other words, for £ € A, we have (*(¥) || € < (€
A"V Then by the same argument as above, 6 can have nontrivial inner product
only with fc 37 g u(s')s’flé’f‘ELN(t)/S/ for 8" =Tye a_ anew €79 Note that the
level of 0 is a factor of N/[],s €. Then (4.9) is equal to

d(K)N(t)
TL(N(U)(LXK)
,LL * s m—
< [ 0T S T o o e
/‘S/
(4.10) \/d(K) LNO)(1, x)L(s + 1+ m)
- 2m (—47r)mf(s+1)
></ 0f. Z ,u 1+2m N(t)(T;s—m)ys+k+m_1 du -
/‘S' -
(XX (/s )=s' /A(K) LNVON(1, xr)D(1 +m)
B 2mi (—4m)m
(4.11)
X (s’ / 0f.Er " —m)yFtmldy
5'%/ ( ) Xo(N/s") e N(t)( )
o VIdN(t) t) LN (1, x g )T(1 +m)
27 (—4m)m
4m) =R (K ! 0 -
x (4m)~F +m>(§u<s ) Eetn.0patm ™|
= (=1)™(4m)"* 2T (k + m)[(m+1)
VI[N ()
X T(Z #(8')>L(N(t))(17XK)D(k+m,f®9)7

s'|S"

where we have put D(s, f®g) =), a(n, f)a(n,g)n™* (the Rankin product of f
and g) and the equality (%) follows from the Rankin convolution method (see,
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e.g., [Hi2, Section 5.4]). Thus if A’ # 0, we have }> 5 p(s) =0 and we get
nothing, so we now assume (F). Note that L(N®) (s, yx) = LV (s, xx) and
[|so = [ € Co N Cs by our assumption (F). Then we have

LIND(1,xg)D(k+m, f ©6)
=LV (1, xk) Y rc (9)N(5/9) Am (50/9)

9]so

XZA N(s/9)N(a), f)N(s/9)"*N(a)~*

s=k+m
(ZuK N(a/0) " A (50 /9)a(N (5/9), £) ) LY (1, x)
9lso

Am(a)a(N(a),
3 @V @).)

(Cl)s s=k+m
(4.12)
(%) (;((i\f(;g;n{)l H a(el/(f),f)el/(f)(l—(k/2))x’r—n([V(f))
¢

[ECy and [|€€Cy
1
]_ _
“ a<z,f>e1—<k/2>xa<t>)>

1 1
x E(a)L(M’(ﬁf@A%)
l/(Z)

_ O /2~ 0y (1o L
[g (0= f)(m+(k 1/2) HO‘ ¢ m(l )(1 aeﬁl/gx?n([)>

1
< B(5) L (3R @A),

where a runs over integral ideals of K outside A, and the equality () follows
from, for example, [Hi2, Section 5.4]. This finishes the proof of Theorem 4.1
except for determination of the constant ¢, noting that A¥, = A /| Am| = X,

We now compute the constant c. Table 3 shows many constants of the right-
hand side that we have computed along the way.

Table 3

Source Lemma 3.4 (4.12) (4.3) Proposition 3.9 Lemma 3.10 Lemma 3.11
Value  (2i) "4, (det(g1)) £'(m) E"(m)~" (20)" (=)™ [(O/9*|7" [(O/T)*|7

Lemma 3.10 (4.6) (4.11)

[d|N (1)
27

e ave, N(EFH2mEO=io [[(A,C;N) : To(N)] !
Xon 1 (0" O G (Xm0 €)

(4.11) (4.11) Lemma 3.10
(=1)™ (4m)~F2m L(k+m)I'(m+1) e(-N;")
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We simply multiply out the constants appearing in Table 3 to get the constant
¢=c1Gv. The volume factor v is the product of [(O/t)*|7!, |(0O/%)*|7!, and
[D(A,C;N) : To(N)]7!. Note that G(xm,i 0 ¢) = G(x,,(), N(O)FF2MEEO=F) %
Xm,T(gV(E)*fTU;C) = X;([V(f)*ff)g((k/z)ﬁLm)(V(Z)*fT) and

’l/) det 91 Hw eu(@ Nlc+2m H X;ﬂj([l/(f))—

(N Le AUC

as ¥, = Xm' on AX and |xme(€)| = £7*"2™. Thus the other constants aside
from the volume factor v are in the Gauss sum factor G and ¢;. This finishes
the proof. O
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