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Abstract We give an explicit formula for the central critical value L(1/2, π̂ ⊗ χ) of the
base-change lift π̂ to an imaginary quadratic field K of an automorphic representation π

as the square of a finite sum of the values of a nearly holomorphic cusp form in π at ellip-
tic curves with complex multiplication by K. As long as the transcendental factor of the
value is aCMperiod,χ is basically anyunitary arithmeticHecke character of K inducing
the inverse of the central character of π.
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0. Introduction

Let D be a quaternion algebra over a number field F , regarded as a quadratic
space by its norm form N : D → F . The orthogonal similitude group GOD is
isogenous to D× × D× by the action (g,h)v = gvh−1 on v ∈ D. Pick a qua-
dratic extension K/F with an embedding K into D; so, we have K×\KA

× ↪→
D×\D×

A . Take a Hecke eigenform f on D×\D×
A with central character ψ, and

pick a character χ of K×\K×
A with χ|F ×

A
= ψ−1. The unitarization fu(g) :=

f(g)|ψ(det(g))|−1/2 generates a unitary automorphic representation πf , which
has a base-change lift π̂f to ResK/F D×. Similarly, we set χ− = (χ ◦ c)/|χ| for
〈c〉 = Gal(K/F ). Waldspurger [Wa] proved a striking (and ingenious) formula
relating the square of Lχ(f) :=

∫
K× \K×

A

f(t)χ(t)d×t to the central critical value
L(1/2, π̂f ⊗ χ−) (up to sometimes undetermined local factors). When K/F is a
totally imaginary quadratic extension of a totally real field F (a CM extension),
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Lχ(f) is basically a finite sum of the value of f at CM-abelian varieties, and
hence it is essentially p-integral up to the Néron period of the abelian variety. If
one wants to interpolate Lχ(f) p-adically over arithmetic χ’s for a cusp form f
as Katz [K] did for Eisenstein series, we need an explicit formula without ambi-
guity. Such a computation has been done by many people, including Shou-Wu
Zhang, Ben Howard, Kartik Prasanna, and others (see [KRY], [YZZ], [P]). How-
ever, published computation seems limited to the case where the infinity type
of χ is either the highest or the lowest determined by f and D, and the conduc-
tor of χ could be limited to split primes of K/Q (the Heegner hypothesis). For
simplicity, assuming that F = Q, K is imaginary quadratic, and D = M2(Q), we
present here an explicit formula of Lχ(f)2 (Theorem 4.1) covering all arithmetic
characters χ with χ|A× = ψ−1 (producing “critical” central value). The formula
involves a Euler-like factor (at primes dividing the level) that vanishes only in
limited cases. A main point is to find a good Schwartz-Bruhat function on DA,
making the theta correspondence optimal. This optimal choice is suggested by
the explicit computation of the q-expansion of the theta lift of f to GO(FA)
through “partial Fourier transform” of the Siegel-Weil theta series which was
studied in [Hi1] to prove the anticyclotomic main conjecture for CM fields. Our
method is elementary, classical, and almost global without resorting much to
Langlands theory, and we can extend it to general base fields. In this article,
we restrict ourselves to M2(Q) for simplicity. Obviously one may use the same
Schwartz-Bruhat function for division D fixing an isomorphism D�

∼= M2(F�) (for
almost all primes �) or take a non-CM quadratic extension K/F . However, we
need a more careful analysis (e.g., [P]) of the rationality/transcendence of the
theta correspondence in these slightly more general cases, which we hope to treat
in the future.

Organization of the article and a sketch of the proof
In Section 1, starting with a brief discussion of how to associate automorphic
forms f on GL2(A) to classical holomorphic elliptic modular forms f , we recall
the Siegel-Weil theta series Θ and its theta correspondence: f 	→ Θ(f) for the dual
pairs (SL(2),SO(2,2)) and (SL(2),SO(2)) of the quadratic spaces (M2(Q),det)
and (K,±NK/Q). For an explicitly given Schwartz-Bruhat function on M2(A),
we make a computation of its partial Fourier transform, which later enables us
to make explicit the image Θ(f) on the side of SO(2,2)∼ SL(2)×SL(2). In other
words, starting with a normalized Hecke eigenform f of weight k, by our choice
of a Schwartz-Bruhat function, we conclude that the image Θ(f) =

∫
Sh

Θf dx

is given (2i)kf ⊗ f for a suitably chosen measure dx and an elliptic modu-
lar Shimura curve Sh. For this reason, we call the choice optimal. The pre-
cise choice of the Schwartz-Bruhat function is made in Section 1.4, and then
we adjust the choice to make easier the later computation of Rankin convo-
lution in Section 1.7. In Section 2, we compute the restriction of the Siegel-
Weil theta series to the orthogonal group O(2) × O(2) given by the quadratic
space (K,NK/Q) ⊕ (K,−NK/Q) ∼= (M2(Q),det) and show that the restriction is



Central critical values 779

a product θk · θ′ of two binary theta series θk, θ′ of K (resp., of weight 1 + k

and 1). Via the Siegel-Weil formula (and a more classical result of Hecke),
we identify θ′ with an explicitly given Eisenstein series E. In Section 3, we
apply to Θ a (two-variable) Maass-Shimura differential operator Δ = δm

k ⊗ δm
k on

SO(2,2)∼ SL(2)×SL(2) which is induced by (the mth power of) a Lie invariant
differential operator X ⊗X on SL2(R)× SL2(R). The restriction of this derived
ΔΘ to O(2) × O(2) turns out to be θk+2mδm

1 E for a holomorphic binary theta
series θk+2m with higher weight 1 + k + 2m than θk. In the final Section 4,
we state our main theorem and compute

∫
(K× \K×

A )2
(fχ) ⊗ (fχ)dt× ⊗ dt× (with

respect to a suitable Haar measure d×t on K×
A ). On the one hand, this value is

Lχ(f)2. Replacing f ⊗ f by Θ(f) transforms the integral into a double integral
over (K×\K×

A )2 × Sh. Interchanging the order of integration, Lχ(f)2 is trans-
formed into a Rankin convolution integral

∫
Sh

fθk+2mδm
1 E dx, which gives rise to

the L-value. This proves the desired formula.

1. Quaternionic theta correspondence

1.1. Classical modular forms and adelic ones
Let S be the algebraic group SL(2)/Z. Let f(τ) be a cusp form in Sk(Γ, ψ)
(τ ∈ H = {z ∈ C | Im(z) > 0}) for a congruence subgroup Γ of S(Q). Here ψ is a
finite-order character whose kernel is a congruence subgroup Γ′ of Γ. Write Γ̂ for
the closure of Γ in S(A(∞)). Then Γ̂/Γ̂′ ∼= Γ/Γ′, and hence we may regard ψ

as a character of Γ̂. Then by the strong approximation theorem, we have
S(A) = S(Q)Γ̂′S(R). Thus we can lift f to f : S(Q)\S(A)/Γ̂ → C by f(αu) =
f(u∞(i))ψ(u)j(u∞, i)−k for α ∈ S(Q) and u ∈ Γ̂, where j

(
( a b

c d ), τ
)

= (cτ + d).
For our later use, we put J

(
( a b

c d ), τ
)

= (ad − bc)−1/2(cτ + d). We note that
j(r(θ), i) = J(r(θ), i) = e−iθ for r(θ) = ( cosθ sin θ

− sin θ cosθ ) ∈ SO2(R). Similarly, writ-
ing Z for the center of GL(2), we have j(ζ, τ) = ζ , while J(ζ, τ) = 1 for ζ ∈ Z(R).

For an open compact subgroup Γ̂ of GL2(A(∞)) with GL2(A) = GL2(Q)Γ̂ ·
GL+

2 (R) (GL+
2 (R) = {g ∈ GL2(R) | det(g) > 0}), put Γ = Γ̂ ·GL+

2 (R)∩GL2(Q). If
ψ : Γ̂→ C× is a continuous character, we may regard ψ as a character of Γ. Write
Sk(Γ, ψ) for the space of holomorphic cusp forms with f(γ(τ)) = ψ−1(γ)f(τ) ×
j(γ, τ)k. Then we can define f(αu) = f(u∞(i))ψ(u)j(u∞, i)−k, and f is a function
on GL2(Q)\GL2(A)/Ker(ψ : Γ̂→ C×) such that f(αgu) = ψ(u)f(g) for u ∈ Γ̂ and
α ∈ G(Q). Write Sk(Γ̂, ψ) for the space of cusp forms f with holomorphic f satis-
fying f(αu) = f(u∞(i))ψ(u)j(u∞, i)−k. Thus we have Sk(Γ, ψ)∼= Sk(Γ̂, ψ) by f ↔
f . More generally, fixing g ∈ GL2(A(∞)), we may define fg(z) = f(gg∞)j(g∞, i)k

with g∞(i) = z. Then fg ∈ Sk(Γg, ψg) for Γg = (gΓ̂g−1) · GL+
2 (R) ∩ GL2(Q)

and ψg(u) = ψ(g−1ug), so Sk(Γ̂, ψ) ∼= Sk(Γg, ψg) via f ↔ fg . For ζ ∈ Z(A) and
f ∈ Sk(Γ̂, ψ), we have that f |ζ(x) = f(ζx) resides in Sk(Γ̂, ψ). Thus Z(A) acts
on Sk(Γ̂, ψ). Note that f |ζ∞ = ζ−k

∞ f . Thus Sk(Γ̂, ψ) can be decomposed into the
direct sum of the eigenspaces of Z(A). On each eigenspace, Z(A) acts by a Hecke
character ψ : A×/Q× → C× with ψ|Γ̂∩Z(A) = ψ and ψ(ζ∞) = ζ−k

∞ , and ψ| · |kA is

of finite order. Write this eigenspace as Sk(Γ̂,ψ). Let Γ̂0(N) =
{
( a b

c d ) ∈ GL2(Ẑ) |
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c ∈ N Ẑ
}

and Γ̂1(N) =
{
( a b

c d ) ∈ Γ̂0(N) | d− 1 ∈ N Ẑ
}
. If Γ̂ = Γ̂0(N) for a positive

integer N , a choice of ψ is given by ( a b
c d ) 	→ ψ(d) for a Dirichlet character ψ

modulo N . Then ψ is a Hecke character whose restriction to Z×
N =

∏
�|N Z×

� is
given by ψ. Thus as usual, if we lift ψ to A× by ψ∗(��) = ψ(�) for � prime to N ,
we have ψ = ψ∗| · |−k

A . We write simply Sk(N,ψ) for Sk(Γ̂0(N),ψ). Then we
have Sk(N,ψ) ∼= Sk(Γ0(N), ψ) via f ↔ f . Note that f ∈ Sk(Γ0(N), ψ) satisfies
f(γ(z)) = ψ(a)−1f(z)j(γ, z)k for γ = ( a b

c d ) ∈ Γ0(N) (note that ψ(a) = ψ−1(d)),
which could be a common definition of Sk(Γ0(N), ψ)).

If we start with an antiholomorphic modular form f(z) ∈ Sk(Γ, ψ), we lift
it to the adelic one f by f(αu) = f(u∞(i))ψ(u)j(u∞,−i)−k for α ∈ S(Q) and
u ∈ Γ̂. Again f(αu) = f(u∞(i))ψ(u)j(u∞, i)−k for α ∈ S(Q) and u ∈ Γ̂. The
corresponding spaces of antiholomorphic adelic modular forms are written as
Sk(Γ̂,ψ) and Sk(N,ψ).

1.2. Weil representation
Let (V,Q) be a quadratic space over Q with dimension 2d. The quadratic form
V 
 x 	→ Q(x) ∈ Q produces a Q-bilinear symmetric pairing s(x, y) = Q(x + y)−
Q(x)−Q(y). If V = D and Q(x) = xxι = N(x) (for the reduced norm N : D → Q
and the main involution ι), then s(x, y) = Tr(xyι). If V = K and Q = NK/Q, then
s(x, y) = TrK/Q(xyc) (〈c〉 = Gal(K/Q)). Write S(VA) for the space of Schwartz-
Bruhat functions on VA = V ⊗Q A. The group S(Q) is generated by ( 0 1

−1 0 )
and upper triangular matrices, so by the density of S(Q) ⊂ S(A(v)) diagonally
embedded (removing one place v), S(A(v)) is topologically generated by these
elements. The Weil representation r of S(A) on S(VA) is defined as follows:

r
(

1 u

0 1

)
φ(v) = eA

(
Q(v)u

)
φ(v),

r
(

a 0
0 a−1

)
φ(v) = χV (a)|a|dAφ(av), and(1.1)

r
(

0 1
−1 0

)
φ(v) = γV φ̂(v),

where χV : A×/Q× →{±1} is a Hecke character, eA : A/Q → C× is an additive
character with eA(x∞) = exp(2πix∞) for x∞ ∈ R, γV is an eighth root of unity
both determined by (V,Q) (see [KRY, Section 8.5.3]), and φ̂ is the Fourier trans-

form with respect to eA(s(x, y)) normalized so that ̂̂
φ(x) = φ(−x). We have the

following (cf. [KRY, Section 8.5.3] and [Hi5, Proposition 2.61]).

• If (V,Q) = (M2(Q),±det) for the determinant det : M2(Q) → Q, χD =
γD = 1.

• If (V,Q) = (K,±NK/Q) for an imaginary quadratic field K, χV =
(K/Q

)
and γV = ∓

√
−1.

Let OV be the orthogonal group, and let GOV be its similitude group, so

GOV (A) =
{
α ∈ GL(V ⊗Q A)

∣∣ Q(αx) = νV (α)Q(x) with νV (α) ∈ A×}
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and OV = Ker(νV : GOV → Gm). We let g ∈ GOV (A) act on S(VA) by

L(g)φ(v) = |νV (g)|−d/2
A φ(g−1v).

Then by [We1], the actions r and L commute on S(A) × OV (A), so we may
regard r⊗L as a representation of S(A)×OV (A). The following result is a main
theorem of [We1, théorème 4].

THEOREM 1.1

The generalized theta series of Siegel and Weil

θS(Φ)(x;g) =
∑
v∈V

(
r(x)L(g)

)
Φ(v) (for each Φ ∈ S(VA))

gives an automorphic form defined as a function on (S(Q)\S(A)) × (OV (Q)\
OV (A)).

We define two projections x 	→ xS and x 	→ Sx of GL(2) to S by xS = xα−1
det(x) and

Sx = α−1
det(x)x for αt = ( 1 0

0 t ). Let GV = {(x, g) ∈ GL(2)×GOV | det(x) = νV (g)}.
Then we have the following skew commuting relation for (x, g) ∈ GV (A):

(1.2) r(xS) ◦L(g) = L(g) ◦ r(Sx).

Thus we may extend the representation r⊗L to a representation of GV (A) such
that r(xS)⊗L(g) = L(g)⊗ r(Sx). We can still think of

(1.3) θG(φ)(x;g) :=
∑

v

r(xS)◦L(g)φ(v) =
∑

v

L(g)◦r(Sx)φ(v) =: θG(φ)(g;x).

In this definition, the variables x and g are not independent, so we write θG(x;g)
if we use the expression r(xS)◦L(g), and we write θG(g;x) if we use the expression
L(g) ◦ r(Sx) (although they produce the same function).

LEMMA 1.2

The above extended theta series θG(φ)(x;g) on GV (A) is left GV (Q)-invariant;
that is, it factors through GV (Q)\GV (A).

Proof
Take ξ ∈ GOV (Q). Since GOV (Q) leaves stable the vector space V ⊂ VA, noting
that S(αξx) = Sx and |νV (ξ)|A = 1 for ξ ∈ GOV (Q), we have

θG(φ)(ξg;αν(ξ)x) =
∑
v∈V

L(ξg)
(
r(S(αν(ξ)x))φ

)
(v)

=
∑

v

|νV (ξg)|−d/2
A

(
r(S(αν(ξ)x))φ

)
(g−1ξ−1v)

=
∑

v

|νV (g)|−d/2
A

(
r(Sx)φ

)
(g−1ξ−1v)

=
∑

v

|νV (g)|−d/2
A

(
r(Sx)φ

)
(g−1v) = θG(φ)(g;x).
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Thus θG(φ) is left invariant under (αν(ξ), ξ) ∈ G(Q). Since (α, ξ) ∈ G(Q) can be
written as (αν(ξ), ξ)(Sα,1), we now only need to prove left invariance of θG(φ)
under S(Q). Since (αx)S = α(xS) for α ∈ S(Q), we see that

θG(φ)(αx;g) =
∑

v

r
(
(αx)S

)(
L(g)φ

)
(v) = θS

(
L(g)φ

)(
α(xS); 1

)
(∗)
= θS

(
L(g)φ

)
(xS ; 1) = θG(φ)(x;g),

where the identity at (∗) follows from S(Q)-invariance of θS (see Theorem 1.1).
�

1.3. Partial Fourier transform
Let D = (M2(Q),±det). Then s(x, y) is the trace pairing 〈x, y〉 := Tr(xyι) for the
main involution ι. We define the partial Fourier transform φ 	→ φ∗ for φ ∈ S(DA)
as in [Hi4, Section 2.4]:

(1.4) φ∗
(

a b

c d

)
=

∫
A2

φ

(
a′ b′

c d

)
eA(ab′ − ba′)da′ db′,

where eA : A/Q → C× is the additive character with eA(x∞) = exp(2πix∞) for
x∞ ∈ R and da′ db′ is the self-dual measure with respect to this Fourier transform.

Let φ be a Schwartz-Bruhat function on DA. Following [Hi4, (2.18)], we
choose φ such that φ = φ(∞) ⊗ φ∞ with φ(∞) : D

(∞)
A → C and φ∞ : D∞ → C

given, for (τ, z,w) ∈ H3, by

Ψk(τ ; z,w)(v)
(1.5)

= Im(τ)
( Im(τ)[v; z,w]

Im(z) Im(w)

)k

e
(
−det(v)τ + i

Im(τ)
2 Im(z) Im(w)

|[v; z,w]|2
)

for e(x) = exp(2πix) and [v; z,w] = −Tr(vι · t(z,1)(w,1)J) = −(w,1)Jvι( z
1 ) =

(z,1)Jv(w
1 ) = wcz − aw + dz − b with J = ( 0 1

−1 0 ) and v = ( a b
c d ). We have

[g−1vh; z,w] = [v;g(z), h(w)] det(g)−1j(g, z)j(h,w),

[v;g(z), h(w)]
Im(g(z)) Im(h(w))

= det(h)−1j(g, z)j(h,w)
[g−1vh; z,w]
Im(z) Im(w)

,(1.6)

|[g−1vh; z,w]|2
Im(z) Im(w)

= det(g−1h)
|[v;g(z), h(w)]|2

Im(g(z)) Im(h(w))
,

where j
(
( a b

c d ), τ
)

= cτ + d. Consider Siegel’s theta series θk(φ(∞))(τ ; z,w) =∑
v∈D φ(v). As shown in [Hi4, Proposition 2.2], Poisson summation formula tells

us the following.

LEMMA 1.3

We have θk(τ ; z,w;φ(∞)) = θk(z; τ,w;φ∗(∞)).

By Lemma 1.3, we get the following version of [Sh3, Part II, Proposition 5.1] (see
[Hi4, Theorem 3.2]).
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THEOREM 1.4

Suppose that f is a holomorphic cusp form of weight k > 0. Let Γ be a congruence
subgroup of SL2(Q) fixing f(τ)θ(φ)(τ). Then we have∫

Γ\H

θk(φ(∞))(τ ; z,w)f c(τ)dμ(τ)

= (2i)k
∑

α∈Γ\M2(Q);det(α)>0

φ∗(∞)(εα) exp
(
2πidet(α)z

)
f |kα(w),

where dμ(τ) is the invariant measure η−2 dξ dη on H for τ = ξ + iη, ε = ( −1 0
0 1 ),

fc(z) = f(−z), and f |kα(w) = det(α)k−1f(α(w))j(α,w)−k for α ∈ M2(Q) with
positive determinant.

1.4. Optimal Schwartz-Bruhat function
Let N be a positive integer, and let K be an imaginary quadratic field with
discriminant d(K). Define d0(K) to be d(K)/4 or d(K) according as 4|d(K) or
not. We split the set of prime factors in N · d0(K) into two disjoint sets A and
C = C0 �C1 (so A�C = {� | N · d0(K)}). We put C1 = {� | d0(K)}. Decompose
N =

∏
�∈A∪C �ν(�), and assume that � ∈ A ⇒ ν(�) > 0 (but not necessarily the

converse). Also, ν(�) could be zero for � ∈ C.

DEFINITION 1.5

Let

Δ̂ = Δ̂0(A,C;N) = Δ̂0(A,C0,C1;N)⊂ M2(Ẑ)∩GL2(A(∞))

be the semigroup made up of elements ( a b
c d ) ∈ M2(Ẑ) satisfying the following

conditions:

(a) a− 1 ∈ N Ẑ,
(c) c� ∈ N2

� Z� for � ∈ A,c� ∈ �jN�Z� for � ∈ Cj for j = 0,1,

where N� = �ν(�) is the �-primary part of N .

We put N1 = N
∏

�∈C1
�. Write δX for the characteristic function of a set X .

Take s, t ∈ Ẑ× with t ≡ s ≡ 1 mod NCẐ, where NC is the C-part of N . Define
φ∗ = φ∗

t,s to be a Schwartz-Bruhat function on M2(A(∞)) given by

(1.7) φ∗
�

(
a b

c d

)
=

{
δΔ̂�

if � /∈ A,

δ(s�+N�Z�)(a)δZ�
(b)δN�(t�+N�Z�)(c)δZ�

(d) if � ∈ A.

Then φ∗
s,t depends only on (s, t) mod N and is the characteristic function of

γs,tΔ̂(A,C;N) for γs,t = ( s 0
0 s−1 )( 1 0

stN 1 ) ∈ SL2(Ẑ). Let

Γ(A,C;N) = SL2(Z)∩ Δ̂(A,C;N) and

Γ̂(A,C;N) = SL2(Ẑ)∩ Δ̂(A,C;N),(1.8)
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U(A,C;N)

=
{(a b

c d

)
∈ Δ̂(A,C;N)∩GL2(Ẑ)

∣∣∣ a� ≡ d� modN�Z� for � ∈ A
}
.

Note that γs,t normalizes U(A,C;N), Γ̂(A,C;N), and Γ(A,C;N).
Define φs,t(x) := (φ∗

s,t)
∗(εx). Then by [We3, Chapter VII, Section 7, Propo-

sition 13], we have

φ�

(
a b

c d

)
(1.9)

=

⎧⎪⎪⎨⎪⎪⎩
δM2(Z�) if � /∈ A∪C,

δZ�
(a)e�(−sb)δN −1

� Z�
(b)δN�(t+N�Z�)(c)δZ�

(d) if � ∈ A,

δZ�
(a)e�(−b)δN −1

� Z�
(b)δ�jN�Z�

(c)δZ�
(d) if � ∈ Cj (j = 0,1),

where e�(x) = exp(−2πi[x]�) for the fractional part [x]� of x ∈ Q�. This shows

(1.10) φs,t(v) = φ1,1(α
−1
t vαs) and φ∗

s,t(v) = φ∗
1,1(α

−1
t β−1

s v)

for αt = ( 1 0
0 t ) and βt = ( t 0

0 1 ). By computation, we conclude that φs,t(γxδ−1) =
φs,t(x) for γ, δ ∈ Γ(A,C;N). Write, for Ψk in (1.5),

Θs,t(τ ; z,w) = Θ(φs,t ⊗Ψk)(τ ; z,w).

Then, by [Hi4, Proposition 2.3],

(1.11) Θs,t

(
γ(τ);α(z), β(z)

)
= j(γ, τ)−kj(α, z)kj(β,w)kΘs,t(τ ; z,w)

for (γ,α,β) ∈ Γ(A,C;N)3 and j
(
( a b

c d ), z
)

= (cz + d). (Recall also J
(
( a b

c d ), z
)

=
(ad− bc)−1/2(cz + d).)

LEMMA 1.6

Suppose f ∈ Sk(Γ0(N1), ψ) for N1 = N
∏

�∈C1
�. Then we have∑

α∈Γ(A,C;N)\M2(Q);det(α)>0

φ∗
s,t(εα)e

(
det(α)z

)
f |kα(w)

= ψ(s)−1
∞∑

n=1

e(nz)f |T (n)(w),

where e(z) = exp(2πiz).

Proof
Abusing notation, we take an element γ in SL2(Z) with γ ≡ γs,t mod N2 (by the
strong approximation theorem) and define f |kγs,t by f |kγ. Also, pick σs ∈ SL2(Z)
with σs ≡ γs,t mod N . By definition, we have∑

α∈Γ(A,C;N)\M2(Q);det(α)>0

φ∗
s,t(εα)e

(
det(α)z

)
f |kα(w)

=
∑

α∈Γ(A,C;N)\M2(Q)∩Δ̂(A,C;N);det(α)>0

e
(
det(α)z

)
(f |kγs,t)α(w)
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= ψ(s)−1
∑

α∈Γ(A,C;N)\Δ(A,C;N)

e
(
det(α)z

)
f |kσsα(w)

= ψ(s)−1
∞∑

n=1

e(nz)f |T (n)(w).

�

Thus if f is a normalized Hecke eigenform with f |T (n) = a(n, f)f , we have

(1.12) Θφ1,1
(f) =

∫
Γ(A,C;N)\H

Θs,t(τ ; z,w)f c(τ)dμ(τ) = (2i)kψ(s)−1f(z)f(w).

This is a version of a formula in [Sh3, Part II, Proposition 5.1] (see also [P,
page 923]).

1.5. Adelic theta series
Recall that S = SL(2)/Z. Regard (g,h) ∈ S(A)2 as a linear automorphism of
D⊗Q A by �(g,h) : v 	→ gvh−1 in OD. This gives rise to an isogeny S ×S → OD.
We pull back to S(A)3 the theta series θS(φ)(x;g,h) on S(A) × OD(A) by this
isogeny, and we still write θS(φ) for the resulting automorphic form on S(A)3.

As for the classical Siegel’s theta series, we first extend θk(φ(∞))(τ ; z,w) to
S(A) × S(A) × S(A) as in Section 1.1 and write it as θk(φ(∞))(x;g,h). Thus
θk(φ(∞)) is a function on (S(Q)\S(A))3. We have the following.

LEMMA 1.7

Suppose φ(v) = φ(∞)(v(∞))Ψk(i; i, i)(v∞). Then for (x;g,h) ∈ S(A)3, we have
θS(φ)(x;g,h) = θk(φ(∞))(x;g,h).

Proof
First, suppose that θk(φ(∞))(x∞;g∞, h∞) = θS(φ)(x∞;g∞, h∞) by definition.
Thus they coincide on (S(Q)S(R))3. By the strong approximation theorem,
(S(Q)S(R))3 is dense in S(A)3; thus they are equal on the entire S(A)3. We need
therefore to show θS(φ)|S(R)3 = θk(φ(∞))|S(R)3 . Note that φ∞(v) = Ψk(i; i, i) =
[v;−i,−i]ke(det(v)i + (i/2)|[v; i, i]|2). Let gτ =

√
Im(τ)

−1
( Im(τ) Re(τ)

0 1
) for τ ∈ H,

so gτ (i) = τ . Note that θk(φ(∞)) is of weight (−k, k, k) in (τ , z,w) (cf. (1.11)),
and hence

θk(φ(∞))(gτ ;gz, gw) =
∑

v

Ψk(τ ; z,w)(v)J(gτ ,−i)kJ(gz, i)−kJ(gw, i)−k.

We take the quadratic space (D,−det). From (1.6) and (1.1) we get (see also
Section 3.1)

L(gz, gw)
(
r(gτ )Ψk(i; i, i)

)
(v) = Ψk(τ ; z,w)J(gτ ,−i)kJ(gz, i)−kJ(gw, i)−k.

This shows

θS(φ)|S(R)3 =
∑

v

L(gz, gw)
(
r(gτ )Ψk(i; i, i)

)
(v) = θk(φ(∞))|S(R)3

as desired. �



786 Haruzo Hida

We further extend θ(φ)(x;g,h) to

G(A) =
{
(x, g,h) ∈ GL2(A)3

∣∣ det(x) = det(g)/det(h)
}

by

(x;g,h) 	→ θS(φg,h)
(
x

(
1 0
0 det(x)

)−1

; 1,1
)

(1.13)

= θS(φg,h)
(
1,1;

(
1 0
0 det(x)

)−1

x
)

for φg,h(a) = |det(h)/det(g)|Aφ(g−1ah). We write the above theta function on
G(A) as Θ(φ)(x;g,h).

Note that the action (g,h)v = gvh−1 for v ∈ D gives rise to an isogeny
from G to GD and that we regard θG(φ)(x;g,h) = θS(φ)(xS ;g,h) as a function
on G(Q)\G(A) by pullback. Note that θG(φ)(g,h;x) can be defined using the left
projection GL(2) 
 x 	→ Sx ∈ S. By (1.2), it turns out the two definitions pro-
duce the same function θG(φ). In this sense, we write Θ(φ)(g,h;x) = θG(g,h;x)
if we adopt this left projection.

LEMMA 1.8

The function Θ(φ)(x;g,h) is an automorphic form on G(Q)\G(A) and is equal
to θG(φ)(x;g,h) = θG(φ)(g,h;x). Moreover, Θ(φ)(x; ζg, ζh) = Θ(φ)(x;g,h) for
ζ ∈ Z(A).

Proof
For ξ, η ∈ Q, we have

Θ(φαξg,αηh)(αξg,αηh;αξη−1x) =
∑

v

φx(g−1α−1
ξ vαηh)

for a Schwartz-Bruhat function φx dependent only on x ∈ S(A) (given by the
Weil representation r(x)φ). Since v 	→ α−1

ξ vαη is a linear automorphism of D,
we get

Θ(φαξg,αηh)(αξg,αηh;αξη−1x) = Θ(φαξg,αηh)(g,h;x).

Thus we only need to show Θ(φ)(αx;βg, γh) = Θ(x;g,h) for α,β, γ ∈ S(Q). This
follows from Weil’s generalized Poisson summation formula (see Theorem 1.1).
Thus θG(φ) = Θ(φ) on S(A)3 by Lemma 1.7. Then the way of extending the two
to G(A) is the same, so we get θG(φ) = Θ(φ). The last assertion follows from

φg,h(v) = |det(h)/det(g)|Aφ(g−1vh) = |det(ζh)/det(ζg)|Aφ(g−1ζ−1vζh)

= φζg,ζh(v),

as ζ is in the center. �
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1.6. Adelic theta integral
For a Dirichlet character ψ modulo N , we define ψ∗ : A×/Q× → C× by ψ∗(s(N)) =
ψ(s) for positive integers s prime to N . Recall that ψ = ψ∗| · |−k

A . Write
θA,C,N for Θ(φ) = θG(φ) for φ = φ1,1 ⊗ Ψk(i; i, i) given by x 	→ φ1,1(x(∞)) ×
Ψk(i; i, i)(x∞). For f ∈ Sk(Γ0(N1), ψ), we define fc(z) = f(−z) ∈ Sk(Γ0(N1), ψ)
and lift them to adelic modular forms on GL2(A):

fc(g∞) = j(g∞, i)−kfc

(
g∞(i)

)
∈ Sk(N1,ψ)

and

f(g∞) = j(g∞, i)−kf
(
g∞(i)

)
∈ Sk(N1,ψ).

We then have

f(ζγg∞u) = ψ(ζ)ψ(dN )f(g∞) and fc(ζγg∞u) = ψ(ζ)ψ(dN )fc(g∞)

with ζ ∈ Z(A), γ ∈ GL2(Q) and u = ( a b
c d ) ∈ Γ̂0(N1) (see [Hi3, Proposition 3.5]).

The following result is the reason why we call our choice of the Schwartz-
Bruhat function optimal.

PROPOSITION 1.9

Let X := S(Q)\S(A)/SO2(R), and take the subgroup U = Γ̂(A,C;N) ⊂ SL2(Ẑ)
fixing the product θA,C,N (xαdet(g−1h);g,h)f c(x). Write dμ(x) for the SL2(A)-
invariant measure on X inducing X/U = Γ(A,C;N)\H the measure (1/2) ×
Im(τ)−2|dτ ∧ dτ |. Suppose that f ∈ Sk(Γ0(N1), ψ) (for N1 = N

∏
�∈C1

�) is a
normalized Hecke eigenform. Then we have∫

X

θA,C,N (xαdet(g−1h);g,h)f c(x)dμ(x) = (2i)kψ
(
det(g)

)−1
f(g)f(h).

Proof
Since U ∩ SL2(Q) = Γ(A,C;N), we have from Lemma 1.6, for g1, h1 ∈ S(A) and
s, t ∈ Ẑ×, ∫

X

θS(φs,t)(x;g1, h1)f c(x)dμ(x) = (2i)kψ(s)−1f(g1)f(h1)

= (2i)kψ∗(sN )f(g1)f(h1)

as dμ(x) is the pullback of the measure dμ(τ) = (1/2) Im(τ)−2|dτ ∧ dτ | on Γ\H.
Recall that αt = ( 1 0

0 t ) for t ∈ A× with t∞ = 1. Since GL2(A) = GL2(Q)GL2(Ẑ)×
GL+

2 (R), we may assume that g,h ∈ GL2(Ẑ). Then, for t = det(g) and s = det(h),
|t|A = |s|A = 1, and φ = φ1,1, we have φg,h(v) = φ1,1(g−1vh) = φ1,1(α

−1
t g−1

S vhS ×
αs) = φs,t(g

−1
S vhS). Thus we have, for gS , hS ∈ S(A),∫

X

ΘG(φ1,1)(xαt−1s;g,h)f c(x)dμ(x)

=
∫

X

θS(φs,t)
(
(xαt−1s)S ;gS , hS

)
f c(x)dμ(x)
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=
∫

X

θS(φs,t)(x;gS , hS)f c|αt(x)dμ(x)

= (2i)kψ∗(sN )f(gS)f(hS) = (2i)kψ∗(sN )f(gα−1
t )f(hα−1

s )

= (2i)kψ∗(sN )ψ∗(tN )−1ψ∗(sN )−1f(g)f(h) = (2i)kψ
(
det(g)

)−1
f(g)f(h)

as ψ∗(t) = ψ∗(tN ) = ψ(t) since t ∈ Ẑ×. The left-hand side and the right-hand side
are both functions on GL2(A) × GL2(A) left invariant under GL2(Q)2, invari-
ant under the diagonal action of Z(A), and right invariant under Γ̂0(N1) (by
Lemma 1.8), so they must coincide over GL2(A)2. �

1.7. Adjustment of Schwartz-Bruhat function for convolution
We now modify the theta series so that our computation of a Rankin convolution
is easier. Recall the fixed imaginary quadratic field K of discriminant d = d(K).
Let d0(K) be d(K)/4 or d(K) depending on whether or not we have 2|d(K).
Let N1 = N

∏
�∈C1

�. Write N� = �ν(�), and we assume that �|d0(K) ⇒ � ∈ C.
Let C ′

+ = {� ∈ C | ordl(N1) > 0}. Note that C ′
+ ⊃ C0. We decompose C0 =

Ci � Cs � Cr so that Ci is made of primes inert in K and Cr is made of 2 if
4 ‖ d(K) and ν(2) > 0 (so Cs is made of split primes). Since Ci ∪Cr ∪C1 is made
of primes in C nonsplit in K/Q, we often write Cns for Ci ∪ Cr ∪ C1. Define a
new function ϕs,t( a b

c d ) given by

(1.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δM2(Z�) if � /∈ A∪C ′
+,

δZ�
(a)e�(−sb)δN −1

� Z�
(b)δN�(t+N�Z�)(c)δZ�

(d) if � ∈ A,

δZ�
(a)e�(−b)δN −1

� Z�
(b)δN�Z�

(c)

× (�ν(�)δ�νZ�
(d)− �ν(�)−1δ�ν(�)−1Z�

(d)) if � ∈ Cs,

δZ�
(a)e�(−b)δN −1

� Z�
(b)δN1,�Z�

(c)δZ�
(d) if � ∈ Cns,

where e�(x) = exp(−2πi[x]�) for the fractional part [x]� of x ∈ Q�. Then ϕ∗
s,t is

given by

(1.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δM2(Z�) if � /∈ A∪C ′
+,

δs+N�Z�
(a)δZ�

(b)δN�(t+N�Z�)(c)δZ�
(d) if � ∈ A,

δ1+N�Z�
(a)δZ�

(b)δN�Z�
(c)

× (�ν(�)δ�νZ�
(d)− �ν(�)−1δ�ν(�)−1Z�

(d)) if � ∈ Cs,

δ1+N�Z�
(a)δZ�

(b)δN1,�Z�
(c)δZ�

(d) if � ∈ Cns.

Since for � ∈ A∪C we have Δ̂(A,C;N)� =
⊔∞

j=0 Δ̂(A,C;N)×
� ( 1 0

0 �j )Δ̂(A,C;N)×
� ,

we get

Supp(φs,t,�) = γs,tΔ̂(A,C;N)� =
∞⊔

j=0

γs,tΔ̂(A,C;N)×
�

(
1 0
0 �j

)
Δ̂(A,C;N)×

� ,

and Supp(δs+N�Z�
(a)δZ�

(b)δN�(t+N�Z�)(c)δ�εZ�
(d)) =

⊔∞
j=0 γs,tΔ̂(A,C;N)×

� ×
( 1 0
0 �jε )Δ̂(A,C;N)×

� . By Lemma 1.3 combined with [Hi4, Proposition 2.3], this
shows the following.
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LEMMA 1.10

The theta series θG(ϕ1,1)(x;g,h) is an automorphic form on U(A,C;N) with
respect to the variables x and h.

We write ΘA,C,N (x;g,h) for ΘG(ϕ1,1) and Θ(N)(f) for
∫

X
ΘA,C,N (xαdet(g−1h);

g,h)f c(x)dμ(x). In basically the same way as in the proof of Proposition 1.9, we
get the following.

LEMMA 1.11

Let the notation be as in Proposition 1.9. Let M =
∏

�∈Cs
N�. Suppose that

f ∈ Sk(Γ0(N1), ψ) for N1 = N
∏

�∈C1
� is a normalized Hecke eigenform. Then

we have

Θ(N)(f) = (2i)kψ
(
det(g)

)−1 ∑
t|M

μ(t)a(M/t, f)(M/t)f |[β(∞)
t/M ](g)f(h)

for the Möbius function μ of Q, where f |[β(∞)
t/M ](g) = f(gβ

(∞)
t/M ) for the finite part

β
(∞)
t/M ∈ GL2(A(∞)) of βt/M = ( t/M 0

0 1
) ∈ GL2(Q).

Proof
Since (f |[M/t])(g∞(i))j(g∞, i)−k = f(gβ

(∞)
t/M ), the proof is exactly the same as

that of Proposition 1.9 if we get∫
Γ(A,C;N)\H

ΘG(ϕ1,1)(τ ; z,w)f c(τ)dμ(τ)

(1.16)
= (2i)k

∑
t|M

μ(t)(M/t)a(M/t, f)f |[M/t](z)f(w)

for a Hecke eigenform f ∈ Sk(Γ0(N1), ψ). Note here that∑
t|M

μ(t)(M/t)δ(M/t)ZN
=

∏
�∈Cs

(�ν(�)δ�νZ�
− �ν(�)−1δ�ν(�)−1Z�

)

for ZN =
∏

�∈A∪C Z�. For a positive integer m, define

Δm(A,C;N) =
{
α ∈ Δ(A,C;N)

∣∣ m|det(α) > 0
}
.

By Theorem 1.4, the left-hand side of (1.16) is equal to∑
t|M

μ(t)
∑

α∈Γ(A,C;N)\(M2(Q)∩γ1,1Δ̂M/t(A,C;N)

ϕ∗
1,1(εα)e

(
det(α)z

)
f |kα(w)

=
∑
t|M

μ(t)
M

t

∑
α∈Γ(A,C;N)\ΔM/t(A,C;N)

e
(
det(α)z

)
f |kα(w)

=
∑
t|M

μ(t)
M

t

∞∑
n=1, M

t |n

e(nz)f |T (n)(w)
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=
∑
t|M

μ(t)
M

t

∞∑
n=1

a
(
n(M/t), f

)
e
(
n(M/t)z

)
f(w)

=
∑
t|M

μ(t)
M

t
a(M/t, f)f |[M/t](z)f(w),

as desired. �

2. Splitting of quaternionic theta series

Let K be an imaginary quadratic field with discriminant d(K). Write O for the
integer ring of K. We split the quadratic space (D,det) = (K,N)⊕ (K,−N) for
the norm form N = NK/Q and accordingly split the theta series into a product
of theta series of K.

2.1. Torus integral
Choose z1 ∈ O such that O = Z[z1] with z1 ∈ H, and define ρ : K ↪→M2(Q) by a
regular representation:

ρ(ξ)
(

z1

1

)
=

(
z1ξ

ξ

)
,

and consider D as a right (K× × K×)-module by (ξ, η)x = ρ(ξ)−1xρ(η). Note
that ρ(b) = ρ(b)ι. Let T be the algebraic torus defined over Q whose Q-points
are K× × K×. We embed T into G by (ξ, η) 	→ (αN(ξη−1);ρ(ξ), ρ(η)). We then
choose g1 ∈ GL2(A) and g1,∞(i) = z1.

LEMMA 2.1

Let χ : K×
A /K× → C× be a Hecke character with χ−1|A× = ψ and χ(a∞) = ak

∞.
Then a 	→ f(ρ(a)g1)χ(a) factors through I−

K := K×
A /K×A×K×

∞ (the anticyclo-
tomic idèle class group).

Proof
For z ∈ Z(A), we have f(zx) = ψ(z)f(x), so a 	→ χ(a)f(ρ(a)x) factors through
K×\K×

A /A×. Let K1 be a torus over Q given by K1(A) = {ξ ∈ K⊗Q A | ξξ = 1},
where the complex conjugation ξ 	→ ξc = ξ is induced from K. We take a∞ ∈ K×

∞.
Then ρ(a∞)g1,∞(i) = ρ(a∞)(z1) = z1, and we have, writing f ′ for f

g
(∞)
1

as in
Section 1.1,

f
(
ρ(a∞)g1

)
= f ′(ρ(a∞)g1,∞(i)

)
j
(
ρ(a∞)g1,∞, i

)−k

= f ′(ρ(a∞)(z1)
)
j
(
ρ(a∞), z1

)−k
j(g1,∞, i)−k

= f ′(z1)j
(
ρ(a∞), z1

)−k
j(g1,∞, i)−k = f(g1)a−k

∞ .

Since χ(a∞) = ak
∞, we have f(ρ(a∞)g1)χ(a∞) = f(g1). Thus the function factors

through I−
K . �
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Let F be a number field with integer ring OF . Normalize the Haar measure
d×

F a on F ×
A /F ×

∞ so that
∫

Ô×
F

d×a = 1. Then taking a fundamental domain Φ ⊂
F ×

A /F ×
∞ of IF = F ×\F ×

A /F ×
∞, we get the measure d×

F a on IF induced by d×
F a on

Φ ∼= IF . Thus
∫

Ô×
F /O×

F
d×

F a = |O×
F |−1 for F = Q and K. Write d×a for d×

Ka. We

have an exact sequence: 1→ IQ → IK → I−
K → 1. We define a measure d−a on I−

K

by
∫

IK
φ(a)d×a =

∫
I−

K

∫
IQ

φ(ab)d×
Q bd−a. Fix a Hecke character χ : K×

A /K× →
C× with χ−1|A× = ψ. Taking χ as above such that χ−1|A× = ψ and χ(a∞) = ak

∞.
We put, for f ∈ Sk(N,ψ),

Lχ(f) =
∫

IK

f
(
ρ(a)g1

)
χ(a)d×a,

so ∫
I−

K

f
(
ρ(a)g1

)
χ(a)d−a = vol(IQ)−1Lχ(f) = 2Lχ(f),

where vol(IQ) =
∫

IQ
d×

Qa = 1/2. Then by Lemma 1.11, writing T = T (Q)\T (A)/
T (R) = IK × IK for simplicity, we get

(2i)k
∑

0<t|M
μ(t)a(M/t, f)(M/t)Lχ(f |[β(∞)

t/M ])Lχ(f)

(2.1)
=

∫
T

ψ
(
N(a)det(g1)

)
Θ(N)(f)

(
ρ(a)g1, ρ(b)g1

)
χ(a)χ(b)d×ad×b.

We have, for t = N(a−1b),∫
T

ψ
(
N(a)det(g1)

)
Θ(N)(f)

(
ρ(a)g1, ρ(b)g1

)
χ(a)χ(b)d×ad×b

=
∫

X

∫
T

ψ
(
N(a)det(g1)

)
×ΘA,C,N

(
xαt;ρ(a)g1, ρ(b)g1

)
χ(a)χ(b)d×ad×b · f c(x)dμ(x).

By (1.13), we have, for t = N(a−1b),

(2.2) ΘA,C,N

(
xαt;ρ(a)g1, ρ(b)g1

)
= |t|A

∑
v∈D

r(x)
(
ϕ1,1(g−1

1 ρ(a)−1vρ(b)g1)
)
.

2.2. Factoring the theta series
We now study ΘA,C,N (xαt;ρ(a)g1, ρ(b)g1). Choose ε ∈ GL2(Q) so that (1, ε) is
a basis of D over K (⇔ D = ρ(K) + ρ(K)ε), ε2 = 1 and ρ(K) ⊥ ρ(K)ε under
s(x, y) = Tr(xyι) and ερ(ξc) = ρ(ξ)ε for ξ ∈ K and 〈c〉 = Gal(K/Q). The norm
form of D induces two quadratic forms on K: one Q1 by pullback via ρ : K ↪→
D, another Qε by pullback via ρ · ε : K ↪→ D (ρ · ε(v) = ρ(v)ε ∈ D). Let Tj/Q

(j = 1, ε) be the orthogonal similitude group of (K,Qj), which is a torus whose
group of Q-points is isomorphic to K×. We have (a, b) ∈ (K×)2 acting on D by
x 	→ x · (a, b) = ρ(a)−1xρ(b). Thus we have(

ρ(x) + ρ(y)ε
)
· (a, b) = ρ(ab−1)−1ρ(x) + ρ(ab

−1
)−1ρ(y)ε.
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The morphism π : T → T1 × Tε is given by (a, b) 	→ (ab−1, ab
−1

) = (α,β) identi-
fying T1(Q) = K× and Tε(Q) with K× by ρ. Note that Ker(π) is the diagonal
image of Gm/Q in T . Let T ′ = T1 × Tε. Assume the following two conditions.

(S1) The equivalence ord�(d(K)) = 1 ⇔ � ∈ C1, Cr is empty or a single-
ton {2} according as ν(2) = 0 or 4 ‖ d(K) and ν(2) > 0, where ord� : Q� → Z is
the discrete valuation with ord�(�) = 1.

(S2) All � ∈ A splits in K.

PROPOSITION 2.2

Assume (S1) and (S2). Then we have a decomposition

ΘA,C,N

(
x;ρ(a)g1, ρ(b)g1

)
= (−2i)kθ(φ1)(x,α)θ(φε)(x,β)

for theta series θ(φj) of Qj . Here ϕ
(∞)
1,1

(
g−1
1 (ρ(v)+ρ(w)ε)g1

)
= φ

(∞)
1 (v)φ(∞)

ε (w),
and the explicit form of φj and the choice of ε and g1 ∈ GL2(A) at each place are
given in the proof.

For the splitting in the proposition, condition (S2) is an absolute requirement.

Proof
We now prove Proposition 2.2. We start with the infinity place. By Lemma 1.7,
the infinity part of the Schwartz-Bruhat function defining ΘA,C,N is given by
Ψk(i; i, i), and L(g,h) ◦ r(x∞)Ψk(i; i, i)(v) is given roughly by Ψk(τ ; i, i)(g−1vh)
if x∞ = gτ (τ ∈ H) as in the proof of Lemma 1.7. More precisely, we have,
by (1.6),

Ψk(τ ; i, i)(g−1
1,∞vg1,∞)

Im(τ)

=
(
Im(τ)[g−1

1,∞vg1,∞;−i,−i]
)k

e
(
det(v)(−τ) + i

Im(τ)
2

|[g−1
1,∞vg1,∞; i, i]|2

)
= J(g1,∞, i)−2k

( Im(τ)[v; z1, z1]
Im(z1)2

)k

e
(
det(v)(−τ) + i

Im(τ)
2

|[g−1
1,∞vg1,∞; i, i]|2

)
=

( Im(τ)[v; z1, z1]
Im(z1)

)k

e
(
det(v)(−τ) + i

Im(τ)
2

|[g−1
1,∞vg1,∞; i, i]|2

)
,

where g1,∞ =
√

Im(z1)
−1/2

( Im(z1) Re(z1)
0 1

). Write v = ρ(ξ) + ρ(η)ε for ε ∈ D with

ερ(ξ)ε−1 = ρ(ξ). If K = Q[
√

d], taking z0 =
√

d
−1

, we may realize ρ0(a + b
√

d) =
( a b

db a ), so ρ0(η)( z0
1 ) = ( z0η

η ). We take ε for ρ0 to be ε0 = ( −1 0
0 1 ), and hence

〈ρ0(ξ), ρ0(η)ε0〉 = −Tr
(
ρ0(ξ)ε0ρ0(η)

)
= −Tr

(
ρ0(ξη)ε0

)
= −a + a = 0 (⇒ ρ0(K) ⊥ ρ0(K)ε0)

if ξη = a + b
√

d. Since any ρ is a conjugate of ρ0 : a + b
√

d 	→ ( a b
db a ), writing

ρ = αρ0α
−1 for α ∈ GL2(Q) with z1 = α(z0), we have 〈ρ(ξ), ρ(η)ε〉 = 0 with ε =

αε0α
−1. We thus have
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〈ρ(ξ) + ρ(η)ε, ρ(ξ′) + ρ(η′)ε〉 = 〈ρ(ξ), ρ(ξ′)〉+ 〈ρ(η)ε, ρ(η′)ε〉= Tr(ξξ
′
)−Tr(ηη′).

Thus the corresponding positive majorant is given by

〈ρ(ξ) + ρ(η)ε, ρ(ξ′) + ρ(η′)ε〉+ = TrK/Q(ξξ
′
) + TrK/Q(ηη′),

and defining p(z,w) =−t(z,1)(w,1)J (see [Hi4, (2.11)]), p(z1, z1) + p(z1, z1) and
ip(z1, z1)− ip(z1, z1) spanρ(K∞)ε (see [Hi4, Sections 2.1, 2.2]). In other words,

[ρ(ξ) + ρ(η)ε; z1, z1] = 〈ρ(ξ) + ρ(η)ε, p(z1, z1)〉 = 〈ρ(η)ε, p(z1, z1)〉

= (z1,1)Jρ(η)εt(z1,1) = (z1,1)Jερ(η)t(z1,1)(2.3)

= η[ε; z1, z1]

as ρ(η)t(z1,1) = ηt(z1,1), where we recall J = ( 0 1
−1 0 ). Similarly, we get

(2.4) [ρ(ξ) + ρ(η)ε; z1, z1] = ξ[1; z1, z1] = −2iξ Im(z1).

Note also that

(2.5) [ε; z1, z1] Im(z1)−1 =−2
√
−1.

Since for v = ρ(ξ) + ρ(η)ε we have

Im(τ)k+1 Im(z1)−k[v; z1, z1]ke
(
det(v)(−τ) + i

Im(τ)
2 Im(z1)2

|[v; z1, z1]|2
)

= (−2i)k Im(τ)k+1ηke
(1

2
(
−〈v, v〉Re(τ) + i Im(τ)〈v, v〉+

))
(2.6)

= (−2i)k Im(τ)k+1ηke(−ξξτ + ηητ),

we now set

φ1,∞(ξ) = φ1,∞(ξ; τ) = Im(τ)1/2e(−ξξτ),
(2.7)

φε,∞(η) = φε,∞(η; τ) = Im(τ)k+(1/2)ηke(ηητ).

For the quadratic space (K,−NK/Q), we have r(gτ )φ1,∞(ξ; i)J(gτ ,−i)−1 =
φ1,∞(τ ; ξ), and for the quadratic space (K,NK/Q), we have r(gτ )φε,∞(η; i) ×
J(gτ , i)−k = φε,∞(τ ;η).

Now suppose that � is a prime split in K. Choose a prime factor l|� in O,
and identify K� = Kl ×Kl = Q� ×Q�. We write ι = ι� for the projection of K� to
the left factor Kl and c ◦ ι� for the other. We make explicit later the choice of l.
Take h1,� such that h−1

1,�ρ(α)h1,� = ( ι�(α) 0
0 c(ι�(α)) ). For example, h1,� = ( z1 z1

1 1 ) ∈
GL2(Z�) does the job. For one choice of ε with ερ(ξ)ε−1 = ρ(ξ) for ξ ∈ K, all
other choices fill the double coset ρ(K×

� )ερ(K×
� ). Adjusting this way, we may

choose h1,� such that h−1
1,�εh1,� = ( 0 1

1 0 ) and det(h1,�) = 1, as det(ρ(K�)×) = Q×
� .

Then we define g1,� = h1,�( �ν(�) u
0 1

) for u = 1 if � ∈ A and u = 0 if � ∈ Cs, so
det(g1,�) = �ν . We simply write ι�(α) = α and c(ι�(α)) = α. Thus we have
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g−1
1,�

(
ρ(ξ) + ρ(η)ε0

)
g1,�

=

⎧⎪⎨⎪⎩
(

ξ−η �−ν(η−η)+�−ν(ξ−ξ)

�νη ξ+η

)
if � ∈ A,(

ξ �−νη

�νη ξ

)
if � ∈ Cs or � /∈ A�C � {∞}.

We define Cs (resp., A) for the set of this choice of split primes l over C+ := {� ∈
C | ν(�) > 0} (resp., over � ∈ A). For nonsplit primes over C, there is a unique
choice of primes over � in K. We write Cns for the set of nonsplit primes of K

over C+. Then C = Cs � Cns. Note that g1,� ∈ GL2(Z�) if � /∈ A�C � {∞}. Then
by definition, we get the following facts.

LEMMA 2.3

Suppose that �ν ‖ N and � splits in K, and recall that e�(x) = e(−[x]�) for
x ∈ Q�.

(1) If � ∈ A, we have

ϕ1,1,�

(
g−1
1,� (ρ(ξ) + ρ(η)ε)g1,�

)
= δOl

(ηl)δ(1+�νOl)
(ηl)e�

(
�−ν(1− ηl)

)
δO�

(ξ�)e�

(
�−ν(ξl − ξl)

)
.

(2) If � ∈ Cs, we have

ϕ1,1,�

(
g−1
1,� (ρ(ξ) + ρ(η)ε)g1,�

)
= δOl

(ξl)δO�
(η�)

(
N(l)νδl

ν (ξl)−N(l)ν−1δ
l
ν−1(ξl)

)
e�(−�−νηl).

(3) If � /∈ A∪C, we have ϕ1,1,�

(
g−1
1,� (ρ(ξ) + ρ(η)ε)g1,�

)
= δO�

(η�)δO�
(ξ�).

Proof
Assertions (2) and (3) are plain. We prove (1). Since ϕ1,1,� = φ1,1,�, we need to
analyze

δZ�
(ξl − ηl)δZ�

(ηl − ηl + ξl − ξl)e�

(
�−ν(ηl − ηl + ξl − ξl)

)
δ1+�νZ�

(ηl)δZ�
(ξl + ηl).

If δ1+�νZ�
(ηl) �= 0, we get

δZ�
(ξl + ηl)δZ�

(ξl − ηl) �= 0⇔ δO�
(ξ�) �= 0.

Thus we get δZ�
(ξl − ηl)δZ�

(ξl + ηl)δ1+�νZ�
(ηl) = δO�

(ξl)δ1+�νZ�
(ηl). Then we see

δZ�
(ξl − ηl)δZ�

(ηl − ηl + ξl − ξl)δ1+�νZ�
(ηl)δZ�

(ξl + ηl)

= δO�
(ξ�)δZ�

(ηl)δ1+�νZ�
(ηl).

�

We now deal with the case where � is inert or ramified in K with �ν ‖ N . First we
suppose that K� = Q�[

√
d0] with O� = Z�[

√
d0] is the �-adic integer ring of K�.

Thus d0 = d(K) if � is odd and d0 = (d(K))/4 if � = 2. For the moment, we
suppose that 2 is not inert in K/Q. Write ord�(d0) = j, and suppose that � ∈ Cj

if j > 0. We may take g1,� such that
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g−1
1,�ρ(a + b

√
d0)g1,� =

(
a �−νb

�νd0b a

)
and det(g1,�) = �ν .

Thus again g1,� ∈ GL2(Z�) if � /∈ A � C � {∞}. Again by definition, we get the
following.

LEMMA 2.4

Suppose that [K� : Q�] = 2 with �ν ‖ N and O� = Z�[
√

d0] for d0 = (d(K))/4 ∈ Z�.
(This implies that 2 ramifies if � = 2.) Writing ord�(d0) = j, suppose that � ∈ Cj

if j > 0 and � = 2 ∈ C0 if ord2(d(K)) > j = 0 and ν(2) > 0. For v = ρ(ξ) + ρ(η)ε
with ξ = a + b

√
d0, η = a′ + b′√d0, and ε = ( −1 0

0 1 ), we have, for δ = δZ�
,

ϕ1,1,�(g−1
1,�vg1,�)

=

⎧⎪⎪⎨⎪⎪⎩
δO�

(ξ)e�(−�−ν Tr(ξ/
√

d))δO�
(η)

× e�(−�−ν Tr(η/
√

d)) if � ∈ Cns and ν = ν(�) > 0,

δO�
(ξ)δO�

(η) if ν(�) = 0.

Proof
We find ρ(ξ) + ρ(η)ε = ( a−a′ �−ν(b+b′)

�νd0(b−b′) a+a′ ) for ξ = a + b
√

d and η = a′ + b′√d.
Suppose � ∈ Cns or ν(�) = 0. Then

ϕ1,1,�

(
ρ(ξ) + ρ(η)ε

)
=

⎧⎪⎪⎨⎪⎪⎩
δ(a− a′)δ(b + b′)e�(−�−ν(b + b′))

× δ�νd0Z�
(�νd0(b− b′))δZ�

(a + a′) if ν > 0,

δ(a− a′)δ(b + b′)δd0Z�
(d0(b− b′))δ(a + a′) otherwise.

Since a + a′ ∈ Z� and a − a′ ∈ Z� ⇔ 2a,2a′ ∈ 2Z� ⇔ a, a′ ∈ Z� (as a + a′ ≡ a− a′

mod 2 if � = 2), we find that δ(a − a′)δ(a + a′) = δ(a)δ(a′). Similarly, δ(−b −
b′)δd0Z�

(d0(b− b′)) = δ(b)δ(b′), so we have

δ(a− a′)δ(a + a′)δd0Z�

(
d0(b− b′)

)
= δ(ξ)δ(η).

This proves the formula when ν(�) = 0. Note that b = (1/2)Tr(ξ/
√

d0) =
Tr(ξ/

√
d) and b′ = Tr(η/

√
d). This proves the other case. �

LEMMA 2.5

Assume that [K2 : Q2] = 2 and K2/Q2 is unramified. Then we can find g1,�

for � = 2 and units u1, uε ∈ O×
2 such that det(g1,�) = �ν , ρ(O�) + ρ(O�)ε = α�ν ×

M2(Z2)α−1
�ν , and

ρ(ξ) + ρ(η)ε =

(
∗ �−ν(Tr(u1ξ

√
d

−1
) + Tr(uεη

√
d

−1
))

∗ ∗

)
for all (ξ, η) ∈ O� ⊕O�.



796 Haruzo Hida

Proof
First, we assume that ν = 0. We pick a representation ρ1 : O2 ↪→ M2(Z2) by
choosing a basis of O2 over Z2. Since 2 is unramified in K, we have O2 ⊗Z2

O2 = O2 ⊕ O2 by (a ⊗ b) 	→ (ab, ab). Since M2(Z2) is a module over O2 ⊗Z2 O2

by (ξ ⊗ η)x = ρ1(ξ)xρ1(η), regarding M2(Z2) as an O2-module by ξx = ρ2(ξ)x,
1 ∈ M2(Z2) is an eigenvector under this action: (ξ ⊗ η)1 = ρ(ξη)1. Thus we have
one more eigenvector ε1 such that

(ξ ⊗ η)ε1 = ρ1(ξ)ερ1(η) = ρ(ξη)ε1.

We may choose ε1 such that M2(Z2) = ρ(O2) ⊕ ρ1(O2)ε1. By reducing mod-
ulo 2, we get a representation ρ1 = (ρ1 mod 2) : F4 → M2(F2) and the above
decomposition indices ρ1(F4) ⊕ ρ1(F4)ε1 = M2(F2). Take any nonzero linear
form L : M2(F2) → F2, L ◦ ρ1 �= 0, since otherwise ρ1 factors through B = {α ∈
M2(F2) | L ◦ α = 0} making it reducible, a contradiction. Taking the linear
form b : M2(A) 
 ( a b

c d ) 	→ b, we find that b|ρ1(F4) �= 0 because of this fact. So
b : ρ1(F4) → F2 is surjective. Similarly, b : ρ1(F4)ε1 → F2 is surjective. Then by
Nakayama’s lemma, we have b : ρ1(O2) → Z2 and b : ρ1(O2)ε1 → Z2 are surjec-
tive, so we find u1, uε ∈ O×

2 , as desired. For ν > 0, we just conjugate ρ and g1,�

for ν = 0 by α�ν . They do the job. �

We choose g1,� as in the above lemmas. Then we have

ϕ1,1,�

(
g−1
1,� (ρ(ξ) + ρ(η)ε)g1,�

)
= φ1(ξ)φε(η).

Indeed, for the discriminant d = d(K) of K/Q, we have

φ1,�(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δO�

(ξ) if ν(�) = 0,

δO�
(ξ�)e�(�−ν(ξl − ξl)) if � ∈ A,

δOl
(ξl)(N(l)νδl

ν (ξl)−N(l)ν−1δ
l
ν−1(ξl)) if � ∈ Cs and ν = ν(�) > 0,

δO�
(ξ)e�(−�−ν Tr(

√
d

−1
u1ξ)) if � ∈ Cns and ν = ν(�) > 0,

(2.8)

φε,�(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δO�

(η�) if ν(�) = 0,

δOl
(ηl)δ(1+�νOl)

(ηl)e�(�−ν(1− ηl)) if � ∈ A,

δO�
(η�)e�(−�−νηl) if � ∈ Cs and ν = ν(�) > 0,

δO�
(η)e�(−�−ν Tr(

√
d

−1
uεη)) if � ∈ Cns and ν = ν(�) > 0,

where u1 and uε are units in O� and are equal to 1 except for the case where
� = 2 and 2 is inert in K�/Q�.

REMARK 2.6

We note that e�(x) = e(−[x]�) for x ∈ Q�, so if we replace e�(x) by e([x]�), we
need to change the sign inside e.

From the above consideration, for φ = ϕ1,1,

φρ(a)g1,ρ(b)g1

(
ρ(x) + ρ(y)ε

)
= |N(α)−1|1/2

A φ1(α−1x)|N(β)−1|1/2
A φε(β−1y),
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and we conclude that φρ(a)g1,ρ(b)g1(ρ(x)+ρ(y)ε) = φ1,α(x)φε,β(y), where φα(x) =
|N(α)|−1/2

A φ(α−1x) for φ = φ? with ? = 1, ε. Thus θ(φ)(x;α) =
∑

v∈K(r(Sx) ×
φ)α(v) for φ = φ? with ? = 1, ε. This finishes the proof of Proposition 2.2. �

2.3. CM theta series
Recall that T ′ = T1 × Tε and the character χ : K×

A /K× → C× with χ−1|A× = ψ

and χ(a∞) = ak
∞. We have an exact sequence 1→ Gm → T

π−→ T ′ ν−→ Gm → 1 with
ν(α,β) = N(α/β) and π(a, b) = (ab−1, ab

−1
) = (α,β). Since ψ(N(a))χ(ab) =

χ(aa)−1χ(ab) = χ(a−1b) = χ(β
−1

), by Proposition 2.2 we have, for t = N(a−1b) =
N(α)−1 = N(β)−1,∫

T
ψ
(
N(a)det(g1)

)
ΘA,C,N

(
xαt;ρ(a)g1, ρ(b)g1

)
χ(ab)d×ad×b

(∗)
= ψ

(
det(g1)

)∫
T ′(Q)\T ′(A)

θ(φ1)(xαt;αg1)θ(φε)(xαt;βg1)χ(β
−1

)d×αd×β

(2.9)
= ψ

(
det(g1)

)∫
T1(Q)\T1(A)

θ(φ1)(xαt;αg1)d×α

×
∫

Tε(Q)\Tε(A)

θ(φε)(xαt;βg1)χ(β
−1

)d×β.

Strictly speaking, the identity at (∗) has to be between the integrals over the
image

Im
(
T (Q)\T (A)/T (R) π−→ T ′(Q)\T ′(A)/T ′(R)

)
.

However, for the following reason, the identity (∗) is valid. By our way of extend-
ing the theta series to S(A)×OV (A) to GV (A) for V = D and K, after the inte-
gral over OK ×OK ⊂ T ′ is done, the result is just constant over the compact set
Coker(T (Q)\T (A)/T (R) π−→ T ′(Q)\T ′(A)/T ′(R)) = IQ whose volume is canceled
by the equal volume of

Ker
(
T (Q)\T (A)/T (R) π−→ T ′(Q)\T ′(A)/T ′(R)

)
= IQ.

Write χ̃(x) = χ(x−1), and write φ for φε. In this section, we write∫
Tε(Q)Tε(R)\Tε(A)

θG(φ)(x;β)χ̃(β)d×β as a theta series of a Schwartz-Bruhat func-
tion Φ on KA. By (2.7), the infinity part of φ is given by φ∞(η) = ηke(ηηi).
For gτ as in the proof of Lemma 1.7, r(gτ )φ∞(η)J(gτ ,−i)−k = Im(τ)k+(1/2)ηk ×
e(ηητ). Then for β ∈ K×

∞, (x,β) ∈ GV (R) for V = K, and τ = x(i) ∈ H, we have
Sx(i) = α−1

N(β)x(i) = N(β)τ . We may assume that xS = gN(β)τ . Then

r(Sx)φ∞(η)J(Sx,−i)−k = r(gN(β)τ )φ∞(η)J(gN(β)τ ,−i)−k

= Im
(
N(β)τ

)k+(1/2)
ηke

(
ηηN(β)τ

)
,

L(β) ◦ r(Sx)φ∞(η)J(Sx,−i)−k = Im(τ)k+(1/2)N(β)kβ−kηke(ηητ)

= Im(τ)k+(1/2)β
k
ηke(ηητ).



798 Haruzo Hida

Thus the function β 	→ θ(φ)(x;β)χ(β
−1

) factors through K×
A /K×

∞ for φ∞(η) =
cηke(ηηi). Now regard θ(φ)(β;αN(β)x)J(x∞,−i)−k as a function of x ∈ S(A) for
which we integrate. Let x∞ = gτ (⇒ τ = x∞(i)), and write

θ(φ)(β; τ) := θ(φ)(β;αN(β)x∞)J(x∞,−i)−k = θS(φ)(β;x∞)J(x∞,−i)−k

=
∑
η∈K

(L(β) ◦ r(x∞)φ)(η)J(x∞,−i)−k(2.10)

= |N(β)|−1/2
A Im

(
τ
)k+(1/2) ∑

η∈K

φ(∞)(β−1η)(β−1
∞ η)ke

(
N(β∞)−1ηητ

)
.

Decompose Tε(Q)Tε(R)\Tε(A) =
⊔h

i=1 aiTε(Ẑ)/O× for ai ∈ K×
A with ai,N = 1

and |N(a)|A = 1. We can achieve |N(a)|A = 1 just taking a∞ =
√

N(a) ∈ R×
+ for

a = aÔ ∩K. Then we have∫
Tε(Q)Tε(R)\Tε(A)

θ(φ)(β; τ)χ̃(β)d×β = |O×|−1
h∑

i=1

∫
aiTε(Ẑ)

θ(φ)(β; τ)χ̃(β)d×β.

Pick a ∈ K×
A with aN = 1, |N(a)|A = 1, and a∞ ∈ R×

+, and look at∫
aTε(Ẑ)

θ(φ)(βa∞; τ)χ̃(βa∞)d×β = χ̃(a)
∫

Tε(Ẑ)

θ(φa)(β; τ)χ̃(β)d×β,

where φa(v) = |N(a)|−1/2
A φ(a−1v). Then θ(φa)(β; τ) =

∑
η∈K φa(β−1η; τ), and

hence ∫
Tε(Ẑ)

θ(φa)(β; τ)χ̃(β)d×β =
∑
η∈K

∫
T (Ẑ)

φa(β−1η; τ)χ̃(β)d×β.

Write φ(η; τ) = φ∞(η∞; τ)
∏

� φ�(η�) for local function φ� : K� → C with

φ∞(η; τ) = Im(τ)k+(1/2)ηke(ηητ).

Then we have, since a∞ could be a nontrivial scalar with N(a∞) = a2
∞ = N(a)

for a = aÔ ∩K,∫
T (Ẑ)

(
r(S(αN(β∞)x∞)φ)

)
a
(β−1η)χ̃(β)d×β

= Φa,∞(η∞; τ)
∏

�

∫
T (Z�)

φ�,a(β−1
� η�)χ̃�(β�)d×β�

for x∞ =
√

Im(τ)
−1

( Im(τ) Re(τ)
0 1

) (⇒ τ = x∞(i)). We write as Φa,�(η�) the indi-
vidual factor

∫
T (Z�)

φ�,a(β−1
� η�)χ̃�(β�)d×β�.

We have written the set of primes as A∪C for A made of prime factors one for
each over � ∈ A, and we have written C for those over {� ∈ C | ν(�) > 0}. Recall
that ν = ν(�) is the exponent of � in N . The prime l in A∪ Cs was tentatively
chosen (before stating Lemma 2.3) when we defined g1,�. Here we make a specific
choice depending on the conductor C of the characters χ and χm we introduce
later.
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DEFINITION 2.7

Pick a conductor ideal C of O, and assume that N(C)|Nμ for μ� 0. We choose
A and C so that C =

∏
l∈Cs

lfl l
fl
∏

l∈A lfl l
fl
∏

l∈Cns
lfl with ν(�) ≥ fl ≥ fl ≥ 0 for

l ∈ A and ν(�) ≥ fl ≥ fl = 0 for l ∈ Cs. We also put C0 = {l ∈ C | ν(�) > fl = 0},
A+ = {l ∈A | fl > 0}, and C+ = {l ∈ C | fl > 0}.

We take C to be the conductor of χ. Here is the explicit form of the function Φa,�.

LEMMA 2.8

Assume (S1) and (S2), |N(a)|A = 1, and aN = 1, and write χc(x) = χ(x) and
χ̃(x) = χ(x−1).

(1) If � is a prime with ν(�) = 0, Φa,�(η) = |N(a)|−1/2
� δO�

(a−1η) for the
characteristic function δO�

of O�. At ∞, we have

χ̃(a∞)Φa,∞(η; τ) = N(a)−k−(1/2) Im(τ)k+(1/2)ηke
(
N(a)−1ηητ

)
,

where a = aÔ ∩K.
(2) If � ∈ A (so � splits in K/Q) and C� = lfl l

fl with 0 ≤ fl, fl ≤ ν, we have

Φa,�(η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|(O/lν)×|−2e(−�−ν)G(χc

l )

×N(l)ν−flδ
�

ν−f
l O×

l

(ηl)δO×
l

(ηl)χ̃�(η�)χ̃l(�fl −ν) if fl > 0,

|(O/lν)×|−2e(−�−ν)

× (N(l)νδ�νOl
−N(l)ν−1δ�ν−1Ol

)(ηl)δO×
l

(ηl) if fl = 0,

where for a character φ of O×
l

of conductor lf , G(φ) =
∑

a∈O/lf
φ(a)e ×(TrK�/Q�

(a
√

d
−1

)

�f

)
and δX is the characteristic function of X ⊂K�.

(3) If � ∈ Cs and ν(�) > 0, writing Cl = l
f

with 0 ≤ f ≤ ν,

Φa,�(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|(O/lν)×|−1G(χc
l )

×N(l)ν−flδ�ν−f O×
l

(ηl)δOl
(ηl)χ̃l(ηl)χ̃l(�f −ν) if f > 0 and Cl = 1,

|(O/lν)×|−1

× (N(l)νδ�νOl
−N(l)ν−1δ�ν−1Ol

)(ηl)δOl
(ηl) if Cl = Cl = 1,

0 otherwise.

(4) If � ∈ Cns with ν(�) > 0, writing C� = �f with 0 ≤ f ≤ ν, we have

Φa,�(η) =

{
|(Ol/lν)×|−1G(χc

l )N(l)ν−fδ�ν−f O×
�
(η�)χ̃l(uεηl)χ̃l(�f −ν) if f > 0,

|(Ol/lν)×|−1(N(l)νδlνOl
−N(l)ν−1δlν−1Ol

)(ηl) if C� = 1,

where uε ∈ O×
� as in Lemma 2.5 is equal to 1 except when � = 2 is inert in K�/Q�.

Proof
The assertion (1) for finite place � follows from the definition. As for the infi-
nite place, note that β ∈ Tε(Ẑ); so β∞ = 1, and we get, from (2.10), Φa,∞(η) =
|N(a∞)|−1/2a−k

∞ ηke(N(a)−1ηητ).
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We now prove (2). As is well known (see, e.g., [Hi2, p. 259, (4b)]), we have,
for x ∈ Ol, ∑

a∈O/lν

φ(a)e
(
[TrK�/Q�

(ax
√

d
−1

)/�ν ]�
)

(2.11)

=

{
N(l)ν−fG(φ)δ�ν−f O×

l

(x)φ−1(x�f −ν) if f > 0,

|(O/l)×|−1(N(l)δ�νOl
− δ�ν−1Ol

)(x) if f = 0.

Since � ∈ A splits in K/Q, we may write β = (a, b) for a ∈ Ol = Z� and b ∈ Ol = Z�.
Then, for � ∈ A, we have, noting that e�(−�−νηl) = e([�−νηl]�) (see Remark 2.6),

Φa,�(x�;η�)

:=
∫

Tε(Z�)

φε,�(x�;β−1η�)χ̃(β)d×β

= |(Z/�νZ)×|−2e�(�−ν)
∑

a,b∈(Z/�νZ)×

χ̃l(a)χ̃l(b)δOl
(a−1ηl)

× e�(−�−νa−1ηl)δ(1+�νOl)
(b−1ηl)

= |(Z/�νZ)×|−2e(−�−ν)
∑

a∈(Z/�νZ)×

χ̃l(a)δOl
(a−1ηl)e([�−νa−1ηl]�)

×
∑

b∈(Z/�νZ)×

χ̃l(b)δ(1+�νOl)
(b−1ηl)

(2.11)
=

e(−�−ν)χ̃l(ηl)δO×
l

(ηl)

|(Z/�νZ)×|

×
{
|(Z/�flZ)×|−1χ̃l(ηl)χ̃l(�fl −ν)G(χc

l )δ�
ν−f

l O×
l

(ηl) if fl > 0,

|(Z/�Z)×|−1(�δ�νOl
− δ�ν−1Ol

)(ηl) if fl = 0.

We prove (3). Write Cl = l
f
. We have

Φa,�(x�;η�)

:=
∫

Tε(Z�)

φε,�(x�;β−1η�)χ̃(β)d×β

= |(Z/�νZ)×|−2
∑

a,b∈(Z/�νZ)×

χ̃l(a)χ̃l(b)e�(−�−νa−1ηl)δOl
(a−1ηl)δOl

(b−1ηl)

(2.11)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|(Z/�fZ)×|−1χ̃l(�f −ν)χ̃l(ηl)

×G(χc
l )δ�ν−f O×

l

(ηl)δOl
(ηl) if f > 0 and Cl = 1,

|(Z/�Z)×|−1(�δ�νOl
− δ�ν−1Ol

)(ηl)δOl
(ηl) if Cl = Cl = 1,

0 otherwise.

We prove (4). We have φε(η) = δO�
(η)e�(−�−ν Tr(uεη/

√
d)) = δO�

(η) ×
e([�−ν Tr(uεη/

√
d)]�) and
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Φa,�(x�;η�) :=
∫

Tε(Z�)

φε,�(x�;β−1η�)χ̃(β)d×β

= |(O�/�νO�)×|−1
∑

a∈(O�/�νO�)×

χ̃�(a)e
(
[�−ν Tr(a−1uεη/

√
d)]�

)
.

Then the same computation as in (3) produces the result. �

We embed T into G(A) by (ξ, η) 	→ (xαN(ξη−1);ρ(ξ)g1, ρ(η)g1) for the choice of
g1 ∈ GL2(A) we made in Section 2.2, and we compute the pullback integral of
θG(ϕ1,1). The corresponding embedding of the quadratic space K2

A ↪→ DA is
given by (ξ, η) 	→ g−1

1 (ρ(ξ) + ρ(η)ε)g1.
To state the result, we fix some symbols. Write Cl = lfl . Let C0 = {l ∈ C | fl = 0,

ν(�) > 0}, A0 = {l ∈ A | fl = 0}, C+ = {l ∈ C | fl > 0}, A+ = {l ∈ A | fl > 0},
A+ = {l ∈A | fl > 0}. We then define

t =
∏
l∈A

lν(�)l
ν(�) ∏

�∈Cs

l
ν(�) ∏

�∈Cns

lν(�),

s =
∏

l∈ A ∪ C
lν(�)−fl , and s0 =

∏
l∈A0∪C0

lν(�),

L =
∏

�∈A∪Cr ∪Ci
�, aA =

∏
l∈A l, aJ =

∏
l∈J l, sJ = s/aJ , and s0,J = s0/aJ for a

subset J ⊂A0∪C0, where a∅ = O. For each Hecke character λ with λ(x∞) = x−k
∞

and for each ideal a prime to the conductor c of λ, we have the corresponding
ideal character given by λ(a) = λ(a(c)), where a is an idèle a with a = K ∩ (aÔ).
We agree to put λ(a) = 0 if a + c � O. Then we define

ΘA(λ)(τ) =
∑
a⊂O

λ(a)qN(a)

for q = e(τ), where a runs over O-ideals prime to all
∏

l∈A l. For any positive
integer m and f : H → C, we define f |[m](τ) = f(mτ). Then the result is the
following.

LEMMA 2.9

Let χ : K×
A /K× → C× be a Hecke character of conductor C with χ|A× = ψ−1.

Put λ(x) = χ̃(x)−1|N(x)|−k
A = χ(x)

−1
(so λ(x∞) = x−k

∞ and λu := λ|λ| = χ−).

Decompose C =
∏

l∈ A ∪ Cs
lfl l

fl
∏

l∈Cns
lfl with 0 ≤ fl, fl ≤ ν(�) as in Definition 2.7,

and assume that fl = 0 if either l ∈ C is split in K or � /∈ A∪C. Then the classical
cusp form giving rise to the theta integral

∫
Tε(Q)Tε(R)\Tε(A)

θG(φε)(x;β)χ(β
−1

)d×β

is a CM theta series given by

C Im(τ)k+(1/2)
∑
y|s0

μK(y)N(s/y)λ(s0/y)ΘA(λ)|[N(s/y)]

for a constant C = e(−N −1
A )|(O/t)×|−1

(∏
l∈A+∪C+

N(l)k(ν(�)−fl)χl(�
ν(�)−fl ×

u−c
ε )G(χl ◦ c)

)
, where NA =

∏
�∈A N�, uε is as in Lemma 2.5 and is equal to 1
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unless l|2, and the Gauss sum G(χl ◦ c)) is as in Lemma 2.8(2). Here μK is the
Möbius function (for K), and d×β is the Haar measure with

∫
Tε(Ẑ)

d×β = 1.

Proof
Each term of θ(φ)(x;β) is given by Φa(x; ξ), which was computed in Lemma 2.8.
By our choice, ai,N = 1 and |N(ai)|A = 1 with scalar ai,∞ ∈ R×

+. Since θ(φ)(aβ;

Sx) = θ(φaβ)(Sx) with φa(x) = |N(a)|−1/2
A φ(a−1x) = φ(a−1x), we may forget

about the factor |N(a)|−1/2
A (and we disregard N(a)−1/2 in Φa,∞ in Lemma

2.8(1)). Note that N(sC)k =
∏

l∈A+∪C+
N(l)k(ν(�)−fl) and∏

l∈A+∪C+

N(l)ν(�)−flδ
�

ν(�)−f
l Ol

∏
l∈A0∪C0

(
N(l)ν(�)δ�ν(�)Ol

−N(l)ν(�)−1δ�ν(�)Ol

)
=

∑
J ⊂ A0∪C0

(−1)|J |N(sJ)δsJOs
=

∑
y|s0

μK(y)N(s/y)δs/yOs
.

Then we have

Im(τ)−k−(1/2)θi(Φε)

= χ̃(ai)N(ai)−k/2 Im(τ)−k−(1/2)

∫
Tε(Ẑ)/O×

θ(φai)(β; τ)χ̃(β)d×β

= CN(sC)−k|O×|−1χ̃(a(∞)
i )N(ai)−k

∑
J ⊂ A0∪C0

(−1)|J |N(sJ)

×
∑

ξ∈(sJ ai)×

χ̃C(ξ)ξke
(
ξξN(ai)−1τ

)
,

where (sJai)× is the subset of sJai made of elements ξ with ξOl = Ol for all l ∈A
and ξOC = sC. If ξ ∈ (sJai)×, ξCOC = sC, and we have χ̃C(ξ) = N(sC)kλ−1

C
(ξ)

from χ̃λ = |N(·)|−k
A . Similarly, χ̃(a(∞)

i )N(ai)−k = λ−1(a(∞)
i ). Thus we have

θi(Φε)
Im(τ)k+(1/2)

= C|O×|−1
∑

J ⊂ A0∪C0

(−1)|J |λ−1(a(∞)
i )N(sJ )

×
∑

ξ∈(sJ ai)×

λ−1
C

(ξ)ξke
(
ξξN(ai)−1τ

)
.

Since λ−1
C

(ξ)λ−1(ξ(C∞))ξk = 1, sJs
−1
C

= s0,J , and λ−1(ξ(C∞)) = λ−1(ξs−1
C

) for
ξ ∈ (sJai)×, we have

θi(Φε)
Im(τ)k+(1/2)

= C|O×|−1
∑

J ⊂ A0∪C0

(−1)|J |N(sJ)λ−1(a(∞)
i )λ(s0,J )

×
∑

ξ∈(sJai)×

λ(ξs−1
J )e

(
ξξN(ai)−1τ

)
.

Then by computation, we get

λ−1(a(∞)
i )

∑
ξ∈(sJ ai)×

λ(ξs−1
J )e

(
ξξN(ai)−1τ

)
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=
∑

ξa
−1
i s

−1
J ⊂O,ξa

−1
i +aA=O

λ(ξa−1
i s

−1
J )e

(N(ξa−1
i s

−1
J )

N(s−1
J )

τ
)
.

Changing variable ξa−1
i s

−1
J 	→ a, this is equal to

∑
a
λ(a)e(N(asJ )τ) = ΘA(λ)|

[N(sJ)], where a runs over all integral ideals prime to sJ equivalent to a
−1
i s

−1
J .

Summing up over ideal classes ai, we get the desired formula. �

COROLLARY 2.10

The cusp form
∫

Tε(Q)Tε(R)\Tε(A)
θG(φε)(x;β)χ(β

−1
)d×β is on Γ0(Nε) with Neben

character ψ−1χK for χK =
(K/Q

)
, where Nε = |d(K)|

∏
l∈ A ∪ C N(l)ν(�) ×∏

l∈A+
N(lfl)

∏
l∈A0

N(l).

Proof
The primitive theta series Θ(λ) associated to ΘA(λ) is on Γ0(|d|N(C)) with
character λ|A× χK = ψ−1χK (see e.g., [Hi5, Theorem 2.71]). Replacing Θ(λ) by
ΘA(λ), the level adds up only for a single power of l ∈A0. Thus ΘA|[s] has the
highest level: d ·N(C)N(s)

∏
l∈A0

N(l) for d = d(K). Since

|d|N(C)N(s) = |d|N(C)N(s) = |d|
∏

l∈ A ∪ C
N(lν(�)−fl+fl)N(lfl)

= |d|
∏

l∈ A ∪ C
N(l)ν(�)

∏
l∈A+

N(lfl),

we get the desired result. �

2.4. The Siegel-Weil formula
We now compute the first integral:∫

T1(Q)T1(R)\T1(A)

θG(φ1)(x;α)d×α =
∫

K×K×
∞ \K×

A

θG(φ1)(x;α)d×α.

In this section, we write φ for φ1. By (2.7), we have φ∞(ξ) = Im(τ)1/2e(ξξτ). By
the same computation as in Section 2.3, we can verify that the func-
tion α 	→ θG(φ)(x;α) factors through K×

A /K×
∞, and the above integral is well

defined.
Let K

(1)
A = {x ∈ K×

A | |N(x)|A = 1}. Then K
(1)
A /K1

A ↪→ Q×
+ by N : x 	→

|N(x(∞))|−1
A = N(x∞). If ξ ∈ Q×

+ is in the image of N : K
(1)
A /K1

A ↪→ Q×
+, ξ is

local norm at every finite place up to units, and Im(N ) = |N(K×
A(∞)

)|A. Thus
we have

N(K×
A )

N(K×)N(K×
∞)

=
N(K×K×

∞K
(1)
A )

N(K×K×
∞)

=
N(K(1)

A )

N(K×K×
∞)∩N(K(1)

A )
=: T1.

In particular, T1 is a compact topological group. Indeed,

T1/N(Ô×) =
N(K×

A )

N(K×)N(K×
∞)N(Ô×)
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is a quotient of the class group ClK .
We have∫

K×K×
∞ \K×

A

θG(φ1)(x;α)d×α =
∫

T1

∫
K1K1

∞ \K1
A

θ(φ)(αtx;αξt)d×αd×t,

where N(ξt) = t with |N(t)|A = 1 and K1 = Ker(NK/Q). By the Siegel-Weil
formula (see [We1], [We2]),∫

K1K1
∞ \K1

A

θ(φ)(αtx;αξt)d×α = E(φ1),

where E(φ1)(αtx) =
∑

γ∈B(Q)\ SL2(Q)(ω(γαtx, ξt)φ1)(0) for x ∈ S(A) and

L(ξt)(φ)(v) = φt(v) = |N(t)|−1/2
A φ1(ξ−1

t v) = φ1(ξ−1
t v)

as |N(t)|A = 1. Thus we get∫
K×K×

∞ \K×
A

θ(φ1)(αN(ξ)x; ξ)d×ξ =
∫

T1

E(φ1)(αtx)d×t.

As explained in Section 1.2, we have(
ω
((a b

0 a−1

)
αtx, ξt

)
φ1

)
(0)

=
(

ω
(
αt

(
a bt

0 a−1

)
x, ξt

)
φ1

)
(0)(2.12)

=
(

L(ξt)r
((a bt

0 a−1

)
x
)
φ1

)
(0) = |a|A

(
r(x)φ

)
(0)

since ω(x, ξdet(x)) = r(xα−1
det(x))L(ξdet(x)) = L(ξdet(x))r(α−1

det(x)x) (see (1.2)). This
shows that E(φ1) is well defined and is independent of t ∈ T1. We have proved
the following.

LEMMA 2.11

We have
∫

K×K×
∞ \K×

A

θG(φ1)(x;α)d×α =
∫

T1
d×t ·E(φ1)(x).

2.5. Explicit form of weight 1 theta series
Strictly speaking, the Siegel-Weil formula we used is in the nonconvergent range
that Weil [We2] did not cover (although it is briefly explained in [Wa, Chapter I,
Section 5]). To show that it actually works well and to exhibit the explicit form
of the Eisenstein series we need, using a result of Hecke [H], we compute the
theta series ∫

T1(Q)T1(R)\T1(A)

θG(φ1)(x;α)d×α

in the same way that we did in Lemma 2.9. As before, in this section we
write φ for φ1 for simplicity. By (2.7), the infinity part of φ is given by φ∞(ξ) =
Im(τ)1/2e(−ξξτ).
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Decompose T1(Q)T1(R)\T1(A) =
⊔h

i=1 aiT1(Ẑ)/O× for ai ∈ K×
A with ai,N = 1

and |N(a)|A = 1. Then we have∫
T1(Q)T1(R)\T1(A)

θ(φ)(x;α)d×α = |O×|−1
h∑

i=1

∫
aiT1(Ẑ)

θ(φ)(x;α)d×α.

Pick a ∈ K×
A with aN = 1, |N(a)|A = 1, and a∞ ∈ R×

+, and look at∫
aT1(Ẑ)

θ(φ)(x;α)d×α =
∫

T1(Ẑ)

θ(φa)(x;α)d×α,

where φa(v) = |N(a)|−1/2
A φ(a−1v) = φ(a−1v). Suppose that φ =

∏
� φ� for local

function φ� : K� → C and x(∞) = 1. Again we have, since a∞ could be a nontrivial
scalar with N(a∞) = a2

∞ = N(a) for a = aÔ ∩K,∫
T (Ẑ)

(
r(S(αN(α∞)x∞)φ)

)
a
(α−1ξ)d×α = Ψa,∞(ξ∞; τ)

∏
�

∫
T (Z�)

φ�,a(α−1
� ξ�)d×α�

for x∞ =
√

Im(τ)
−1

( Im(τ) Re(τ)
0 1

) (⇒ τ = x∞(i)). We write as Ψa,�(ξ�) the indi-
vidual factor

∫
T (Z�)

φ�,a(α−1
� ξ�)d×α�. Recall the prime factor l of � ∈ A∪C that

we chose when we defined g1,�. We write this set of primes as A∪C for A made
of prime factors over A, and we write C for those over C. Write the conductor
of χ as C. Recall that ν = ν(�) is the exponent of � in N . Here is the explicit
form of the function Ψa,�.

LEMMA 2.12

Assume (S1) and (S2) in Section 2.2, and assume aN = 1 with |N(a)|A = 1. Then
we have the following.

(1) If ν(�) = 0, Ψa,�(ξ) = |N(a)|−1/2
� δO�

(a−1ξ) for the characteristic function
δO�

of O�. At ∞,

Ψa,∞(ξ; τ) = N(a)−1/2 Im(τ)1/2e
(
−N(a)−1ξξτ

)
,

where x∞(i) = τ and a = aÔ ∩K.
(2) If � ∈ Cs, Ψa,�(ξ�) = φ1,�(ξ�) = δOl

(ξl)(N(l)νδl
ν (ξl)−N(l)ν−1δ

lν−1(ξl)).
(3) If � ∈ Cns with ν(�) > 0, we have Ψa,�(ξ) = |(O�/lν)×|−1(N(lν)δlνOl

−
N(lν−1)δlν−1Ol

)(ξl).
(4) If � ∈ A, we have Ψa,�(ξ) = Ψa,l(ξ)Ψa,l(ξ) for prime factors l|�, and

Ψa,l(ξ) = |(O�/lν)×|−1
(
N(lν)δlνOl

−N(lν−1)δlν−1Ol

)
(ξl),

Ψa,l(ξ) = |(O�/l
ν
)×|−1

(
N(l

ν
)δlνOl

−N(l
ν−1

)δ
l
ν−1

Ol

)
(ξl).

Proof
The proof of assertion (1) is the same as the one for Lemma 2.8(1). Assertion (2)
follows from the fact that

∫
O×

l

δ�mOl
(a−1x)d×a = δ�mOl

(x).
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We prove (3). Suppose that �|N is nonsplit. We have φ1(ξ) = δO�
(ξ)e([�−ν ×

Tr(u1ξ/
√

d)]�) and∫
T1(Z�)

φ1,�(x�;α−1ξ�)d×α

= |(O�/�νO�)×|−1
∑

a∈(O�/�νO�)×

χ̃�(a)e
(
[�−ν Tr(a−1u1ξ/

√
d)]�

)
(2.11)
= |(O�/lν)×|−1

(
N(lν)δlνOl

−N(lν−1)δlν−1Ol

)
(ξl).

As for (4), the computation is the same as in (3), replacing e([�−ν Tr(a−1u1ξ/√
d)]�) in the above formula by e([�−ν(a−1

l
ξl − a−1

l
ξl)]�). This finishes the proof.

�

Recall that t =
∏

l∈A lν(�)l
ν(�) ∏

�∈Cs
l
ν(�) ∏

�∈Cns
lν(�), and define T =

∏
l∈A lν(�) ×

l
ν(�) ∏

l∈Cns
lν(�), aJ =

∏
l∈J l for a subset J ⊂J :=A∪A∪Cs∪Cns and tJ = t/aJ ,

where a∅ = O. We define Θ(1) = (h(K)/|O×|) +
∑

0 �=a⊂O qN(a) for the class
number h(K) of K.

LEMMA 2.13

Let 1 : K×
A /K× → {1} be the identity Hecke character. Then the classical

modular form giving rise to the theta integral |(O/T)×| Im(τ)−1/2 ×∫
T1(Q)T1(R)\T1(A)

θG(φ1)(x;α)d×α is an antiholomorphic CM theta series given by∑
x|t μK(x)N(t/x)Θ(1)|[N(t/x)].Hered×α is theHaarmeasurewith

∫
T1(Ẑ)

d×α = 1.

Proof
Each term of θ(φ)(x;α) is given by Ψa(x; ξ), which was computed in Lemma 2.12.
By our choice, ai,N = 1 and |N(ai)|A = 1 with scalar ai,∞ ∈ R×

+. Thus writing
Ψi for Ψai , we have

|(O/T)×| Im(τ)−1/2θi(Ψi) = N(ai)−1/2

∫
T1(Ẑ)/O×

θ(φ1)(aiα;S x)d×α

= |O×|−1
∑
J ⊂ J

(−1)|J |N(tJ )
∑

ξ∈(tJ ai)

e
(
−ξξN(ai)−1τ

)
.

Making variable change ξa−1
i t

−1
J 	→ a and summing up over ideals classes ai, we

get ∑
i

∑
tJ |ξa

−1
i

e
(
−N(ξa−1

i )τ
)

=
∑

a

e
(
−N(atJ )τ

)
= Θ(1)|[N(tJ )],

where a runs over all integral ideals. This shows

|(O/T)×| Im(τ)−1/2
∑

i

θi(Ψi) =
∑
J ⊂ J

(−1)|J |Θ(1)|[N(tJ )]

=
∑
x|t

μK(x)N(t/x)Θ(1)|[N(t/x)],
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as desired. �

COROLLARY 2.14

The modular form
∫

T1(Q)T1(R)\T1(A)
θG(φ1)(x;α)d×α has character χK and level

N ′ := |d(K)|
∏

l∈C N(l)ν(�)
∏

�∈A �2ν(�), and hence Nε|N ′ and M |N ′ for M in
Lemma 1.11.

Proof
Since Θ(1)|[t] has highest level in the summand over J ⊂ J , the level of Θ(1)
is |d|, and the operation [t] adds the level N(t) as recalled in before Lemma 2.13.
Since Θ(1) has Neben character χK , the character of the integral is the same. �

2.6. Explicit form of Siegel Eisenstein series
Recall that χK =

(K/Q
)

=
(d(K)). By definition, the Mellin transform of Θ(1)

is given by ζK(s) = ζ(s)L(s,χK). Then by Hecke [H], we can write Θ(1) as an
Eisenstein series:

(2.13) Θ(1) =

√
d(K)
2πi

E1,1(τ ; 0).

Here for a positive integer L and d = d(K),

Ek,L(τ ;s) =
1
2

∑
(m,n)∈Z2

χK,L(n)
(dLmτ + n)k|(dLmτ + n)|2s

(2.14)
= L(L)(1 + 2s,χK)E∗

k,L(τ ;s),

where χK,L(n) = χK(n) if n is prime to Ld and otherwise χK(n) = 0, and

E∗
k,L(τ ;s) =

∑
γ∈Γ0(Ld)/Γ∞

χK(γ)j(γ, τ)−k|j(γ, τ)|−2s

with χK( ∗ ∗
∗ δ ) = χK(δ). Here Γ∞ =

{
±( 1 m

0 1 ) | m ∈ Z
}
. We have a relation (see,

e.g., [Sh2, (3.3)])

(2.15) Ek,L =
∑

0<t|L
μ(t)χK(t)t−kEk,1|[L/t].

We now write down the integral as a linear combination of E1,L.

LEMMA 2.15

Let n be an integral ideal of K. Decompose n = IFFcR so that I is a product
of primes ideal inert over Q, R is a product of primes ramified over Q, and
F + Fc = O with Fc ⊃ Fc for the complex conjugation c; so FFc is a product of
prime ideals split over Q. Write I := N(I), R := N(R), and S := N(Fc). Then
we have

(Θ1)
∑
x|n

μK(x)N(n/x)Θ(1)|[N(n/x)] =

√
d(K)N(n)

2πi

∑
a|IRS

μ(a)a−1E1,N(n)/a,

where μ (resp., μK) is the Möbius function of Q (resp., K).
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Proof
First, suppose that n + nc = O (⇔ IRS = 1 ⇔ IRFc = O). Then (Θ1) can be
rewritten as

2πi√
d(K)N(n)

∑
t|N(n)

μ(t)
N(n)

t
Θ(1)

∣∣[N(n)
t

]
(2.13)
=

∑
t|N(n)

μ(t)
N(n)

t
E1,1

∣∣[N(n)
t

]
(2.15)
= E1,N(n).

Now we proceed on induction on the number (counting with multiplicity) of
prime factors of IRFc. Pick �|IRS and the prime l over �. Let n′ = n/l. Write R′

(resp., I ′, S′) for the corresponding factor of N(n′) for R (resp., I , S). We assume
that ∑

x|N(n′)

μK(x)N(n′/x)Θ(1)|[N(n′/x)]

(2.16)

=

√
d(K)N(n′)

2πi

∑
s|S′

∑
i|I′

∑
r|R′

μ(i)μ(r)μ(s)(irs)−1E1,N(n′)/irs.

By applying (N(n)/N(n′))[�] if �|I and (N(n)/N(n′))[�] otherwise to the above
identity, we get∑

x|n′

μK(x)N(n/x)Θ(1)|[N(n/x)]

(2.17)

=

√
d(K)N(n)

2πi

∑
i|I′

∑
s|S′

∑
r|R′

μ(i)μ(r)μ(s)(irs)−1E1,N(n′)/irs|[N(l)].

If �|N(n′), by (2.15) we have E1,N(n′)/ir|[N(l)] = E1,N(n)/ir. Since{
r|I ′R′S′ ∣∣ μ(r) �= 0

}
=

{
r|IRS

∣∣ μ(r) �= 0
}
,

we are done.
Suppose that l � n′; so n = n′l. We can rewrite (Θ1) as∑

x|n′

μK(x)N(n/x)Θ(1)|[N(n/x)] +
∑
x|n′

μK(xl)N(n/xl)Θ(1)|[N(n/xl)]

=
(∑

x|n′

μK(x)N(n/x)Θ(1)|[N(n′/x)]
)
|[N(l)](Θ2)

−
∑
x|n′

μK(x)N(n′/x)Θ(1)|[N(n′/x)],

which is, by induction assumption, equal to (
√

d(K)N(n))/(2πi) times∑
a|I′R′S′

a−1N(l)
(
E1,N(n′)/a|[N(l)]− 1

N(l)
E1,N(n′)/a

)
.

Then we need to show, for a prime �|IRS,

E1,N(n′)|[N(l)]− 1
N(l)

E1,N(n′) = E1,N(n) −
1

N(l)
E1,N(n)/�.
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When �|RS, by (2.15)we have E1,N(n′)|[N(l)] = E1,N(n′l) = E1,N(n) and E1,N(n′) =
E1,N(n)/�, and hence the result follows. Assume that �|I . By (2.15), E1,N(n) =
E1,N(n′)|[�2]+ (1/�)E1,N(n′)|[�] and E1,N(n)/� = E1,N(n′)|[�]+ (1/�)E1,N(n′). From
this, the desired identity clearly follows. �

3. Derivative of theta series

3.1. Lie derivatives of Schwartz functions
Recall that J(g, z) = |det(g)|−1/2j(g, z) for (g, z) ∈ GL2(R)×H. For any function
f : H → C such that f(γ(z)) = det(γ)mJ(γ, z)kJ(γ, z)lf(z) for a discrete sub-
group Γ of PGL+

2 (R) = GL+
2 (R)/Z(R) for the center Z of GL(2), we define f̃(g) =

f(g(i))J(g, i)−kJ(g,−i)−l for g ∈ SL2(R). Similarly, for a function f : GL+
2 (R)×

H → C with f(γ, g(z)) = det(g)mf(γg, z)J(g, z)kJ(g, z)l, we define f̃(γ, g) =
f(γ, g(i))J(g, i)−kJ(g,−i)−l. Then f̃ factors through Γ\GL+

2 (R). Further, we
define

f(g) = f
(
γ, g(i)

)
j(g, i)−kj(g,−i)−l = det(g)−(k+l)/2f̃(g).

Recall that
[
( a b

c d ); z,w
]
= (z,1)J( a b

c d )(w
1 ) = (cw + d)z − (aw + b) = (cz − a)w +

dz − b. Table 1 shows the corresponding functions on H and on PGL+
2 (R).

Table 1

f (m,k, l) f̃ f

Im(z) (0, −1, −1) 1 det(g)

j(v, z)
(

− 1
2
, −1,0

)
det(g)−1/2j(vg, i) j(vg, i)

[v;z,w]
(

± 1
2
, −1,0

) √
det(g)
det(h)

[g−1vh; i, i]
√

det(g)2

det(h)
[g−1vh; i, i]

[v;z,w]
(

± 1
2
,0, −1

) √
det(g)
det(h)

[g−1vh; −i, −i]
√

det(g)[g−1vh; −i, −i]

|[v;z,w]|2
Im(z) Im(w)

(±1,0,0) det(g)
det(h)

|[g−1vh; i, i]|2 det(g)
det(h)

|[g−1vh; i, i]|2

e
(
i Im(τ)|[v;z,w]|2

Im(z) Im(w)

)
(?,0,0) e

(
i det(g)
det(h)

Im(τ) e
(
i det(g)
det(h)

Im(τ)

×|[g−1vh; i, i]|2
)

×|[g−1vh; i, i]|2
)

Let Y ∈ sl(C), and regard it as a left-invariant differential operator Yg on
SL2(R) for the variable matrix g ∈ GL2(R) (identifying GL2(R) with SL2(R)×R×

by the natural isogeny). Then we have

Yg(g−1vh) =
d

dt

(
exp(−tY )g−1vh

)∣∣∣
t=0

= −Y g−1vh,

Yh(g−1vh) =
d

ds

(
g−1vh exp(sY )

)∣∣∣
s=0

= g−1vhY,(3.1)

YgYh(g−1vh) =
d2

dtds

(
exp(−tY )g−1vh exp(sY )

)∣∣∣
t=s=0

=−Y g−1vhY.

LEMMA 3.1

Let X = (1/2)( 1 i
i −1 ) ∈ sl(C) as an invariant differential operator. Then we have

(3.2) Xf̃(g) = −4π ˜Im(z)δkf(⇔ Xf̃ = −4π(̃δkf)⇔ Xf = −4π det(g)(δkf)(g)),
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where 2πiδk = 2πiδk(z) = k
2i Im(z) + ∂

∂z and (δkf)(g) := (δkf)(g(i))j(g, i)−k−2 ×
j(g,−i)−l if f is of weight (?, k, l).

Proof
We have 2X = A − iB + 2iC for A = ( 1 0

0 −1 ), B = ( 0 1
−1 0 ), and C = ( 0 1

0 0 ), so
exp(tA) = ( et 0

0 e−t ), exp(tB) = ( cos t sin t
− sin t cos t ), and exp(tC) = ( 1 t

0 1 ). Let g = ( y x
0 1 ),

so z = x + iy = g(i). Suppose f(γ(z)) = f(z)J(γ, z)k for γ ∈ Γ. Write F (x, y) =
f(x + iy) as a two-variable function. Then

Af(g) =
d

dt

(
f(g(e2ti))etk

)∣∣∣
t=0

=
d

dt

(
f(x + ye2ti)etk

)∣∣∣
t=0

=
d

dt

(
F (x, ye2t)etk

)∣∣∣
t=0

=
(
2ye2t ∂F

∂y
(x, ye2t)etk + ketkF (x, e2ty)

)∣∣∣
t=0

= 2y
∂F

∂y
(z) + kf(z) = 2y

∂f

∂y
(z) + kf(z),

Bf(g) =
d(f(z)eitk)

dt

∣∣∣
t=0

= kif(z),

Cf(g) =
df(x + yt + yi)

dt

∣∣∣
t=0

= y
∂f(x + yt + yi)

∂x

∣∣∣
t=0

= y
∂f

∂x
(z).

With these combined, we get the desired assertion. �

Let X = (1/2)( 1 i
i −1 ) ∈ sl(C). To simplify notation, we write [v]±,± = [v;±i,±i].

Then we have the following derivatives in Table 2.

Table 2

φ Xgφ Xhφ XgXhφ

[g−1vh]+,+ −[g−1vh]−,+ −[g−1vh]+,− [g−1vh]−,−

[g−1vh]−,− 0 0 0

[g−1vh]+,− −[g−1vh]−,− 0 0

[g−1vh]−,+ 0 −[g−1vh]−,− 0

|[g−1vh]+,+|2 −[g−1vh]−,+[g−1vh]−,− −[g−1vh]+,−[g−1vh]−,− [g−1vh]2−,−

Using these, we compute Lie derivatives of the function (g,h) 	→ Ψk(τ ; i, i)×
(g−1vh) considered in (1.5) roughly of the form: v 	→ [v]k−,−e(−det(v)τ +
ia|[v]+,+|2) with a fixed 0 < a ∈ R (in our setting, a = Im(τ)/2). Since det(g−1vh)
is a constant with respect to g,h ∈ SL2(R), we may forget about e(−det(v)τ).
We compute Lie derivatives of (g,h) 	→ [v]k−,−e(ia|[g−1vh]+,+|2), and we get

Xg

(
e
(
ia|[g−1vh]+,+|2

))
=−2πa[g−1vh]−,+[g−1vh]−,−e

(
ia|[g−1vh]+,+|2

)
,

Xh

(
e
(
ia|[g−1vh]+,+|2

))
=−2πa[g−1vh]+,−[g−1vh]−,−e

(
ia|[g−1vh]+,+|2

)
,(3.3)
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XhXg

(
e
(
ia|[g−1vh]+,+|2

))
= 2πa[g−1vh]2−,−e

(
ia|[g−1vh]+,+|2

)
+ (2πa)2|[g−1vh]+,−|2[g−1vh]2−,−e

(
ia|[g−1vh]+,+|2

)
.

In general, we get the following by induction on m.

LEMMA 3.2

For m > 0, we have

(XhXg)m
(
e
(
ia|[g−1vh]+,+|2

))
= (2πa)2m[g−1vh]2m

−,−e
(
ia|[g−1vh]+,+|2

)
(3.4)

×
m∑

j=0

cj(m)(2πa)j−m|[g−1vh]+,−|2j

for constants cj(m). Moreover, we have cm(m) = 1.

DEFINITION 3.3

Let X = (1/2)( 1 i
i −1 ) ∈ sl(C) as an invariant differential operator. We define, for

a normalized Hecke eigenform f ∈ Sk(N,ψ) and 0 < m ∈ Z,

fm(g) = (−4π)−m|det(g)|−m
A Xm

g∞ f(g), ψm(z) = ψ(z)|z|−2m
A

and

Θ(N)
m (f)(x;g,h) = (4π)−2m|det(g−1h)|−m

A (Xg∞ Xh∞ )mΘ(N)(f)(x;g,h).

By Lemma 3.1, δm
k f(g∞) = fm(g∞) (and hence the value of fm at g1 has rational-

ity after dividing a CM period, see [Sh1]). By Lemma 1.11, we get the following.

LEMMA 3.4

For a Hecke eigenform f ∈ Sk(N,ψ), we have

Θ(N)
m (f)(x;g,h)

= (2i)k
∑
t|M

μ(t)a(M/t, f)(M/t)1+mψm

(
det(g)

)−1
fm|[β(∞)

t/M ](g)fm(h).

Proof
The proof is the same as the proof of Lemma 1.11, once we note that

(−4π)mfm|[β(∞)
t/M ](g)

= |det(gβ
(∞)
t/M )|−m

A Xm
g f(gβ

(∞)
t/M )

= (M/t)−m|det(g)|−m
A (Xm

g f)(gβ
(∞)
t/M )

= (M/t)−m|det(g)|−m
A Xm

g

(
f(gβ

(∞)
t/M )

)



812 Haruzo Hida

= (M/t)−m|det(g)|−m
A Xm

g

(
f |[β(∞)

t/M ](g)
)
.

�

3.2. Lie derivative and derivative of Shimura-Maass
We take ρ : K → D = M2(Q) and ε, g1 ∈ GL2(A) specified in the proof of Propo-
sition 2.2. Write (ξ, η) = g−1

1 (ρ(ξ) + ρ(η)ε)g1 ∈ M2(A(∞)) for ξ, η ∈ K
(∞)
A . We

summarize a consequence of the proof of Proposition 2.2, in particular, from the
computation in (2.6).

LEMMA 3.5

For simplicity, write Θ(φ)(τ ;g,h) for Θ(φ)(gτ ;g,h)J(gτ ,−i)k for gτ ∈ S(R) with
gτ (i) = τ ∈ H. Suppose that φ(v) = φ(∞)(v(∞)) Im(τ)k+1[v∞]k−,−e(−det(v∞)τ +

(i/2) Im(τ)|[v∞]+,+|2) for a Bruhat function φ(∞) on D
(∞)
A . Then we have

Θ(φ)(τ ;g,h) =
∑
v∈V

φ(∞)(g−1vh)[g−1vh]k−,−e
(
−det(v)τ +

i

2
Im(τ)|[g−1vh]|2

)
.

Moreover, if φ(∞)(ξ, η) = φ1(ξ(∞)) · φε(η(∞)) for Bruhat functions φ1 and φε on
K

(∞)
A , we have

(3.5) Θ(φ)(τ ;g1, g1) = (−2i)k Im(τ)k+1θ(φ1) · θk(φε)

for θ(φ1) =
∑

ξ∈K φ1(ξ(∞))e(ξξτ) and θk(φε) =
∑

η∈K φε(η(∞))ηke(ηητ).

Note here that (3.5) follows from the computation in (2.3) and (2.6), noting (2.5):
Im(z1)−1[ε; z1, z1] = −2i. Similarly, under the assumption of Lemma 3.5, we have

XgXh(Θ(φ)(τ ;g,h))
Im(τ)k+1

=
∑
v∈V

φ(g−1vh)[g−1vh]k−,−e
(
−det(v)τ

)
×

(
XgXhe

( i

2
Im(τ)|[g−1vh]+,+|2

))
(3.6)

=
∑
v∈V

φ(g−1vh)[g−1vh]k−,−e
(
−det(v)τ

)
×

(
π Im(τ)[g−1vh]2−,− +

(
π Im(τ)

)2[g−1vh]2−,−|[g−1vh]−,+|2
)

× e
( i

2
Im(τ)|[g−1vh]+,+|2

)
.

Note that g1,∞ =
√

Im(z1)
−1

( Im(z1) Re(z1)
0 1

). For v = ρ(ξ) + ρ(η)ε, we have

[g−1
1 vg1]−,−

(1.6)
=

[v; z1, z1]
Im(z1)

(2.3)
= η

[ε; z1, z1]
Im(z1)

,

(3.7)

|[g−1
1 vg1]−,+|2

(1.6)
=

|[v; z1, z1]|2
Im(z1)2

(2.4)
= 4ξξ.
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If φ(∞)(ξ, η) = φ1(ξ(∞)) · φε(η(∞)),

Im(τ)−k−1(XgXhΘ)(φ)(τ ;g1, g1)

=
(
2π Im(τ)

)2
( [ε; z1, z1]

Im(z1)

)k+2

(3.8)
×

∑
(ξ,η)∈V

φ(ξ, η)
(
(4π Im(τ))−1ηk+2 + ηk+2ξξ

)
e(−ξξτ + ηητ)

(2.5)
=

(
2π Im(τ)

)2(−2i)k+2θk+2(φε)δ1θ(φ1)(τ).

In general, for m ≥ 0 and δm
k =

m︷ ︸︸ ︷
δk+2m−2 · · · δk+2δk, we get the following.

LEMMA 3.6

Let the notation and the assumptions be as in Lemma 3.5. Then we have

Im(τ)−k−2m−1Xm
g Xm

h Θ(φ)(τ ;g1, g1)
(3.9)

= (4πi)2m(−2i)kθk+2m(φε)(τ)δm
1 θ(φ1)(τ),

if φ(∞)(ξ, η) = φ1(ξ(∞)) · φε(η(∞)).

Proof
We can compute explicitly by repeating the computation resulting in (3.8) and
get the result by induction on m. Here we prove this via a short-cut without
much computation.

By Lemma 3.2, (2.3), (2.4), and (2.5), we can write the result as θk+2m(φε)
times a linear combination g of (π Im(τ))j−m

(
∂
∂τ

)j
θ(φ1) for j = 0, . . . ,m. Thus g

is in the (weight 1) limit of the discrete series representation of SL2(R) gener-
ated by θ(φ1). In this representation, weight 1 + 2m vectors form 1-dimensional
subspace spanned by δm

1 θ(φ1) (cf. [JL, Section I.5]). Since g is an antiholomor-
phic modular form of weight 1 + 2m, g is a constant multiple of δm

1 θ(φ1)(τ).
Then comparing the terms of

(
∂
∂τ

)m
θ(φ1) in g and δ1

mθ(φ1), we get the result.
�

3.3. Torus integral again
Let the notation be as in Lemma 2.1. Recall that the central character of fm is
given by ψm(x) = ψ(x)|x|−2m

A (see Definition 3.3).

LEMMA 3.7

Let χ = χm : K×
A /K× → C× be a Hecke character with χ(zx) = ψ−1

m (z)χ(x) for
z ∈ A× and χ(a∞) = ak+2m

∞ . Then a 	→ fm(ρ(a)g1)χm(a) factors through I−
K :=

K×
A /K×A×K×

∞ (the anticyclotomic idèle class group of K).
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Proof
For z ∈ Z(A), we have fm(zx) = ψm(z)fm(x), so a 	→ χm(a)fm(ρ(a)x) factors
through K×\K×

A /A×. We take a∞ ∈ K×
∞. Then ρ(a∞)g1(i) = ρ(a∞)(z1) = z1,

and we have, writing f ′ for f
m,g

(∞)
1

as in Section 1.1,

fm
(
ρ(a∞)g1

)
= f ′(ρ(a∞)g1,∞(i)

)
j
(
ρ(a∞)g1,∞, i

)−k−2m

= f ′(ρ(a∞)(z1)
)
j
(
ρ(a∞), z1

)−k−2m
j(g1,∞, i)−k−2m

= f ′(z1)j
(
ρ(a∞), z1

)−k−2m
j(g1,∞, i)−k−2m = fm(g1)a−k−2m

∞ .

Since χ(a∞) = ak+2m
∞ , we have fm(ρ(a∞)g1)χm(a∞) = fm(g1), and it factors

through I−
K . �

We again put for f ∈ Sk(N,ψ):

Lχm(fm) =
∫

IK

fm
(
ρ(a)g1

)
χm(a)d×a

and

Lχm(fm|[β(∞)
t/M ]) =

∫
IK

fm|[β(∞)
t/M ]

(
ρ(a)g1

)
χm(a)d×a.

Recall that M =
∏

�∈Cs
N�. By Lemma 3.4, writing T := T (Q)T (R)\T (A) and

noting that fm is of weight k + 2m, we get∑
0<t|M

μ(t)a(M/t, f)(M/t)1+mLχm(fm|[β(∞)
t/M ])Lχm(fm)

= (2i)−k

∫
T

ψm

(
N(a)det(g1)

)
Θ(N)

m (f)
(
ρ(a)g1, ρ(b)g1

)
χm(a)χm(b)d×ad×b.

We note the following.

LEMMA 3.8

There exists ξt/M ∈ K×
A(∞) such that fm(ρ(a)g1β

(∞)
t/M ) = fm(ρ(aξt/M )g1). The pro-

jection ξt/M,M ∈
∏

�∈Cs
K×

� of ξt/M is uniquely determined by β
(∞)
t/M and satisfies

ξJ,MξJ ′,M = ξJJ ′,M for fractions J and J ′ with MJJ ′ ∈ Z. So Lχm(fm|[β(∞)
t/M ]) =

χm(ξ−1
t/M,M )Lχm(fm).

Proof
Since M is a product of primes split in K, at �|M , g−1

1,�ρ(a)g1,� = ( a� 0
0 a�

), we find

βt/M,� ∈ g−1
1,�ρ(K×

� )g1,�. We remark that β
(M ∞)
t/M ∈ Γ̂1(N ·d(K))(M). Hence we can

find ξt/M ∈ K×
A such that ρ(ξt/M )g1 = g1βt/Mu with u ∈ Γ̂1(N · d(K)). By our

construction, ξt/M,M is uniquely determined, and indeed, ξt/M,� = ((t/M)�,1) ∈
Kl ×Kl for l ∈A∪ Cs over �. This ξt/M does the job. The last assertion follows
from the variable change: a 	→ ξt/M,Ma of the integral defining Lχm . �
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By Lemma 3.8, we have( ∑
0<t|M

μ(t)a(M/t, f)χm(ξt/M,M )−1(M/t)1+m
)
Lχm(fm)2

= (2i)−k

∫
T

ψm

(
N(a)det(g1)

)
(3.10)

×Θ(N)
m (f)

(
ρ(a)g1, ρ(b)g1

)
χ(a)χ(b)d×ad×b.

Since ξt/M = (t/M,1) ∈ KCs × KCs
for KCs =

∏
l∈Cs

Kl and KCs
=

∏
l∈Cs

Kl, we
have χm(ξ�/N�

)−1 = χm(lν(�)−1), and assuming a(�, f) �= 0,∑
0<t|M

μ(t)a(M/t, f)χm(ξt/M,M )−1(M/t)1+m

(3.11)
=

∏
�∈Cs

a(�ν(�), f)χm(lν(�))�ν(�)(1+m)
(
1− 1

a(�, f)χm(l)�1+m

)
.

If a(�, f) = 0 for one prime factor � ∈ Cs, the left-hand side of (3.10) vanishes.
Thus we hereafter assume that a(�, f) �= 0 for all � ∈ Cs.

3.4. Factoring again the theta series
We now study

ΘA,C,N,m(x;g,h)
(3.12)

:= (4π)−2m|det(g−1h)|−m
A (Xg∞ Xh∞ )mΘA,C,N (x;g,h).

By the same computation as in Section 2.2 combined with Lemma 3.6 (for the
infinite place), we get the following.

PROPOSITION 3.9

Assume Section 2.2(S1) and (S2). We have a decomposition

|N(a−1b)|mA ΘA,C,N,m

(
x;ρ(a)g1, ρ(b)g1

)
= (2i)k(−1)k+mθ(φ1,m)(x,α)θ(φε,m)(x,β).

Here

φ1,m,∞(ξ) = φ1,m,∞(ξ; i)

for φ1,m,∞(ξ; τ) = Im(τ)1/2δm
1 e(ξξτ),

(3.13)
φε,m,∞(η) = φε,m,∞(η; i)

for φε,m,∞(η; τ) = Im(τ)k+2m+(1/2)ηk+2me(ηητ).

The finite part of φj,m for j = 1, ε is independent of m as the differential operators
affect only infinity type, so its explicit form is given by (2.8).
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For the quadratic space (K,−NK/Q), we have r(gτ )φ1,m,∞(ξ)J(gτ ,−i)−1−2m =
φ1,∞(τ ; ξ), and for the quadratic space (K,NK/Q), we have r(gτ )φε,∞(η) ×
J(gτ , i)−k−2m = φε,∞(τ ;η).

Since ψm(N(a))χm(ab) = χm(aa)−1χm(ab) = χm(a−1b) = χm(β
−1

), by the
same computation as in (2.9) we have again, for t = N(a−1b) = N(α)−1 = N(β)−1,∫

T
ψm

(
N(a)

)
ΘA,C,N,m

(
xαt;ρ(a)g1, ρ(b)g1

)
χm(ab)d×ad×b

=
∫

T ′(Q)\T ′(A)

|N(α)|mA θ(φ1,m)(xαt;αg1)

× θ
(
φε,m(xαt;βg1)

)
χm(β

−1
)d×αd×β(3.14)

=
∫

T1(Q)\T1(A)

|N(α)|mA θ(φ1,m)(xαt;αg1)d×α

×
∫

Tε(Q)\Tε(A)

θ(φε,m)(xαt;βg1)χm(β−1)d×β.

3.5. CM theta series of higher weight
In the same manner as in Section 2.3, we again compute∫

Tε(Q)Tε(R)\Tε(A)

θG(φε,m)(x;β)χm(β−1)d×β.

In this section, we write φ for φε,m. By Proposition 3.13, the infinity part of φ

is given by

φ∞(η) = Im(τ)k+2m+(1/2)ηk+2me(ηητ).

Let x∞ =
√

Im(τ)
−1

( Im(τ) Re(τ)
0 1

) (⇒ τ = x∞(i)), and as in (2.10), write

θ(φ)(β; τ)

:=
∑
η∈K

(
L(β) ◦ r(x∞)φ

)
(η)J(x∞,−i)−k−2m

(3.15)
= |N(β)|−1/2

A Im(τ)k+2m+(1/2)

×
∑
η∈K

φ(∞)(β−1η)(β−1
∞ η)k+2me

(
N(β∞)−1ηητ

)
.

Write χ̃m(x) = χm(x−1). Then the computation resulting in Lemma 2.9 by
using Lemma 2.8 is the same because of φ

(∞)
ε,m = φ

(∞)
ε . We thus have the following.

LEMMA 3.10

Let the assumptions and notation be as in Lemma 2.9. Let χm : K×
A /K× → C×

be a Hecke character of conductor C with χ|A× = ψ−1
m . Put λm(x) = χ̃m(x)−1 ×

|N(x)|−k−2m
A = χm(x)

−1
(so λm(x∞) = x−k−2m

∞ and λm|Ô× = χ̃m|Ô× ). Then the
classical cusp form giving rise to the theta integral

∫
Tε(Q)Tε(R)\Tε(A)

θG(φε,m) ×
(x;β)χm(β−1)d×β is a CM theta series given by
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Cm Im(τ)k+2m+(1/2)
∑
y|s0

μK(y)N(s/y)λm(s0/y)ΘA(λm)|[N(s/y)]

for the constant Cm given by

e(−N −1
A )|(O/t)×|−1

( ∏
l∈A+∪C+

N(l)(k+2m)(ν(�)−fl)χm,l(�
ν(�)−flu−c

ε )G(χm,l ◦ c)
)
,

where uε is as in (2.8) and the standard Gauss sum G(χl ◦ c) is as in Lemma 2.8.

3.6. The derived weight 1 theta series
We look into ∫

T1(Q)T1(R)\T1(A)

|N(α)|mA θG(φ1,m)(x;α)d×α

=
∫

K×K×
∞ \K×

A

|N(α)|mA θG(φ1,m)(x;α)d×α.

In this section, we write φ for φ1 for simplicity. By Proposition 3.13, the infinity
part of φ is given by φ∞(ξ) = Im(τ)1/2δm

1 e(ξξτ)|τ=i. As before, we get the
following.

LEMMA 3.11

Let 1 : K×
A /K× →{1} be the identity Hecke character. Then the classical modu-

lar form giving rise to the integral |(O/T)×|
∫

T1(Q)T1(R)\T1(A)
|N(α)|mA θG(φ1,m)(x;

α)d×α is an antiholomorphic derivative of a CM theta series given by
Im(τ)1/2

∑
x|t μK(x)N(t/x)δm

1 Θ(1)|[N(t/x)].

4. Main theorem

Let f0 ∈ Sk(Γ0(N0), ψ) be a normalized Hecke eigenform with corresponding
adelic form f0 ∈ Sk(N0,ψ). Assume that f0 has conductor N0. Recall that
K = Q[

√
d(K)] with the discriminant 0 > d(K) ∈ Z. Write d = |d(K)|, and

recall that d0(K) = d/4 if 4|d(K) while d0(K) = d otherwise. Pick a Hecke
character χm of K with conductor ideal C of O and χm(a∞) = ak+2m

∞ . For a
suitable normalized Hecke eigenform f in the automorphic representation gener-
ated by the unitarization fu

0 (depending on C), we compute the L-value which
Lχm(fm)2 represents by a version of the Rankin convolution method, where fm
is the mth derivative defined in Definition 3.3. The form f is in Sk(N ′,ψ) for
the least common multiple N ′ of N and d0(K) for a suitably chosen multiple N

of N0.
To specify N , recall the prime factorization C =

∏
l
lfl . If � is a prime factor

in N(C) splitting in K, we choose a prime factor l|� in K so that 0 ≤ fl ≤ fl.
(We tacitly agree to write fl = fl if l = l.) Let A = {l | fl > 0, l �= l}, and define
A = {N(l) | l ∈ A}. Let C be the set of rational prime factors in N(C)d0(K)N0

outside A. Define N =
∏

�∈A�C �ν(�) for the exponent ν(�) given by

(4.1) ν(�) = max
(
fl,ord�(N0)

)
,
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where for any nonzero integer n, its prime factorization is given by n =
∏

� �ord�(n).
The sets A and C are already given. Recall NA =

∏
�∈A �ν(�) and other finite

subsets C0 and C1 of C defined in Definition 1.5 relative to N : C1 is made up
of all prime factors of d0(K) with C = C0 � C1. Then C+ = {� ∈ C | ν(�) > 0}
contains C0. We decompose C0 = Ci �Cs �Cr so that Ci is made of primes inert
in K and Cr = {2} if ord2(d(K)) = 2 with ν(2) > 0, and otherwise Cr = ∅ (so
Cs is made of split primes). Since Ci ∪Cr ∪C1 is made of primes in C nonsplit
in K/Q, we write Cns for Ci ∪Cr ∪C1. We chose a set Cs of prime ideals of K

so that l ∈ Cs ⇔ fl ≥ fl = 0 and l �= l. For nonsplit primes over C, there is a
unique choice of primes over � in K. We write Cns for the set of the nonsplit
primes of K over primes � ∈ Cns ∩C+. Then we put C = Cs � Cns. Decomposing
C =

∏
l∈Cs

l
fl
∏

l∈A lfl l
fl
∏

l∈Cns
lfl , we put C0 = {l ∈ C | fl = fl = 0, ν(�) > 0} and

C+ = {l ∈ C | fl > 0}. We introduce C0
s = Cs ∩ C0 and C+

s = Cs ∩ C+ anew.

4.1. Statement
The L-value in question is L(1/2, π̂f ⊗ χ−

m) for χm in Section 3.3. For a positive
integer S, we write L(S)(s, π̂f ⊗χ−

m) for the imprimitive L-function Euler factors
at primes dividing S removed from the primitive one. For the starting normal-
ized new Hecke eigenform f0 ∈ Sk(Γ0(N0), ψ) with f0|T (n) = a(n, f0)f0, we define
α�, β� ∈ C for each prime � �N0 by a(�, f0)/�(k−1)/2 = α� + β� and α�β� = ψ(�).
If �|N0, we simply put α� = a(�, f0)/�(k−1)/2 and β� = 0. Write f0 for the adelic
Hecke eigenform in S(N0,ψ) corresponding to f0. Let πf be the unitary auto-
morphic representation generated by the unitarization fu

0 whose base-change lift
to K we write as π̂f . Write the primitive L-function L(s, π̂f ⊗ χ−

m) as a product∏
� E�(s) for Euler �-factors E�(s). Then for primes �, the Euler factor E�(s) is

given by

(4.2) E�(s) =

⎧⎪⎪⎨⎪⎪⎩
[(

1− α�χ−
m(l)

�s

)(
1− α�χ−

m(l)
�s

)
×
(
1− β�χ−

m(l)
�s

)(
1− β�χ−

m(l)
�s

)]−1 if � = ll,[(
1− α

2/e
� χ−

m(l)

�2s/e

)(
1− β

2/e
� χ−

m(l)

�2s/e

)]−1 if le = (�),

where χ−
m(l) = 0 if l is a factor of the conductor C of χ−

m(x) = χm(x)/|χm|.
We now make f explicit out of f0. Recall N ′ which is the least common

multiple of N and d0(K). The form f is a normalized Hecke eigenform of level N ′

with f |T (n) = a(n, f)f and a(�, f) = a(�, f0) for all primes � outside N ′. So if
N ′ = N0, we put f = f0. Otherwise, we choose f such that for primes �|N ′,
a(�, f) = a(�, f0) if �|N0 and a(�, f) = αl�

(k−1)/2 if ��N0. (This is always possible,
and a(�, f) �= 0 for ��N0.) We write f for the adelic eigenform corresponding to f .
Then fu and fu

0 generate the same πf . Since f and f are also Hecke eigenforms of
level N1 = N ·d0(K) (as �|N ′ ⇔ �|N1), all the results proven for Hecke eigenforms
of level N1 can be applied to f .

Assume that a(�, f) �= 0 for all � ∈ Cs. Recall (3.11) for M =
∏

�∈Cs
N�:∑

0<t|M
μ(t)a

(M

t
,f

)
χm(ξt/M )−1

(M

t

)m+1
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=
∏

�∈Cs

a(�ν(�), f)χm(lν(�))�ν(�)(m+1)
(
1− 1

a(�, f)χm(l)�m+1

)
in front of (3.10), which is equal to

(4.3) E′ ′(m) :=
∏

�∈Cs

α
ν(�)
� �ν(�)/2χ−

m(l
ν(�)

)
(
1− 1

α��1/2χ−
m(l)

)
.

The factor E′ ′(m) could vanish if a(�, f)χm(l)�m+1 = 1 for one prime � ∈ Cs.
Since |χm(l)| = �−(k+2m)/2, if this is the case, we have |a(l, f)| = �(k/2)−1, so πf

has to be a Steinberg representation at �. If πf is a Steinberg representation at �,
the primitive character ψ◦ associated to ψ has conductor prime to � and a(�, f) =
±
√

ψ◦(�)�(k/2)−1. Thus we must have χm(l) = ±
√

ψ◦(�)
−1

�−m−(k/2). Writing h

for the class number of K and taking a generator � of lh, we find that χm(lh) =
�−(k+2m)h up to roots of unity, and l �= l prohibits χm(l) = ±

√
ψ◦(�)

−1
�−m−(k/2)

from happening.

THEOREM 4.1

Let f0 and f be as above such that

• f0|T (n) = a(n, f0)f0 for all positive integer n;
• a(�, f0) �= 0 for all � ∈ Cs;
• the adelic form f0 (in 1.1) associated to f0 has central character ψ with

ψ∞(a∞) = a−k
∞ .

For an integer m ≥ 0, put ψm(x) = ψ(x)|x|−2m
A , and take a Hecke character

χm : K×
A /K× → C× with χm|A× = ψ−1

m and χ(a∞) = ak+2m
∞ . Suppose that

(F)
χm has conductor C such that �ν(�) ‖ C for all l ∈ A ∪ Cns (so that
fl = fl = ν(�) > 0 for l ∈ A ∪ Cns), Cl|l

ν(�)
for all l ∈ Cs, and C is

prime to l for all l ∈ Cs.

Let πf be the unitary automorphic representation generated by the unitarization
of f , set χ−

m(x) := (χm(xc))/|χm(x)| (the unitary projection), and write π̂f to be
the base-change lift of πf to K. Let fm be the derivative of f as in Definition 3.3.
Write L(s, π̂f ⊗ χ−

m) for the primitive L-function. Then we have

Lχm(fm)2 = c
Γ(k + m)Γ(m + 1)

(2πi)k+1+2m
E
(1

2

)
E′(m)L(Nd)

(1
2
, π̂f ⊗ χ−

m

)
.

The constant c = c1 ·G · v with c1 = e(−N −1
A )

√
d(K)(2i)−(k+2m)Nk+2m is given

by

v =
∏

�∈Cs

�ν(�)
/(

c2

∏
�∈A

�ν
(
1− 1

�

)3 ∏
�∈Ci

�2ν(�)
(
1 +

1
�

)2(
1− 1

�

)
(4.4)

×
∏

�∈Cr ∪C1,ν(�)>0

(
1− 1

�

))
,
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G =
( ∏

�∈A∪C

χ−
m,�(�

ν(�))−1
∏

l∈C+
s

�((k/2)+m)(ν(�)−fl)χ−
m,l(�

ν(�)−fl)G(χ−
m,l)

)
(4.5)

×
(∏

l∈A
χ−

m,l(uε)−1G(χ−
m,l)

)
,

where χ−
m,� = χ−

m|
Q

×
�
, χ−

m,l = χ−
m|K×

l

, uε = 1 unless l|2 and 2 is inert in K, and
if l|2 is inert in K/Q, uε is a dyadic unit in O2 as in Lemma 2.5:

c2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 2�d(K) or ν(2) ≥ 2,

6 if 4 ‖ d(K) and ν(2) = 0,

4 if 8 ‖ d(K) and ν(2) = 0,

2 if 2|d(K) and ν(2) = 1,

and the modification Euler factors are

E(s) :=
∏

l|�∈Cs

((
1− χ−

m(l)α�

N(l)s

))−1 ∏
l|d(K)

((
1− χ−

m(l)α�

N(l)s

)(
1− χ−

m(l)β�

N(l)s

))−1

,

E′(m) =

∏
l∈C+

s

α
ν(�)−f

f

�

�
(ν(�)−f

l
)(m+(k−1)/2)

∏
l∈C0

s
α

ν(�)
� �ν(�)/2χ−

m(lν(�))(1− 1
α��1/2χ−

m(l)

)
∏

�∈Cs
α

ν(�)
� �ν(�)/2χ−

m(l
ν(�)

)
(
1− 1

α��1/2χ−
m(l)

) .

REMARK 4.2

(a) Recall the conductor N0 of πf . Theorem 4.1 covers the value L(1/2, π̂f ⊗
χ−) for all arithmetic characters χ− with anticyclotomic ψ̂χ− at least if the
conductor of χ− is prime to N0, and the infinity type ∞(χ−) = κ(c − 1) for
integers κ satisfies |κ| ≥ k/2. We treat explicitly the case where κ = (k/2) +
m ≥ (k/2). Replacing f by fc and taking the complex conjugate of the value
computed, we get the result for κ≤−(k/2). To treat the case where |κ|< (k/2),
we need to replace D by a definite quaternion algebra.

(b) For the conductor C of χm, suppose (N0) ⊃ C. Then condition (F) in
Theorem 4.1 is satisfied automatically for � ∈ Cns. For split prime factors �, write
C� = lfl l

fl for �|N0. Then we have fl = fl = ν(�) by the condition ψ = χm|−1
A× if

(N0�) ⊃ C. Thus (F) is satisfied if the conductor C is deep enough with respect
to N0, and Theorem 4.1 covers such characters.

(c) The only cases that the theorem does not cover are
(i) where ord�(N0)≥ fl > fl > 0 (as we can place � in C and take ν(�) ≥

fl if fl = 0) for primes � split in K and
(ii) where fl < ord�(N0) for � ∈ Cns.

We can actually compute Lχm(fm)2 explicitly in such an exceptional case, basi-
cally by the same argument we give in the following section, but the outcome
turns out to be trivial (i.e., Lχm(fm) = 0), so we do not give more details.

(d) We have the identities

Lχm(fm) = Lχmλ̂−1(fm ⊗ λ) and L(s, π̂f ⊗ χ−
m) = L(s, π̂f ⊗λ ⊗ λ̂−1χ−

m)
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up to finitely many Euler factors for a finite-order character λ of A×/Q× with
λ̂ = λ ◦ NK/Q : K×

A /K× → C×. Thus we may assume, after a twist, that f is a
Hecke (possibly old) eigenform in the automorphic representation generated by a
primitive new form with character χK if k is odd and with the identity character
if k is even.

4.2. Proof via Rankin convolution
Actually our computation goes through under the following assumption which is
milder than (F):

(F′) χm has conductor C such that l
ν(�) ‖ C for all l ∈A∪ Cns, Cl|l

ν(�)
for

all l ∈ Cs, and C is prime to l for all l ∈ Cs.

However, as we will see, writing A′ for the subset of A such that lν(�) � Cl for
l ∈A, if A′ �= ∅, the integral vanishes, and this forces us to assume (F). Anyway,
for the moment, we assume only (F′).

By (3.10), (3.11), and (3.12), noting that det(g1,�) = �ν(�) ∈ Q�, we get

(2i)kψm

(
det(g1)

)−1
E′ ′(m)Lχm(fm)2

=
∫

T
ψm

(
N(a)

)
Θ(N)

m (f)
(
ρ(a)g1, ρ(b)g1

)
χm(ab)d×ad×b

(4.5)
=

∫
X

(∫
T
|N(a−1b)|−m

A ΘA,C,N,m

(
xαN(a−1b);ρ(a)g1, ρ(b)g1

)
× χm(ab)d×ad×

)
f c(x)μ(x).

Recall that t =
∏

l∈A lν(�)l
ν(�) ∏

�∈Cs
l
ν(�) ∏

�∈Cns
lν(�) and s0 =

∏
l∈C0

lν(�).
Since the integrand of (4.5) is invariant under Γ̂0(N) for N = N(t) ·d(K) by Propo-
sition 3.9 and Lemmas 3.10 and 3.11 combined with Corollaries 2.10 and 2.14, we
may integrate over X ′ := X0(N) in place of X = Γ(A,C;N)\H, though, by our
choice of the measure dμ(x) in Proposition 1.9, we need to divide the outcome
by

[Γ(A,C;N) : Γ0(N)] :=
[Γ(A,C;N) : Γ(A,C;N)∩ Γ0(N)]

[Γ0(N) : Γ(A,C;N)∩ Γ0(N)]
(4.6)

=
c2

∏
�∈Ci

N�

N
∏

�|N (1− �−1)
.

By Lemmas 3.10 and 3.11, (4.5) is equal to, up to a nonzero explicit constant,
the following classical convolution integral:∫

X′

∑
y|s0

μK(y)N(s/y)λm(s0/y)ΘA(λm)|[N(s/y)]

(4.7)
×

∑
x|t

μK(x)N(t/x)δm
1 Θ(1)|[N(t/x)] · f c Im(τ)k+2m+1 dμ(τ).
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This integral is absolutely convergent as ΘA(λm) is a cusp form and δm
1 Θ(1) is

slowly increasing toward cusps.
To transform this integral into a Rankin convolution integral, we recall the

notation introduced in Lemma 2.15 for n = t: R =
∏

�|d(K) �ν(�), S =
∏

�∈A �ν(�),
and I =

∏
�∈Ci

�2ν(�). Thus we have∑
x|t

μK(x)N(t/x)δm
1 Θ(1)|[N(t/x)](τ)

Lemma 2.15=

√
d(K)N(t)

2πi

∑
s|S

∑
i|I

∑
r|R

μ(irs)(irs)−1δm
1 E1,N(t)/irs(τ ; 0)

(4.8)
(2.14)
=

√
d(K)N(t)

2πi
L(N(t))(1, χK)

×
∑
s|S

∑
i|I

∑
r|R

μ(irs)(irs)−1δm
1 E∗

1,N(t)/irs(τ ; 0).

Note here that L(Nd)(s,χK) = L(N(t)/irs)(s,χK) if μ(irs) �= 0. Thus we want to
compute ∑

s|S

∑
i|I

∑
r|R

μ(irs)(irs)−1

(4.9)
×

∫
X′

θ(τ) · δm
1 E∗

1,N(t)/irs(τ ; 0) · fc(τ) Im(τ)k+2m+1 dμ

for θ =
∑

y|s0
μK(y)N(s/y)λm(s0/y)ΘA(λm)|[N(s/y)]. Note that (see [Sh2,

(2.9)], [Hi2, Section 10.1 (13)]):

(4.10) (−4π)m Γ(s + k)
Γ(s + k + m)

δm
k E∗

k,L(τ ;s) = E∗
k+2m,L(τ ;s−m).

LEMMA 4.3

Let the notation be as above. We have 〈θ,E〉 =
∫

X0(N)
θE Im(τ)k+2m+1 dμ = 0

for E := δm
1 E∗

1,N(t)/irs(τ ; 0) · fc(τ) if a prime � is either �|ir under (F ′) or �|irs
under (F).

Proof
Let N(θ) (resp., N(E), N(Θ), N(f)) be the exact level of θ (resp., E, Θ :=
Θ(λm), f ). We first show that ord�(N(Θ)) > ord�(N(E)) if there is a prime �|irs
and μ(irs) �= 0. Note that N(Θ) = N(C)d(K) and by definition ord�(N(θ)) ≥
ord�(N(Θ)); under (F), ord�(N(θ)) = ord�(N(Θ)) = (2/e)fl + ord�(d(K)) for
�|SIR, and under (F′), ord�(N(θ)) = ord�(N(Θ)) = (2/e)fl +ord�(d(K)) for �|IR

for the ramification index e = e(l/�). The level of E∗
1,L is L · d(K). Then E

has level N(E) at most the least common multiple of N(t)d(K)/irs and N(f).
By our choice, N(f) is a factor of N ′ for the least common multiple N ′ of
N and d0(K), and for �|N ′, ord�(N(f)) = 1 if ord�(N0) = 0, and otherwise,
ord�(N(f)) = ord�(N0) > 0. If μ(irs) �= 0, irs is square-free. Suppose that
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�|si. Then ord�(N(t)) = 2ν(�) ≥ ν(�) + 1 = ord�(N ′) + 1 ≥ ord�(N(f)) + 1 as
N(l) = �2 for �|I (and � ∈ A ⇔ �|S). Thus, if �|si under (F) (resp., if �|i under
(F′)), ord�(N(E)) < ord�(N(Θ)). Suppose that �|r. Then max(fl,ord�(N0)) =
ν(�) > 0. If ord�(N0) = 0, then fl > 0 and ord�(N(t)d(K)) = ν(�)+ord�(d(K)) =
fl + ord�(d(K)) ≥ 2 > 1 = ord�(N(f)) by (F′), so ord�(N(E)) < ord�(N(Θ)).
If ord�(N0) > 0, then ord�(N(f)) = ord�(N0) ≤ ord�(N) = ord�(N ′) = ν(�) and
ord�(N(t)d(K)) = fl +ord�(d(K)) = ν(�)+ord�(d(K)) > ord�(N ′) by (F′). Thus
we get ord�(N(Θ)) > ord�(N(E)) again. Since Θ is a new form of conductor
N(C)d(K), the Petersson inner product of θ with E having strictly lower level
than Θ at the prime � vanishes if irs > 1 under the assumption (F) or (F′). �

Thus we care only about the term with ir = 1. Let Anew ⊂ A be such that at
� ∈ A, θ is a local newform. In other words, for � ∈ A, we have �ν(�) ‖ C ⇔ � ∈
Anew. Then by the same argument as above, θ can have nontrivial inner product
only with fc

∑
s′ |S′ μ(s′)s′ −1

δm
1 E1,N(t)/s′ for S′ =

∏
�∈A−Anew �ν(�). Note that the

level of θ is a factor of N/
∏

�|S′ �. Then (4.9) is equal to√
d(K)N(t)

2πi
L(N(t))(1, χK)

×
∫

X′
θ(τ)f c(τ)

∑
s′ |S′

μ(s′)
s′ δm

1+sE
∗
1,N(t)(τ ;s)(τ)ys+k+2m−1 dμ

∣∣∣
s=0

(4.10)
=

√
d(K)
2πi

L(N(t))(1, χK)Γ(s + 1 + m)
(−4π)mΓ(s + 1)

×
∫

X′
θf c

∑
s′ |S′

μ(s′)
s′ E∗

1+2m,N(t)(τ ;s−m)ys+k+m−1 dμ
∣∣∣
s=0

[X′:X0(N/s′)]=s′

=

√
d(K)
2πi

L(N(t))(1, χK)Γ(1 + m)
(−4π)m

(4.11)
×

∑
s′ |S′

μ(s′)
∫

X0(N/s′)
θf cE

∗
1+2m,N(t)(τ ;−m)yk+m−1 dμ

(∗)
=

√
|d|N(t)
2π

L(N(t))(1, χK)Γ(1 + m)
(−4π)m

× (4π)−k−mΓ(k + m)
(∑

s′ |S′

μ(s′)
)∑

n

a(n, θ)a(n, f)n−s
∣∣∣
s=k+m

= (−1)m(4π)−k−2mΓ(k + m)Γ(m + 1)

×
√
|d|N(t)
2π

(∑
s′ |S′

μ(s′)
)
L(N(t))(1, χK)D(k + m,f ⊗ θ),

where we have put D(s, f ⊗ g) =
∑

n a(n, f)a(n, g)n−s (the Rankin product of f

and g) and the equality (∗) follows from the Rankin convolution method (see,
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e.g., [Hi2, Section 5.4]). Thus if A′ �= ∅, we have
∑

s′ |S′ μ(s′) = 0 and we get
nothing, so we now assume (F). Note that L(N(t))(s,χK) = L(Nd)(s,χK) and
l|s0 ⇒ l ∈ C0 ∩ Cs by our assumption (F). Then we have

L(Nd)(1, χK)D(k + m,f ⊗ θ)

= L(Nd)(1, χK)
∑
y|s0

μK(y)N(s/y)λm(s0/y)

×
∑

a

λm(a)a
(
N(s/y)N(a), f

)
N(s/y)−sN(a)−s

∣∣∣
s=k+m

=
(∑

y|s0

μK(y)N(s/y)1−k−mλm(s0/y)a(N
(
s/y

)
, f)

)
L(Nd)(1, χK)

×
∑

a

λm(a)a(N(a), f)
N(a)s

∣∣∣
s=k+m

(4.12)
(∗ ∗)
=

(
a(N(sC), f)
N(sC)k+m−1

∏
l∈C0 and l|�∈Cs

a(�ν(�), f)�ν(�)(1−(k/2))χ−
m(lν(�))

×
(
1− 1

a(�, f)�1−(k/2)χ−
m(l)

))
×E

(1
2

)
L(Nd)

(1
2
, π̂f ⊗ λu

m

)
=

∏
l∈C+

s

α
ν(�)−ff

�

�(ν(�)−fl)(m+(k−1)/2)

∏
l∈C0

s

α
ν(�)
� �ν(�)/2χ−

m(lν(�))
(
1− 1

α��1/2χ−
m(l)

)

×E
(1

2

)
L(Nd)

(1
2
, π̂f ⊗ λu

m

)
,

where a runs over integral ideals of K outside A, and the equality (∗∗) follows
from, for example, [Hi2, Section 5.4]. This finishes the proof of Theorem 4.1
except for determination of the constant c, noting that λu

m = λm/|λm| = χ−
m.

We now compute the constant c. Table 3 shows many constants of the right-
hand side that we have computed along the way.

Table 3

Source Lemma 3.4 (4.12) (4.3) Proposition 3.9 Lemma 3.10 Lemma 3.11

Value (2i)−kψm(det(g1)) E′(m) E′′(m)−1 (2i)k(−1)k+m |(O/t)× |−1 |(O/T)× |−1

Lemma 3.10 (4.6) (4.11)∏
�∈ A ∪ C+

N(l)(k+2m)(ν(�)−f
l
) [Γ(A,C;N) : Γ0(N)]−1

√
|d|N(t)

2π

× χm,l(�
ν(�)−f

lu−c
ε )G(χm,l ◦ c)

(4.11) (4.11) Lemma 3.10

(−1)m(4π)−k−2m Γ(k + m)Γ(m + 1) e(−N −1
A )
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We simply multiply out the constants appearing in Table 3 to get the constant
c = c1Gv. The volume factor v is the product of |(O/t)×|−1, |(O/T)×|−1, and
[Γ(A,C;N) : Γ0(N)]−1. Note that G(χm,l ◦ c) = G(χ−

m,l), N(l)(k+2m)(ν(�)−fl) ×
χm,l(�

ν(�)−flu−c
ε ) = χ−

l
(�ν(�)−fl)�((k/2)+m)(ν(�)−fl) and

ψm

(
det(g1)

)
=

∏
�|N

ψm,�(�
ν(�)) = Nk+2m

∏
�∈A∪C

χ−
m,�(�

ν(�))−1

as ψm = χ−1
m on A× and |χm,�(�)| = �−k−2m. Thus the other constants aside

from the volume factor v are in the Gauss sum factor G and c1. This finishes
the proof. �
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