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Abstract A Schrödinger equation with a merging pair of a simple pole and a simple
turning point (called MPPT equation for short) is studied from the viewpoint of exact
Wentzel-Kramers-Brillouin (WKB) analysis. In a way parallel to the case of merging-
turning-points (MTP) equations, we construct a WKB-theoretic transformation that
brings anMPPTequation to its canonical form (the ∞-Whittaker equation in this case).
Combining this transformation with the explicit description of the Voros coefficient for
the Whittaker equation in terms of the Bernoulli numbers found by Koike, we discuss
analytic properties of Borel-transformed WKB solutions of an MPPT equation.

0. Introduction

The principal aim of this article is to form a basis for the exact WKB analysis
of a Schrödinger equation

(0.1)
( d2

dx2
− η2Q(x, η)

)
ψ = 0 (η: a large parameter)

with one simple turning point and with one simple pole in the potential Q. As
[Ko1] and [Ko3] emphasize, the Borel transform of a WKB solution of (0.1)
displays, near the simple pole singularity, behavior similar to that near a simple
turning point. Hence it is natural to expect that such an equation plays an
important role in exact WKB analysis in the large. Such an expectation has
recently been enhanced by the discovery (see [KoT]) that the Voros coefficient of
a WKB solution of (0.1) with

(0.2) Q =
1
4

+
α

x
+ η−2 γ

x2
(α, γ: fixed complex numbers)

can be explicitly written down with the help of the Bernoulli numbers. The
potential Q given by (0.2) plays an important role in Section 2; the Schrödinger
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equation with the potential Q of the form (0.2), that is, the Whittaker equa-
tion with a large parameter η, gives us a WKB-theoretic canonical form of a
Schrödinger equation with one simple turning point and with one simple pole in
its potential. We note that the parameter α contained in the Whittaker equation
in Section 2 is an infinite series α(η) =

∑
k≥0 αkη−k (αk: a constant), and we call

such an equation the ∞-Whittaker equation when we want to emphasize that α

is not a genuine constant but an infinite series as above.
In order to make a semiglobal study of a Schrödinger equation with one

simple turning point and with a simple pole in its potential, we let the simple pole
singular point merge with the turning point and observe what kind of equation
appears. For example, what if we let α tend to zero in (0.2) with γ being kept
intact? Interestingly enough, the resulting equation is what we call a ghost
equation (see [Ko2]); we have been wondering where we should place the class
of ghost equations in regard to the whole WKB analysis. A ghost equation
has no turning point by its definition (cf. Remark 1.1 in Section 1); still, a
WKB solution of a ghost equation displays singularity similar to that which a
WKB solution normally has near a turning point. The singularity is due to
the singularities contained in the coefficients of η−k (k ≥ 1) in the potential Q

(see [Ko2] for details; there a ghost (point) is tentatively called a “new” turning
point). In view of the above observation, we regard a Schrödinger equation
with one simple turning point and with one simple pole in its potential as an
equation obtained through perturbation of a ghost equation by a simple pole
term aq(x,a)/x, where a is a complex parameter and q(x,a) is a holomorphic
function defined on a neighborhood of (x,a) = (0,0). An equation obtained by
such a procedure is called an equation with a merging pair of a simple pole and
a simple turning point, or, for short, an MPPT equation. Precisely speaking, we
call a Schrödinger equation (0.1) an MPPT equation if its potential Q depends
also on an auxiliary parameter a and has the form

(0.3) Q =
Q0(x,a)

x
+ η−1 Q1(x,a)

x
+ η−2 Q2(x,a)

x2
,

where Qj(x,a) (j = 0,1,2) are holomorphic near (x,a) = (0,0) and Q0(x,a) sat-
isfies the following conditions (0.4) and (0.5):

Q0(0, a) �= 0 if a �= 0,(0.4)

Q0(x,0) = c
(0)
0 x + O(x2) holds with c

(0)
0 being

(0.5)
a constant different from 0.

Clearly we find a ghost equation at a = 0; furthermore, the implicit function
theorem together with the assumption (0.5) guarantees the existence of a unique
holomorphic function x(a) that satisfies

(0.6) Q0

(
x(a), a

)
= 0.

Assumption (0.4) entails

(0.7) x(a) �= 0 if a �= 0,
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and the assumption (0.5) guarantees that, for a sufficiently small a( �= 0), x = x(a)
is a simple turning point of the operator in question.

As the term “an MPPT equation” indicates, it is a counterpart of an MTP
equation in our context. An MTP equation, that is, a merging-turning-points
equation introduced in [AKT4] contains, by definition, two simple turning points
that merge into one double turning point as the parameter t tends to zero;
whereas, in an MPPT equation, a simple pole and a simple turning point merge
into a ghost point where neither zero nor singularity is observed in the highest
degree (i.e., degree zero) in η part of the potential. The parallelism of these
two notions is not a superficial one. The reduction of an MPPT equation to a
canonical one is achieved in Sections 1 and 2 in a way parallel to that used in
the reduction of MTP equation to a canonical one. First, in Section 1 we con-
struct a WKB-theoretic transformation that brings an MPPT equation with the
parameter a being zero to a particular ∞-Whittaker equation, that is, the ∞-
Whittaker equation with the top degree part of the parameter α(η) being zero
(i.e., α(η) =

∑
k≥1 αkη−k), and then in Section 2 we construct the transforma-

tion of a generic (i.e., a �= 0) MPPT equation to the ∞-Whittaker equation in the
form of a perturbation series in a, starting with the transformation constructed in
Section 1. In Sections 1 and 2 we focus our attention on the formal aspect of the
problem, and the estimation of the growth order of the coefficients that appear in
several formal series is given separately in Appendices A and B. One important
implication of the estimates given in Appendix B is that they endow the formal
transformation with an analytic meaning as a microdifferential operator through
the Borel transformation. Furthermore, as is shown in Theorems 1.7 and 2.7,
the action of the resulting microdifferential operator upon multivalued analytic
functions such as Borel-transformed WKB solutions is described in terms of an
integro-differential operator of particular type; its kernel function contains a dif-
ferential operator of infinite order in x-variable. Thus it is of local character
in x-variable, whereas it is suited for the global study related to the resurgence
phenomena in y-variable (see, e.g., [SKK], [K] for the notion of a differential oper-
ator of infinite order; see also [AKT4], which first used a differential operator of
infinite order in exact WKB analysis). As the domain of definition of the integro-
differential operator may be chosen to be uniform with respect to the parameter
a (see Remark 2.3), our results in Section 2 are of semiglobal character, as is
noted in Remark 4.1. This uniformity is one of the most important advantages
in introducing the notion of an MPPT operator. It is worth emphasizing that the
uniformity becomes clearly visible through the Borel transformation. In order
to use the results obtained in Section 2 for the detailed study of the structure of
Borel-transformed WKB solutions of an MPPT equation, we first study in Sec-
tion 3 analytic properties of Borel-transformed WKB solutions of the Whittaker
equation, and then in Section 4 we analyze Borel-transformed WKB solutions
of the ∞-Whittaker equation using the results obtained in Section 3. The basis
of the study in Section 3 is a recent result of Koike [KoT], and the analysis in
Section 4 makes essential use of the estimate (B.3) of the coefficients {αk(a)}k≥0
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of the parameter α(a, η) =
∑

k≥0 αk(a)η−k; the effect of this infinite series that
appears in the ∞-Whittaker equation is grasped as a microdifferential operator
acting on Borel-transformed WKB solutions of the Whittaker equation. Com-
bining all the results obtained in Sections 2 and 4, we summarize in Section 5
basic properties of Borel-transformed WKB solutions of an MPPT equation with
a �= 0.

1. Construction of the transformation to the canonical form, I:
The case where a = 0

The purpose of this section is to show how to construct the Borel-transformable
series

(1.1) x(0)(x̃, η) =
∑
k≥0

x
(0)
k (x̃)η−k

and

(1.2) α(0)(η) =
∑
k≥0

α
(0)
k η−k

with α
(0)
0 being zero; that is,

(1.2′) α(0)(η) =
∑
k≥1

α
(0)
k η−k,

so that the Schrödinger equation

(1.3)
(

d2

dx̃2
− η2

( Q̃0(x̃,0)
x̃

+ η−1 Q̃1(x̃,0)
x̃

+ η−2 Q̃2(x̃,0)
x̃2

))
ψ̃(x̃, η) = 0

with Q̃j(x̃,0) (j = 0,1,2) being holomorphic functions near the origin that satisfy
(1.5) may be brought to a particular ∞-Whittaker equation

(1.4)
(

d2

dx2
− η2

(1
4

+
α(0)(η)

x
+ η−2 Q̃2(0,0)

x2

))
ψ(x, η) = 0.

Here the adjective particular refers to the vanishing of α
(0)
0 . The Borel trans-

formability of x(0) and α(0), that is, the growth-order conditions on their coeffi-
cients, is separately discussed in Appendix B. Thus the first task is to establish
Theorem 1.1, which relates the potentials in (1.3) and (1.4); the relation (1.6)
enables us to relate (1.3) and (1.4) in an appropriate way, as we expound after
proving Theorem 1.1.

THEOREM 1.1

Let Q̃j(x̃, a) (j = 0,1,2) be holomorphic functions defined on a neighborhood of
(x̃, a) = (0,0), and suppose that the following condition is satisfied:

(1.5) Q̃0(x̃,0) = c
(0)
0 x̃ + O(x̃2) with c

(0)
0 being a constant different from zero.

Then there exist Borel-transformable series x(0)(x̃, η) and α(0)(η) given, respec-
tively, in (1.1) and (1.2 ′) such that the relations (1.6) ∼ (1.9) hold on an open
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neighborhood U of the origin x̃ = 0:

x̃−1Q̃0(x̃,0) + η−1x̃−1Q̃1(x̃,0) + η−2x̃−2Q̃2(x̃,0)

=
(dx(0)(x̃, η)

dx̃

)2(1
4

+
α(0)(η)

x(0)(x̃, η)
+ η−2 Q̃2(0,0)

x(0)(x̃, η)2

)
(1.6)

− 1
2
η−2

{
x(0)(x̃, η); x̃

}
,

x
(0)
k (x̃) (k = 0,1,2, . . .) is holomorphic on U,(1.7)

x
(0)
k (0) = 0 (k = 0,1,2, . . .),(1.8)

(dx
(0)
0 /dx̃)(0) �= 0.(1.9)

Here {x(0)(x̃, η); x̃} stands for the Schwarzian derivative; that is,

(1.10)
d3x(0)/dx̃3

dx(0)/dx̃
− 3

2

(d2x(0)/dx̃2

dx(0)/dx̃

)2

.

REMARK 1.1

The assumption (1.5) entails the fact that x̃−1Q̃0(x̃,0) is holomorphic near x̃ = 0
and that it does not vanish there. Thus an MPPT operator restricted to {a = 0}
is exactly of the form of a ghost operator (see [Ko2]). Hence the content of
Theorem 1.1 is essentially the same as [Ko2, Proposition 2.1].

Proof
We construct x

(0)
k inductively, and to facilitate the required computation we

introduce a series z(0)(x̃, η) given by

(1.11) x̃−1x(0)(x̃, η).

By setting

(1.12) γ = Q̃2(0,0),

we define R̃2 = R̃2(x̃) by

(1.13) x̃−1
(
Q̃2(x̃,0) − γ

)
.

Then we find

x̃−2Q̃2(x̃,0) − γ(dx(0)/dx̃)2(x(0))−2(1.14)

= x̃−1[R̃2 − 2γ(dz(0)/dx̃)(z(0))−1 − γx̃(dz(0)/dx̃)2(z(0))−2].

Hence our task is to construct series x(0)(x̃, η) and α(0)(η) so that they satisfy

Q̃0(x̃,0) + η−1Q̃1(x̃,0)

=
(dx(0)

dx̃

)2( x̃

4
+

α(0)

z(0)

)
+ η−2

[
−R̃2(x̃) + 2γ(dz(0)/dx̃)(z(0))−1(1.15)

+ γx̃(dz(0)/dx̃)2(z(0))−2 − 1
2
x̃{x(0); x̃}

]
.
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Since we choose z
(0)
0 (x̃) so that it does not vanish at the origin, the relations

(1.16) and (1.17) guarantee that the right-hand side of (1.15) is well defined on
a sufficiently small neighborhood U of the origin:

(z(0))−1

(1.16)

=
1

z
(0)
0 (x̃)

(
1 − z

(0)
1 (x̃)

z
(0)
0 (x̃)

η−1 +
z
(0)
1 (x̃)2 − z

(0)
0 (x̃)z(0)

2 (x̃)

z
(0)
0 (x̃)2

η−2 + · · ·
)
,

(dx(0)

dx̃

)−1

(1.17)

=
1

z
(0)
0 (x̃) + x̃dz

(0)
0 /dx̃

(
1 − z

(0)
1 (x̃) + x̃dz

(0)
1 /dx̃

z
(0)
0 (x̃) + x̃dz

(0)
0 /dx̃

η−1 + · · ·
)
.

Let us now compare the coefficients of η0 in (1.15). Then we find

(1.18) Q̃0(x̃,0) =
(dx

(0)
0

dx̃

)2( x̃

4
+

α
(0)
0

z
(0)
0

)
,

and hence we choose

(1.19) α
(0)
0 = 0

and

(1.20) x
(0)
0 (x̃) = 2

∫ x̃

0

√
x̃−1Q̃0(x̃,0)dx̃.

It then follows from (1.5) that

(1.21) z
(0)
0 (0) = 2

√
c
(0)
0 �= 0.

Next, using (1.19), we obtain the relation (1.22) by comparing the coefficients of
η−1 in (1.15):

(1.22) Q̃1(x̃,0) = 2
dx

(0)
0

dx̃

dx
(0)
1

dx̃

x̃

4
+

(dx
(0)
0

dx̃

)2(α
(0)
1

z
(0)
0

)
.

Setting x̃ = 0 in (1.22), we find that α
(0)
1 should satisfy

(1.23) α
(0)
1 = Q̃1(0,0)/z

(0)
0 (0).

Then we can find a holomorphic function f1(x̃) which satisfies

(1.24) Q̃1(x̃,0) −
(dx

(0)
0 (x̃)
dx̃

)2 α
(0)
1

z
(0)
0 (x̃)

= x̃f1(x̃).

Thus it suffices to solve

(1.25)
dx

(0)
1

dx̃
= 2

(dx
(0)
0

dx̃

)−1

f1(x̃)

to find x
(0)
1 that satisfies (1.22). If we solve (1.25) with the initial condition at

x̃ = 0 being zero on a sufficiently small disc U centered at the origin, we obtain
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x
(0)
1 (x̃) that also satisfies the condition (1.8). The construction of x

(0)
k and

α
(0)
k (k ≥ 2) can be inductively done on the same disc U in a similar manner.

For example, the comparison of the coefficients of η−2 in (1.15) results in the
following:

0 =
(

2
dx

(0)
0

dx̃

dx
(0)
2

dx̃
+

(dx
(0)
1

dx̃

)2
)

x̃

4
+ 2

dx
(0)
0

dx̃

dx
(0)
1

dx̃

α
(0)
1

z
(0)
0

+
(dx

(0)
0

dx̃

)2(α
(0)
2

z
(0)
0

− α
(0)
1 z

(0)
1

z
(0)2
0

)
− R̃2(x̃) +

2γ(dz
(0)
0 /dx̃)

z
(0)
0

(1.26)

+ γx̃
(dz

(0)
0 /dx̃

z
(0)
0

)2

− 1
2
x̃{x

(0)
0 ; x̃}.

Then we set x̃ = 0 in (1.26) to find

(1.27) α
(0)
2 =

(
z
(0)
0 (0)

)−1
[
α

(0)
1

(
z
(0)
1 (0) − 2z

(0)
1 (0)

)
+ R̃2(0) − 2γ(dz

(0)
0 /dx̃)(0)

z
(0)
0 (0)

]
.

After choosing α
(0)
2 as in (1.27), we can divide (1.26) by x̃ to find a differential

equation of the form

(1.28)
dx

(0)
2

dx̃
= f2(x̃),

where f2(x̃) is holomorphic on U . Thus we can find the required x
(0)
2 (x̃) by

solving (1.28) with the initial condition x
(0)
2 (0) = 0. The construction of α

(0)
k

and x
(0)
k (x̃) can be performed in exactly the same manner: first, compute the

coefficients of η−k in (1.15), set x̃ to be zero to find α
(0)
k so that we may divide

the sum of the coefficients by x̃ to find a first order equation of normal form
for x

(0)
k (x̃) with holomorphic coefficients on U , and, finally, solve the differential

equation with the initial condition x
(0)
k (0) = 0. �

As is well known in exact WKB analysis (e.g., [KT2, Theorem 2.16, Corol-
lary 2.18]), the relation (1.6) between potentials enables us to clarify the struc-
ture of WKB solutions of a general MPPT equation restricted to {a = 0} in
terms of WKB solutions of a particular (i.e., α

(0)
0 = 0) ∞-Whittaker equation;

the concrete statements are as follows.

THEOREM 1.2

In the situation considered in Theorem 1.1, the infinite series x(0)(x̃, η) and
α(0)(η) satisfy

S̃(x̃, η) =
(dx(0)

dx̃

)
S

(
x(0)(x̃, η), α(0)(η), η

)
(1.29)

− 1
2

(d2x(0)(x̃, η)
dx̃2

)
/
(dx(0)(x̃, η)

dx̃

)
,



108 Kamimoto, Kawai, Koike, and Takei

where S̃ and S are formal series in η−1 beginning, respectively, with S̃−1(x)η
and S−1(x)η, which solve the Riccati equations

(1.30) S̃2 +
dS̃

dx
= η2

( Q̃0(x̃,0)
x̃

+ η−1 Q̃1(x̃,0)
x̃

+ η−2 Q̃2(x̃,0)
x̃2

)
and

(1.31) S2 +
dS

dx
= η2

(1
4

+
α(0)(η)

x
+ η−2 Q̃2(0,0)

x2

)
and for which

(1.32) arg S̃−1(x̃) = arg
(dx

(0)
0

dx̃
S−1

(
x

(0)
0 (x̃)

))
holds. (Hence S̃−1(x̃) and (dx

(0)
0 /dx̃) S−1(x

(0)
0 (x̃)) themselves coincide.)

THEOREM 1.3

Let us consider the situation assumed in Theorem 1.1, and let ψ be a WKB solu-
tion of the ∞-Whittaker equation

(1.33)
(

d2

dx2
− η2

(1
4

+
α(0)(η)

x
+ η−2 Q̃2(0,0)

x2

))
ψ = 0,

where α(0)(η) is the infinite series constructed there; in particular,

(1.34) α
(0)
0 = 0.

Then for the infinite series x(0)(x̃, η) constructed there, we find that

(1.35) ψ̃(x̃, η) =
(dx(0)(x̃, η)

dx̃

)−1/2

ψ
(
x(0)(x̃, η), η

)
satisfies the following MPPT equation restricted to {a = 0}:

(1.36)
(

d2

dx̃2
− η2

( Q̃0(x̃,0)
x̃

+ η−1 Q̃1(x̃,0)
x̃

+ η−2 Q̃2(x̃,0)
x̃2

))
ψ̃(x̃, η) = 0.

See [KT2, Section 2] for the derivation of Theorems 1.2 and 1.3 from Theorem 1.1;
although the situation considered in [KT2] is a much simpler one (the situation
where only one simple turning point is relevant), the logical structure of the
derivation is exactly the same.

The analytic meaning of Theorem 1.3 becomes much more transparent if
we apply the Borel transformation to all the relevant functions and equations;
for example, the Borel-transformed ∞-Whittaker equation turns out to be a
microdifferential equation

(1.37)
(

∂2

∂x2
−

(
1
4

+
1
x

α(0)
( ∂

∂y

))
∂2

∂y2
− Q̃2(0,0)

x2

)
ψB(x, y) = 0

thanks to the estimate (B.3) in Appendix B of the growth order of α
(0)
k (k ≥ 1).

Before embarking on the analytic study of the Borel-transformed relations, we
present an important relation between the infinite series α(0)(η) and S̃(x̃, η) in
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Theorem 1.2. For that purpose we recall the definition of the odd part Sodd of a
solution S of the Riccati equation with η-dependent potential.

DEFINITION 1.1 ([AKT3, DEFINITION 2.1])

Consider the following Riccati equation with η-dependent potential:

(1.38) S(x, η) +
dS

dx
(x, η) = η2

(∑
k≥0

Qk(x)η−k
)
.

Let S(±), respectively, denote the solution of (1.38) that begins with ±η
√

Q0(x).
Then the odd part Sodd of S is, by definition, given by

(1.39) Sodd =
1
2
(S(+) − S(−)).

With the help of Definition 1.1, Theorem 1.2 immediately entails the following.

COROLLARY 1.4

For S and S̃ in Theorem 1.2, their odd parts satisfy the relation

(1.40) S̃odd(x̃, η) =
(dx(0)

dx̃

)
Sodd

(
x(0)(x̃, η), α(0)(η), η

)
if the branches of S̃−1 and S−1 are chosen so that (1.32) is satisfied.

Using this result, we find the following.

PROPOSITION 1.5 ([Ko3, PROPOSITION 2.1])

Let S̃odd denote the odd part of S̃ in Theorem 1.2. Then we find

(1.41) Res
x̃=0

S̃odd = ηα(0).

Proof
In view of the relation (1.40), it suffices to prove (1.41) for S in Theorem 1.2.
To verify (1.41) for Sodd, we study the concrete form of solutions S(+) and S(−)

of (1.31) whose top degree (i.e., degree 1 in η) parts are given, respectively, by
+η/2 and −η/2. One can then immediately see that

(1.42) S
(±)
0 = ± α

(0)
1

x
.

Here and in what follows, the sign ± is chosen correspondingly in each formula.
Next,

(1.43) 2S
(±)

−1 S
(±)
1 + (S(±)

0 )2 +
d

dx
S

(±)
0 =

α
(0)
2

x
+

Q̃2(0,0)
x2

entails

(1.44) ±S
(±)
1 =

α
(0)
2

x
+

β
(±)
1

x2
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with constants β
(±)
1 . Similarly, the computation of the coefficients of η−l (l ≥ 1)

in (1.31) entails

(1.45) ±S
(±)
l+1 +

∑
j+k=l

j,k≥0

S
(±)
j S

(±)
k +

d

dx
S

(±)
l =

α
(0)
l+2

x
.

Since each S
(±)
j (j ≥ 0) is a sum of pole terms, (1.45) implies

(1.46) ±S
(±)
l+1 =

α
(0)
l+2

x
+ (multiple pole terms).

Thus the residue of Sodd = (1/2)(S(+) − S(−)) at the origin is α(0), as is expected.
This completes the proof of the proposition. �

We have so far studied the formal aspect of the problem; the growth-order con-
ditions (B.3) and (B.4) (with a = 0), which are satisfied by {x

(0)
k (x̃)}k≥0 and

{α
(0)
k }k≥0, respectively, enable us to obtain much deeper analytic results. Apply-

ing the Borel transformation (see [KT2]) to (1.35), we find that ψ̃B(x̃, y), the
Borel transform of ψ̃(x̃, η), and ψB(x(0)

0 (x̃), y), the Borel transform of ψ(x(0)
0 (x̃), η),

are related by a microdifferential operator. This is one of the most important
observations made in [AKT1, Section 2], where a simple turning point prob-
lem was studied. Following the presentation of [AY] and [AKT4], we formulate
this fact in Theorem 1.6 as the existence of intertwining operators of a Borel-
transformed MPPT operator with a = 0 and the Borel-transformed particular
(i.e., α

(0)
0 = 0) ∞-Whittaker operator; furthermore, the intertwining operators

enjoy beautiful expressions that are most amenable to the study of exact WKB
analysis (see Theorem 1.7).

To state Theorems 1.6 and 1.7, we make some notational preparations. First,
we let g(x) denote the inverse function of

(1.47) x = x
(0)
0 (x̃),

where x
(0)
0 (x̃) is the function given by (1.20); that is,

(1.48) x = x
(0)
0

(
g(x)

)
, x̃ = g

(
x

(0)
0 (x̃)

)
.

The existence of g(x) is guaranteed by the condition (1.9). Then, by rewriting
the Borel transform Ã of an MPPT operator restricted to {a = 0}, that is,

(1.49) Ã =
∂2

∂x̃2
− Q̃0(x̃,0)

x̃

∂2

∂y2
− Q̃1(x̃,0)

x̃

∂

∂y
− Q̃2(x̃,0)

x̃2

in (x, y)-coordinates, we find by (1.18) and (1.19),

Ã|x̃=g(x) =
(dg

dx

)−2[ ∂2

∂x2
−

(d2g/dx2

dg/dx

) ∂

∂x

]

− Q̃0(g(x),0)
g(x)

∂2

∂y2
− Q̃1(g(x),0)

g(x)
∂

∂y
− Q̃2(g(x),0)

g(x)2
(1.50)
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=
(dg

dx

)−2[ ∂2

∂x2
−

(d2g/dx2

dg/dx

) ∂

∂x
− 1

4
∂2

∂y2

− (dg/dx)2

g(x)
Q̃1

(
g(x),0

) ∂

∂y
− (dg/dx)2

g(x)2
Q̃2

(
g(x),0

)]
.

We now define microdifferential operators L and M , respectively, by

L =
∂2

∂x2
−

(d2g/dx2

dg/dx

) ∂

∂x

− 1
4

∂2

∂y2
− (dg/dx)2

g(x)
Q̃1

(
g(x),0

) ∂

∂y
(1.51)

− (dg/dx)2

g(x)2
Q̃2

(
g(x),0

)
and

(1.52) M =
∂2

∂x2
−

(1
4

+
α(0)(∂/∂y)

x

) ∂2

∂y2
− Q̃2(0,0)

x2
.

Then we have the following.

THEOREM 1.6

Let ω0 be an open neighborhood of x = 0, and set

(1.53) Ω0 =
{
(x, y; ξ, η) ∈ T ∗

C
2
(x,y);x ∈ ω0, η �= 0

}
and

(1.54) Ω∗
0 =

{
(x, y; ξ, η) ∈ Ω0;x �= 0

}
.

Then there exist microdifferential operators X and Y defined on Ω0 which satisfy

(1.55) LX = Y M

on Ω∗
0 and which are invertible on Ω0.

Proof
In this proof, and in what follows, we follow [A] in the usage of terminologies and
ideograms in symbol calculus; for example, for a microdifferential operator X ,
σ(X ) stands for its symbol, and for a symbol s(x, y, ξ, η), : s(x, y, ξ, η) : designates
the corresponding normal ordered product operator, and so on. As was first
emphasized by [AKT1],

(1.56) ψ
(
x(0)(x̃, η), η

)
= ψ

(
x

(0)
0 (x̃) + x

(0)
1 (x̃)η−1 + x

(0)
2 (x̃)η−2 + · · · , η

)
which appears in the right-hand side of (1.35) can be formally rewritten as

(1.57)
∑
n≥0

1
n!

(∑
k≥1

x
(0)
k (x̃)η−k

)n( ∂n

∂xn
ψ(x, η)

)∣∣∣
x=x

(0)
0 (x̃)

,



112 Kamimoto, Kawai, Koike, and Takei

and hence its Borel transform is expressed in the (x, y)-coordinate as(∑
n≥0

1
n!

(∑
k≥1

x
(0)
k

(
g(x)

)( ∂

∂y

)−k
)n

∂n

∂xn

)
ψB(x, y)

(1.58)

= : exp
((∑

k≥1

x
(0)
k

(
g(x)

)
η−k

)
ξ

)
: ψB(x, y).

Having this expression in mind, we try to find operators X and Y in the following
form:

(1.59) X = : C(x, η) exp
(
r(x, η)ξ

)
:,

(1.60) Y = : C∗(x, η) exp
(
r(x, η)ξ

)
:,

where C(x, η), C∗(x, η), and r(x, η) are symbols of microdifferential operators of
order 0,0, and −1, respectively. As the notation indicates we suppose that they
are free from (y, ξ). Let rk(x) denote the coefficient of η−k in r; that is,

(1.61) r(x, η) =
∑
k≥1

rk(x)η−k.

Then, by the symbol calculus of the composition of operators, we find

(1.62) σ(LX ) = σ(L)σ(X ) + σξ(L)σx(X ) +
1
2!

σξξ(L)σxx(X ).

Note that X is free from y and that

(1.63)
∂p

∂ξp
σ(L) = 0 if p ≥ 3.

Here and in what follows, we use the subscripts x (resp., ξ) to designate the
differentiation by x (resp., ξ): rx = dr/dx, rxx = d2r/dx2, and so on. We also
use the letter E as an abbreviation of exp(r(x, η)ξ). Under these conventions we
find

σ(LX ) =
[
ξ2 − 1

4
η2 − gxx

gx
ξ − (gx)2

g
Q̃1

(
g(x),0

)
η − (gx)2

g2
Q̃2

(
g(x),0

)]
CE

+
(
2ξ − gxx

gx

)
(CxE + rxξCE)

+
1
2!

(2)
(
CxxE + 2CxrxξE + CrxxξE + C(rxξ)2E

)
(1.64)

= (1 + rx)2Cξ2E +
[
2(1 + rx)Cx − gxx

gx
(1 + rx)C + rxxC

]
ξE

+
[(

− 1
4
η2 − (gx)2

g
Q̃1

(
g(x),0

)
η − (gx)2

g2
Q̃2

(
g(x),0

))
C

− gxx

gx
Cx + Cxx

]
E.
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In parallel with (1.64), by setting

(1.65) β(η) = ηα(0)(η) =
∑
k≥1

α
(0)
k η−k+1

and

(1.66) γ = Q̃2(0,0),

we find

σ(Y M)

=
∑
n≥0

1
n!

( ∂n

∂ξn
σ(Y )

)( ∂n

∂xn
σ(M)

)

= (C∗E)
(
ξ2 − 1

4
η2 − β(η)η

x
− γ

x2

)

+
∑
n≥1

1
n!

(rnC∗E)
( (−1)n+1n!β(η)η

xn+1
+

(−1)n+1(n + 1)!γ
xn+2

)
(1.67)

= (C∗E)
(
ξ2 − 1

4
η2

)

− (C∗E)
[∑

n≥0

β(η)η
x

( −r

x

)n

+
∑
n≥0

(n + 1)γ
x2

( −r

x

)n]

= (C∗E)
(
ξ2 − 1

4
η2

)
− (C∗E)

[β(η)η
x

(
1 +

r

x

)−1

+
γ

x2

(
1 +

r

x

)−2]

= (C∗E)
(
ξ2 − 1

4
η2 − β(η)η

x + r
− γ

(x + r)2
)
.

Hence we obtain the following relations by comparing the coefficients of ξlE

(l = 2,1,0) in (1.64) and (1.67):

(1.68) (1 + rx)2C = C∗,

(1.69) (1 + rx)
(
2Cx − gxx

gx
C

)
+ rxxC = 0,

[
− 1

4
η2 − (gx)2

g
Q̃1

(
g(x),0

)
η − (gx)2

g2
Q̃2

(
g(x),0

)]
C − gxx

gx
Cx + Cxx

(1.70)

= C∗
(

− 1
4
η2 − β(η)η

x + r
− γ

(x + r)2
)
.

If we set

(1.71) s(x, η) = x + r(x, η),

then (1.69) is rewritten as

(1.72)
Cx

C
=

1
2

(gxx

gx
− sxx

sx

)
.
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Hence C is fixed by g and s aside from a constant multiple Γ:

(1.73) C = Γ(gx)1/2(sx)−1/2.

The arbitrariness of Γ is absorbed by the freedom in choosing the constant mul-
tiple of C∗ if we define it by (1.68), that is,

(1.74) C∗ = s2
xC.

Thus we may choose Γ = 1 in (1.73) without loss of generality. Substituting (1.74)
into (1.70), we obtain

1
4
η2 +

(gx)2

g(x)
Q̃1

(
g(x),0

)
η +

(gx)2

g(x)2
Q̃2

(
g(x),0

)
(1.75)

= s2
x

(1
4
η2 +

β(η)η
s

+
γ

s2

)
− C−1

(gxx

gx
Cx − Cxx

)
.

Further, (1.18) entails

(1.76)
Q̃0(x̃,0)

x̃

∣∣∣
x̃=g(x)

=
1
4

(dx
(0)
0

dx̃

)2∣∣∣
x̃=g(x)

=
1
4
gx(x)−2.

Hence we may rewrite (1.75) as

Q̃0(g(x),0)
g(x)

η2 +
Q̃1(g(x),0)

g(x)
η +

Q̃2(g(x),0)
g(x)2

(1.77)

= g−2
x s2

x

(1
4
η2 +

β(η)η
s

+
γ

s2

)
− D(x, η),

where

(1.78) D(x, η) = gx(x)−2C(x, η)−1
(gxx(x)

gx(x)
Cx(x, η) − Cxx(x, η)

)
.

Thus our task is to find the series s(x, η) which satisfies (1.77), and we want to find
the required series in terms of x(0)(x̃, η) constructed in the proof of Theorem 1.1
by somehow relating (1.77) with (1.6). In order to relate (1.77) with (1.6), we
substitute x = x

(0)
0 (x̃) into (1.77) so that the relation is described in terms of

the x̃-variable. To facilitate the description of (1.77) in the x̃-coordinate, we
introduce

(1.79) s̃(x̃, η) = s
(
x

(0)
0 (x̃), η

)
and

(1.80) C̃(x̃, η) = C
(
x

(0)
0 (x̃), η

)
.

Then we find

(1.81)
ds̃

dx̃
=

( ds

dx

∣∣∣
x=x

(0)
0 (x̃)

)dx
(0)
0

dx̃
=

( ds

dx

∣∣∣
x=x

(0)
0 (x̃)

)((dg

dx

)−1∣∣∣
x=x

(0)
0 (x̃)

)
,

and hence by (1.73) with Γ = 1,

(1.82) C̃(x̃, η) =
( ds̃

dx̃

)−1/2

.
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On the other hand, it follows from the definition (1.80) of C̃(x̃, η) that

C(x, η) = C̃(g(x), η),(1.83)

Cx(x, η) =
(dC̃

dx̃

∣∣∣
x̃=g(x)

)dg

dx
,(1.84)

Cxx(x, η) =
(d2C̃

dx̃2

∣∣∣
x̃=g(x)

)(dg

dx

)2

+
(dC̃

dx̃

∣∣∣
x̃=g(x)

)d2g

dx2
.(1.85)

Thus the substitution of (1.84) and (1.85) into (1.78) shows

D(x, η) = g−2
x C(x, η)−1

(
− d2C̃

dx̃2

∣∣∣
x̃=g(x)

)
g2

x

(1.86)

= −C(x, η)−1
(d2C̃

dx̃2

∣∣∣
x̃=g(x)

)
.

We now use (1.82) to compute C̃x̃x̃ (= d2C̃/dx̃2):

(1.87)
d2C̃

dx̃2
= − 1

2

( ds̃

dx̃

)−1/2
(

s̃x̃x̃x̃

s̃x̃
− 3

2

( s̃x̃x̃

s̃x̃

)2
)

.

Then the substitution of x = x
(0)
0 (x̃) into (1.86) entails

(1.88) D
(
x

(0)
0 (x̃), η

)
=

1
2
C̃(x̃, η)−1

( ds̃

dx̃

)−1/2
(

s̃x̃x̃x̃

s̃x̃
− 3

2

( s̃x̃x̃

s̃x̃

)2
)

=
1
2

{s̃; x̃}.

Now we substitute x = x
(0)
0 (x̃) into (1.77) and use (1.81) and (1.88) to obtain

Q̃0(x̃,0)
x̃

η2 +
Q̃1(x̃,0)

x̃
η +

Q̃2(x̃,0)
x̃2

(1.89)

=
( ds̃

dx̃

)2(1
4
η2 +

β(η)η
s̃(x̃, η)

+
γ

s̃(x̃, η)2
)

− 1
2

{s̃; x̃}.

Comparing (1.89) with (1.6), we find by (1.65) and (1.66) that the series x(0)(x̃, η)
constructed in the proof of Theorem 1.1 gives us the series s̃(x̃, η) which satisfies
(1.89). Furthermore, the growth order condition (B.4) in Appendix B guarantees
that s̃(x̃, η) is the symbol of a microdifferential operator of order zero. Therefore
we obtain the required symbol s(x, η) by setting

(1.90) s(x, η) = s̃
(
g(x), η

)
.

Note that the top-degree part of s(x, η), that is, s0(x), is, by its definition,
x

(0)
0 (g(x)) = x. Hence the series s given by (1.90) has the form (1.71). Hence

r(x, η) is the symbol of a microdifferential operator of order −1. Furthermore,
the fact that s0(x) = x together with (1.73) and (1.74) entails that the highest
degree in η parts, that is, degree zero parts of C and C∗, are both (gx)1/2, which
never vanishes on a sufficiently small neighborhood ω0 of the origin. This implies
that C and C∗ are invertible on Ω0 and hence that X = CE and Y = C∗E are
also invertible there. Since

(1.91) σ(LX ) = σ(Y M)
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holds on Ω∗
0 by the way of constructing X and Y , we find

(1.92) LX = Y M

on Ω∗
0. This completes the proof of the theorem. �

REMARK 1.2

As is evident from the above proof of Theorem 1.6, Theorem 1.6 may be under-
stood as a Borel-transformed version of Theorem 1.3. Actually, it follows from
(1.59), (1.81), and (1.73) with Γ being 1 that, if we write down the Borel trans-
form of (dx(0)(x̃, η)/dx̃)−1/2 ψ(x(0)(x̃, η), η) in the (x, y)-coordinate (not in the
(x̃, y)-coordinate) for a WKB solution of (1.33), we then find X ψB(x, y) for the
operator X in Theorem 1.6.

In stating Theorem 1.6 we have considered the relation (1.55) only on Ω∗
0. This

is just because operators L and M contain singularities at x = 0. As is clear from
the above construction, operators X and Y are well defined on Ω0. Furthermore,
as we show in Appendix C, Proposition C.1 and Theorem B.1 in Appendix B
entail Theorem 1.7. In stating the theorem, we let U (resp., Sj (j = 1,2, . . . ,N))
denote an open set (resp., an analytic hypersurface) given by the following:

(1.93) U =
{
(x, y) ∈ C

2; |x|, |y| < δ
}

and

(1.94) Sj =
{
(x, y) ∈ U ;y = sj(x)

}
,

where δ is a sufficiently small positive number. We also define

(1.95) U ∗ = U −
({

(x, y) ∈ U ;x = 0
}

∪
( N⋃

j=1

Sj

))
.

THEOREM 1.7

Let X be the microdifferential operator given by (1.59). Then its action upon a
multivalued analytic function ϕ(x, y) defined on U ∗ is represented as an integro-
differential operator of the form

(1.96) X ϕ(x, y) =
∫ y

y0

K(x, y − y′, ∂/∂x)ϕ(x, y′)dy′,

where K(x, y, ∂/∂x) is a differential operator of infinite order that is defined on
{(x, y) ∈ C

2; |x| < C and |y| < C ′ for some positive constants C and C ′ }, and
y0 is a constant that fixes the action of (∂/∂y)−1 as an integral operator (see
Figure 1.1). The operator Y given by (1.60) also enjoys a similar expression.

REMARK 1.3

When the operand ϕ is a Borel-transformed WKB solution of a particular (i.e.,
α

(0)
0 = 0) ∞-Whittaker equation, the relevant singular points are only y = s1(x) =

x/2 and y = s2(x) = −x/2 (see [Ko2]); that is, no fixed singularities are observed
in this case (see [KT2, pages 109–118] for the notion and importance of fixed
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Figure 1.1

singularities (versus movable ones like the pair (s1(x), s2(x)) as above). On
the other hand, the power of the expression (1.96) is most manifest when we
study the structure of a Borel-transformed WKB solution near its fixed singular
points, as we do in Section 5. Hence we do not discuss the action of operators
upon Borel-transformed WKB solutions of an MPPT equation with a = 0 again.
One more reason to avoid here the further discussion of WKB solutions of an
MPPT equation with a = 0, i.e., a ghost equation, is that we have not yet been
able to find a universal and canonical way (like that to be used in Theorem 2.2
in Section 2) of normalizing WKB solutions applicable to all ghost equations.
This is mainly due to the existence of infinitely many simple poles in Sodd, as
is shown in the proof of Proposition 1.5 based on Corollary 1.4, and it stands
in total contrast to the situation of an MPPT equation with a �= 0, which we
discuss in Sections 2 and 5.

REMARK 1.4

In this section we have analyzed the phenomena that are observed through the
confluence of a simple pole and a simple turning point. It is also an interesting
problem to study a situation where a double pole and a turning point merge (see
[KKKoT], where we study the confluence of a double pole and a simple turning
point).

2. Construction of the transformation to the canonical form, II:
The case where a �= 0

The purpose of this section is to find a canonical form of an MPPT equation,
that is, a Schrödinger equation obtained by the addition of a term aq(x,a)/x to
the potential of the ghost equation; to begin, we present the following.

THEOREM 2.1

Let Q̃j(x̃, a) (j = 0,1,2) be holomorphic functions defined on a neighborhood of
(x̃, a) = (0,0), and suppose that

(2.1) Q̃0(0, a) �= 0 if a �= 0,
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and

Q̃0(x̃,0) = c
(0)
0 x̃ + O(x̃2) holds with c

(0)
0 being

(2.2)
a constant different from 0.

Then there exist an open neighborhood U of x̃ = 0, an open neighborhood V of
a = 0, holomorphic functions x

(j)
k (x̃) (j, k ≥ 0) defined on U , and constants α

(j)
k

for which conditions (2.3) ∼ (2.8) are satisfied:

(dx
(0)
0

dx̃

)
(0) �= 0,(2.3)

x
(j)
k (0) = 0 for every j and k,(2.4)

xk(x̃, a) =
∑
j≥0

x
(j)
k (x̃)aj is holomorphic on U × V,(2.5)

αk(a) =
∑
j≥0

α
(j)
k aj is holomorphic on V,(2.6)

x(x̃, a, η) =
∑
k≥0

xk(x̃, a)η−k and

(2.7)
α(a, η) =

∑
k≥0

αk(a)η−k are Borel-transformable series,

x̃−1Q̃0(x̃, a) + η−1x̃−1Q̃1(x̃, a) + η−2x̃−2Q̃2(x̃, a)
(2.8)

=
(∂x(x̃, a, η)

∂x̃

)2(1
4

+
α(a, η)

x(x̃, a, η)
+ η−2 Q̃2(0, a)

x(x̃, a, η)2
)

− 1
2
η−2{x; x̃}.

In this section we describe only how to construct x
(j)
k (x̃) and α

(j)
k so that they

formally satisfy (2.8); (2.5), (2.6), and (2.7) are proved in Appendix B (see
Theorem B.1).

The construction of {x
(j)
k } and {α

(j)
k } makes use of the perturbation in pow-

ers of a, starting with x(0)(x̃, η) and α(0)(η) constructed in Section 1. We intro-
duce z(x̃, a, η) given by

(2.9) x̃−1x(x̃, a, η)

to find (2.10) in parallel with (1.15):

Q̃0(x̃, a) + η−1Q̃1(x̃, a)

=
(dx

dx̃

)2( x̃

4
+

α(a, η)
z

)
(2.10)

+ η−2

(
−R̃2(x̃, a) + 2Q̃2(0, a)

zx̃

z
+ Q̃2(0, a)x̃

(zx̃

z

)2

− 1
2
x̃{x; x̃}

)
,

where

(2.11) R̃2(x̃, a) =
Q̃2(x̃, a) − Q̃2(0, a)

x̃
.
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As (1.16) shows, (z(0))−1 is a well-defined (formal) series in η−1 thanks to (1.21);
hence z−1 is a well-defined formal power series of a:

z−1 = (z(0) + az(1) + a2z(2) + · · · )−1

= (z(0))−1

(
1 − a

(z(1)

z(0)
+ a

z(2)

z(0)
+ · · ·

)
(2.12)

+ a2
(z(1)

z(0)
+ a

z(2)

z(0)
+ · · ·

)2

+ · · ·
)

.

Thus if we let R denote the coefficient of η−2 in the right-hand side of (2.10), we
find that it can be formally expanded as a power series of a:

(2.13) R = R(0) + aR(1) + a2R(2) + · · · ,

where

R(N) is free from a and expressed in terms of z(j0), z
(j1)
x̃ , z

(j2)
x̃x̃ , z

(j3)
x̃x̃x̃(2.14)

(0 ≤ j0, j1, j2, j3 ≤ N) and x̃.

Furthermore, (2.14) entails the following:

the coefficient R
(N)
l of η−l in R(N) is expressed in terms of x̃ and z

(j)
k(2.15)

and its derivatives with 0 ≤ j ≤ N and 0 ≤ k ≤ l − 2.

Here z
(j)
k stands for the coefficient of η−k of z(j).

Theorem 1.1 shows that x(0) and z(0) = x̃−1x(0) satisfy (2.10) with a = 0.
The comparison of coefficients of a1 in (2.10) leads to

∂

∂a

(
Q̃0(x̃, a) + η−1Q̃1(x̃, a)

)∣∣∣
a=0

=
x̃

2
(x(0)

x̃ x
(1)
x̃ ) +

2α(0)

z(0)
(x(0)

x̃ x
(1)
x̃ ) + (x(0)

x̃ )2
α(1)

z(0)
(2.16)

− (x(0)
x̃ )2

α(0)z(1)

z(0)2
+ η−2R(1).

In what follows, we let Q̃
(j)
k (x̃) (k = 0,1) denote the following:

(2.17)
1
j!

∂j

∂aj
Q̃k(x̃, a)

∣∣∣
a=0

.

Let us first pick up every coefficient of η0 in (2.16), including some terms that
actually vanish:

Q̃
(1)
0 (x̃) =

x̃

2

(dx
(0)
0

dx̃

dx
(1)
0

dx̃

)
+

2α
(0)
0

z
(0)
0

(dx
(0)
0

dx̃

dx
(1)
0

dx̃

)
(2.16.0)

+
(dx

(0)
0

dx̃

)2 α
(1)
0

z
(0)
0

−
(dx

(0)
0

dx̃

)2 α
(0)
0 z

(1)
0

z
(0)2
0

.
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In the right-hand side of (2.16.0), the second term and the fourth term vanish
because α

(0)
0 vanishes by (1.19). Hence, by setting x̃ = 0 in (2.16.0), we obtain

(2.18) Q̃
(1)
0 (0) = α

(1)
0 z

(0)
0 (0).

Choosing α
(1)
0 as above, we find a holomorphic function h(x̃) that satisfies

(2.19) Q̃
(1)
0 (0) −

(dx
(0)
0

dx̃

)2 α
(1)
0

z
(0)
0

= x̃h(x̃).

Hence, by dividing (2.16.0) by x̃, we arrive at

(2.20)
1
2

dx
(0)
0

dx̃

dx
(1)
0

dx̃
= h(x̃).

Then we solve (2.20) with the initial condition

(2.21) x
(1)
0 (0) = 0.

Thus we find a solution x
(1)
0 such that z

(1)
0 = x̃−1x

(1)
0 is holomorphic near x̃ = 0

and that satisfies (2.16.0).
Next, we collect terms of degree −1 in η in (2.16); this time we dispose of terms

containing α
(0)
0 as a factor. Then we find

Q̃
(1)
1 (x̃)

=
x̃

2

(dx
(0)
0

dx̃

dx
(1)
1

dx̃
+

dx
(0)
1

dx̃

dx
(1)
0

dx̃

)
+ 2

(dx
(0)
0

dx̃

dx
(1)
0

dx̃

)α
(0)
1

z
(0)
0

+ 2
(dx

(0)
0

dx̃

dx
(0)
1

dx̃

)α
(1)
0

z
(0)
0

+
(dx

(0)
0

dx̃

)2(α
(1)
1

z
(0)
0

− α
(1)
0 z

(0)
1

z
(0)2
0

)

−
(dx

(0)
0

dx̃

)2 α
(0)
1 z

(1)
0

z
(0)2
0

(2.16.1)

=
[ x̃

2
dx

(0)
0

dx̃

dx
(1)
1

dx̃
+

(dx
(0)
0

dx̃

)2 α
(1)
1

z
(0)
0

]

+
[ x̃

2
dx

(0)
1

dx̃

dx
(1)
0

dx̃
+ 2

(dx
(0)
0

dx̃

dx
(1)
0

dx̃

)α
(0)
1

z
(0)
0

+ 2
(dx

(0)
0

dx̃

dx
(0)
1

dx̃

)α
(1)
0

z
(0)
0

−
(dx

(0)
0

dx̃

)2 α
(1)
0 z

(0)
1

z
(0)2
0

−
(dx

(0)
0

dx̃

)2 α
(0)
1 z

(1)
0

z
(0)2
0

]
.

Hence (2.16.1) evaluated at x̃ = 0 reads as

Q̃
(1)
1 (0)

= z
(0)
0 (0)α(1)

1 + 2z
(1)
0 (0)α(0)

1 + 2z
(0)
1 (0)α(1)

0 − α
(1)
0 z

(0)
1 (0) − α

(0)
1 z

(1)
0 (0)(2.22)

= z
(0)
0 (0)α(1)

1 + z
(1)
0 (0)α(0)

1 + z
(0)
1 (0)α(1)

0 .
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Since all terms in (2.22) are, except for z
(0)
0 (0)α(1)

1 , values of functions which
have already been fixed, (2.22) fixes the constant α

(1)
1 . Furthermore, this choice

of α
(1)
1 enables us to divide (2.16.1) by x̃ to find a differential equation of the

form

(2.23)
dx

(1)
1 (x̃)
dx̃

= f(x̃)

for a holomorphic function f(x̃) defined near the origin. We then solve (2.23)
with the initial condition

(2.24) x
(1)
1 (0) = 0

to obtain the required x
(1)
1 (x̃). The treatment of terms of η−l in (2.16) can be

done in a similar way; we first find

0 =
x̃

2

(dx
(0)
0

dx̃

dx
(1)
l

dx̃
+ Fl

)
+

(2α
(0)
0

z
(0)
0

dx
(0)
0

dx̃

dx
(1)
l

dx̃
+ Gl

)

(l ≥ 2) +
((dx

(0)
0

dx̃

)2 α
(1)
l

z
(0)
0

+ Hl

)
(2.16.l)

−
((dx

(0)
0

dx̃

)2 α
(0)
0 z

(1)
l

(z(0)
0 )2

+ Kl

)
+ R

(1)
l ,

where Fl, and so on, are, respectively, collections of terms of degree l in η−1 which
originate from (x(0)

x̃ x
(1)
x̃ ) and so on, and which have been already fixed (like

(dx
(0)
j /dx̃) (dx

(1)
k /dx̃) (j+k = l,0 ≤ k ≤ l − 1)). In the above, in order to manifest

the origin of Gl and Kl we have included terms which are actually zero, that is,
terms multiplied by α

(0)
0 . Thus (2.16.l) assumes the form

(2.25)
x̃

2

(dx
(0)
0

dx̃

dx
(1)
l

dx̃

)
+

(dx
(0)
0

dx̃

)2 α
(1)
l

z
(0)
0

+ Ll = 0,

where Ll is a sum of terms that have already been fixed. Thus we should, and
really do, choose

(2.26) α
(1)
l = −

( 1

z
(0)
0

Ll

)∣∣∣
x̃=0

.

Then dividing (2.25) by x̃, we obtain

(2.27)
(1

2
dx

(0)
0

dx̃

)dx
(1)
l

dx̃
= h(x̃)

with a holomorphic function h near the origin. Hence we can solve (2.27) with
the initial condition x

(1)
l (0) = 0. Then the resulting function x

(1)
l together with

the constant α
(1)
l satisfies (2.16.l).

It is now evident that we can construct {α
(j)
k , x

(j)
k } for any (j, k) by the

same procedure. Actually the comparison of the coefficients of aN gives us an
equation (EN ), and the computation of the coefficients of η−l in (EN ) presents
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the equation (EN , l) to be resolved. In the equation (EN , l), {x
(j)
k , z

(j)
k , α

(j)
k } are

regarded as known objects if
(i) j ≤ N − 1 or
(ii) j = N , k ≤ l − 1.

The concrete form of (EN , l) is

(2.28) 0 =
x̃

2
dx

(0)
0

dx̃

dx
(N)
l

dx̃
+

(dx
(0)
0

dx̃

)2 α
(N)
l

z
(0)
0

+ (known functions).

Here we note that −Q̃
(N)
l is included among known functions when l is 0 or 1.

Thus we first fix α
(N)
l so that equation (2.28) is divisible by x̃, and then the equa-

tion for x
(N)
l obtained by division by x̃ assumes the normal form. Thus we can

solve the equation with the initial condition x
(N)
l (0) = 0. Thus we can construct

x(x̃, a, η) =
∑

j,k≥0 x
(j)
k (x̃)ajη−k and α(a, η) =

∑
j,k≥0 α

(j)
k ajη−k which satisfy

(2.8). The convergence of these series in a and their Borel transformability
concerning η are assured in Appendix B, Theorem B.1. �

REMARK 2.1

(i) It is worth emphasizing that the growth-order properties of {x
(j)
k , α

(j)
k }

as j tends to ∞ and those as k tends to ∞ are substantially different despite
the fact that the construction of {x

(j)
k , α

(j)
k } can be done in a symmetric way

with respect to indexes j and k; the equation for x
(N)
l can be found by first

writing down the equation (El) through the comparison of the coefficients of η−l

under the assumption that all coefficients of η−l′
(l′ ≤ l − 1) are known and then

finding out the required equation by the comparison of the coefficients of aN in
(El) under the assumption that all the coefficients of aN ′

(N ′ ≤ N − 1) in (El)
are known. The asymmetry of the growth order is tied up with the estimation of
higher-order derivatives contained in the seemingly ancillary term η−2x̃{x; x̃}/2
in (2.10) (see Appendix B, Remark B.2).

(ii) It is also noteworthy that the convergence property (2.5) (with k = 0)
automatically entails the following geometric result: it follows from (2.3) and
(2.8) that the solution x̃ = x̃0(a) of the equation

(2.29) x0(x̃, a) + 4α0(a) = 0,

whose existence is guaranteed again by (2.3) for |a| sufficiently small, satisfies

(2.30) Q̃0

(
x̃0(a), a

)
= 0.

Otherwise stated, the function x = x0(x̃, a) maps the simple turning point of the
given MPPT equation to that of the ∞-Whittaker equation. Note that it should
be difficult to image such a picture by tracing only the algebraic construction of
x(x̃, a, η) given above.

In parallel with the reasoning in Section 1, Theorem 2.1 gives us several results
on the structure of WKB solutions of a generic (i.e., a �= 0) MPPT equation.
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Among other things, we first note Theorem 2.2 below. To obtain Theorem 2.2 we
make essential use of the simple turning point x̃ = x̃0(a); it is known (see [AKT2,
Proposition 1.6]) that S̃odd, the odd part of a solution S̃ of the associated Riccati
equation, has singularities of square-root type near a simple turning point x̃ = t

in general. Hence the integral

(2.31)
∫ x̃

t

S̃odd dx̃

is well defined (see [KT2, (2.24)]), and we use this integral to define a WKB
solution ψ̃± of an MPPT equation which is normalized at the simple turning
point in question; that is,

(2.32) ψ̃±(x̃, a, η) =
1√
S̃odd

exp
(

±
∫ x̃

x̃0(a)

S̃odd(x̃, a, η)dx̃
)
.

As is shown in [KT2, Section 2], we can deduce Theorem 2.2 from Theorem 2.1
using the above normalization of WKB solutions.

THEOREM 2.2

Let ψ̃+(x̃, a, η) be a WKB solution of an MPPT equation (2.33), and suppose that
it is normalized at its simple turning point as above:

(2.33)
( d2

dx̃2
− η2Q̃(x̃, a, η)

)
ψ̃(x̃, a, η) = 0 (a �= 0),

where

(2.34) Q̃ =
Q̃0(x̃, a)

x̃
+ η−1 Q̃1(x̃, a)

x̃
+ η−2 Q̃2(x̃, a)

x̃2

satisfies (2.1) and (2.2). Then, for a sufficiently small a ( �= 0), we can find a
WKB solution ψ+(x, η;α(a, η)) of the ∞-Whittaker equation

(2.35)
(

d2

dx2
− η2

(1
4

+
α(a, η)

x
+ η−2 Q̃2(0, a)

x2

))
ψ

(
x, η;α(a, η)

)
= 0

which is also normalized at its simple turning point x = −4α0(a) so that it satis-
fies the relation

(2.36) ψ̃+(x̃, a, η) =
(∂x(x̃, a, η)

∂x̃

)−1/2

ψ+

(
x(x̃, a, η), η;α(a, η)

)
,

where x(x̃, a, η) and α(a, η) are the series constructed in Theorem 2.1.

The proof of Theorem 2.2 is essentially the same as that of [KT2, Corollary 2.18],
and we omit it here. We call the attention of the reader to the fact that normal-
ization of the WKB solution ψ̃(x̃, η) is not fixed in the corresponding result in
Section 1, that is, Theorem 1.3.

As there is no problem related to the normalization concerning solutions of
the Riccati equation, we can obtain the results similar to Theorem 1.2 and Corol-
lary 1.4 by using the series x(x̃, a, η) and α(a, η) constructed in Theorem 2.1. For
example, we obtain the following, Theorem 2.3, as a counterpart of Corollary 1.4.



124 Kamimoto, Kawai, Koike, and Takei

Figure 2.1

THEOREM 2.3

Let S and S̃, respectively, be solutions of

(2.37) S2 +
dS

dx
= η2

(1
4

+
α(a, η)

x
+ η−2 Q̃2(0, a)

x2

)
and

(2.38) S̃2 +
dS̃

dx̃
= η2Q̃(x̃, a, η),

and suppose that

(2.39) arg S̃−1(x̃, a) = arg
(dx0(x̃, a)

dx̃
S−1

(
x0(x̃, a), α0(a)

))
holds. Then they satisfy

(2.40) S̃odd(x̃, a, η) =
(dx(x̃, a, η)

dx̃

)
Sodd

(
x(x̃, a, η), α(a, η), η

)
.

We refer the reader to [KT2, Section 2] for the proof.
Now we note the following important lemma.

LEMMA 2.4

Let S be a solution of (2.37) whose top degree part S−1(x,α0) is chosen so that
it is positive for positive x and α0. Then we find

(2.41)
∮

Γ(α0)

Sodd

(
x,α(a, η), η

)
dx = 2πiα(a, η)η,

where Γ(α0) designates a closed curve in the cut plane shown in Figure 2.1.

Proof
By a straightforward computation, we find

S
(±)

−1 = ± 1
2

√
x + 4α0

x
,(2.42)

S
(±)
0 =

α0

x(x + 4α0)
± α1√

x
√

x + 4α0
.(2.43)

Then we can readily find the concrete form of S
(±)
l (l ≥ 1) by the induction on l:

(2.44) S
(±)
l =

∑
c(±)
p,q (l)x−p/2(x + 4α0)−q/2,



On the WKB-theoretic structure of an MPPT operator 125

Figure 2.2

where c
(±)
p,q (l) are constants, p and q are integers that satisfy

(2.45) p + q = 2m, m = l + 1, l, . . . ,1.

Furthermore, we see that the surviving constant c
(±)
p,q (l) with p+ q = 2 is only for

p = q = 1 and that

(2.46) c
(±)
1,1 (l) = αl+1.

By computing the residue at ∞ of x−p/2(x + 4α0)−q/2, we find∮
Γ(α0)

√
x + 4α0

x
dx = 4πiα0,(2.47)

∮
Γ(α0)

dx√
x(x + 4α0)

= 2πi,(2.48)

and

(2.49)
∮

Γ(α0)

dx

xp/2(x + 4α0)q/2
= 0 if p + q = 2m ≥ 4.

Therefore (2.43), (2.44), and (2.46) imply

(2.50)
∮

Γ(α0)

Sodd dx = 2πiα(η)η. �

Combining Theorem 2.3 and Lemma 2.4, we obtain the following.

PROPOSITION 2.5

Let S̃ be a solution of the Riccati equation (2.38) which is associated with a
generic MPPT equation. Then with an appropriate choice of the branch of S̃−1,
we find

(2.51)
∮

Γ̃(a)

S̃odd(x̃, a, η)dx̃ = 2πiα(a, η)η,

where Γ̃(a) designates a closed curve in the cut plane shown in Figure 2.2.

In view of the logical structure of the discussions in Section 1, one naturally
expects that some intertwining microdifferential operators between a generic
MPPT operator and an ∞-Whittaker operator may be constructed with the
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help of the series x(x̃, a, η) and α(a, η) constructed in Theorem 2.1. This expec-
tation can be readily validated if we introduce a holomorphic function g(x,a),
instead of g(x) given in (1.48), which satisfies

(2.52) x = x0

(
g(x,a), a

)
, x̃ = g

(
x0(x̃, a), a

)
on a neighborhood of (x,a) = (0,0). The unique existence of such a holomorphic
function is guaranteed by (2.3), and hence we find

(2.53) g(x,0) = g(x).

The proof of Theorems 2.6 and 2.7 below are essentially the same as that
of Theorems 1.6 and 1.7. Here we repeat the definitions of relevant operators
only for the convenience of the reader. First, L designates a Borel-transformed
generic MPPT operator expressed in (x,a, y)-coordinates and then multiplied by
(∂g/∂x)2. That is,

(2.54) L =
∂2

∂x2
−

(∂2g/∂x2

∂g/∂x

) ∂

∂x
−

(∂g

∂x

)2

Q̃
(
g(x,a), a,

∂

∂y

)
.

In parallel with (1.52), we designate by M the Borel-transformed ∞-Whittaker
equation, that is,

(2.55)
∂2

∂x2
−

(1
4

+
α(a, ∂/∂y)

x

) ∂2

∂y2
− Q̃2(0, a)

x2
.

Using the series x(x̃, a, η) =
∑

k≥0 xk(x̃, a)η−k constructed in Theorem 2.1, we
define another series r(x,a, η) by

(2.56)
∑
k≥1

xk

(
g(x,a), a

)
η−k.

Then, using the same reasoning as in the proof of Theorem 1.6, we obtain The-
orem 2.6 with the help of Appendix B, Theorem B.1.

THEOREM 2.6

There exist invertible microdifferential operators X and Y with a holomorphic
parameter a which satisfy

(2.57) LX = Y M

near (x,a) = (0,0) with the exception of xη = 0. The concrete form of operators
X and Y are as follows:

X = :
(∂g

∂x

)1/2(
1 +

∂r

∂x

)−1/2

exp
(
r(x,a, η)ξ

)
:,(2.58)

Y = :
(∂g

∂x

)1/2(
1 +

∂r

∂x

)3/2

exp
(
r(x,a, η)ξ

)
: .(2.59)

REMARK 2.2

In parallel with Remark 1.2, we see from (2.56) and (2.58) that Theorem 2.6 is
a Borel-transformed version of Theorem 2.2; X ψ+,B is the Borel transform of



On the WKB-theoretic structure of an MPPT operator 127

(∂x(x̃, a, η)/∂x̃)−1/2 ψ+(x(x̃, a, η), η; α(α,η)) written down in (x, y)-coordinate
(not in (x̃, y)-coordinate), where ψ+ is a WKB solution of the ∞-Whittaker
equation (2.35).

Furthermore, Theorem B.1 together with Proposition C.1 entails the following.

THEOREM 2.7

The action of the microdifferential operator X upon the Borel-transformed WKB
solution ψ+,B of the ∞-Whittaker equation is expressed as an integro-differential
operator of the form

(2.60) X ψ+,B =
∫ y

y0

K(x,a, y − y′, ∂/∂x)ψ+,B(x,a, y′)dy′,

where K(x,a, y, ∂/∂x) is a differential operator of infinite order which is defined
on {(x,a, y) ∈ C3; (x,a) ∈ ω for an open neighborhood ω of the origin and |y| <

C for some positive constant C}, and y0 is a constant that fixes the action of
(∂/∂y)−1 as an integral operator.

REMARK 2.3

Since α0(a) tends to zero as a tends to zero, Theorem B.1 guarantees that we
can choose ω to be of the form ω0 × D, where

(2.61) D = {a ∈ C; |a| < δ for some positive constant δ},

and

ω0 is a simply connected open set in C which contains the origin
and the simple turning point of the ∞-Whittaker equation, that is,(2.62)
x = −4α0(a), for every a in D.

Then the integral operator on the right-hand side of (2.60) acts on any multival-
ued analytic function defined on ω0 × D × {y ∈ C; |y − y0| < C}.

3. Analytic properties of WKB solutions
of the Whittaker equation with a large parameter

In order to analyze WKB solutions of the ∞-Whittaker equation, which plays a
central role in subsequent sections as the canonical form of an MPPT equation
for a �= 0, we first recall several basic facts about WKB solutions of the Whittaker
equation with a large parameter η, that is, the equation

(3.1)
(

d2

dx2
− η2

(1
4

+
α

x
+ η−2 γ(γ + 1)

x2

))
ψ = 0,

where α ( �= 0) and γ are complex numbers. We refer the reader to [KoT] for the
details. As [KoT] has recently found, the Voros coefficient φ(α,γ;η) for (3.1) can
be explicitly expressed in terms of the Bernoulli numbers, and its Borel transform
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φB(α,γ;y) is concretely written down by elementary functions. Here the Voros
coefficient means, by definition,

(3.2)
∫ ∞

−4α

(Sodd − ηS−1)dx

(see also [V]), where Sodd designates the odd part of a solution S of the Riccati
equation associated with (3.1), that is,

(3.3) S2 +
dS

dx
= η2

(1
4

+
α

x
+ η−2 γ(γ + 1)

x2

)
.

As we see in Theorem 3.1 below, the concrete form of φB(α,γ;y) enables us
to find the singularity structure of Borel-transformed WKB solutions of (3.1)
through the relation

(3.4) ψ+(x, η) =
(
exp(φ(α,γ;η))

)
ψ

(∞)
+ (x, η),

where ψ+(x, η) (resp., ψ
(∞)
+ (x, η)) designates the WKB solution of (3.1) that is

normalized at the simple turning point x = −4α (resp., at infinity); that is,

(3.5) ψ+(x, η) =
1√
Sodd

exp
(∫ x

−4α

Sodd dx
)

and

(3.6) ψ
(∞)
+ (x, η) =

1√
Sodd

exp
(∫ x

−4α

ηS−1 dx +
∫ x

∞
(Sodd − ηS−1)dx

)
.

An important property of ψ
(∞)
+ (x, η) is that it is Borel-summable on the condition

that

the path of integration from ∞ to x in the right-hand side of (3.6)
(3.7)

never touches a Stokes curve of (3.1).

See [Ko4] for the proof of the Borel summability of ψ
(∞)
+ (x, η). See also [DDP1]

and [DP] for the corresponding result for the Weber equation. Thus (3.4) implies
that the computation of the alien derivative of ψ+(x, η) is reduced to that of
expφ(α,γ;η). In order to compute the latter one, we first recall the concrete
form of φB(α,γ;y) and then employ the alien calculus (see [P], [Sa]) to obtain
the required result.

Now, the result in [KoT] tells us the following:

φB(α,γ;y)

=
1
2y

(exp(y/α) + 1
exp(y/α) − 1

)
cosh

(γy

α

)
(3.8)

− α

y2
+

1
2y

sinh
(γy

α

)
.

A straightforward computation shows that

(3.9) φB(α,γ;y) =
1
2α

(1
6

+ γ + γ2
)

+ O(y) near y = 0
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and that

φB(α,γ;y)

=
(exp(2mπiγ) + exp(−2mπiγ)

4mπi

) 1
y − 2mπiα

+ O(1)(3.10)

near y = 2mπiα (m : a nonzero integer).

Thus φB(α,γ;y) is seen to be a single-valued analytic function with simple poles
located at y = 2mπiα (m �= 0). The computation of the alien derivative Δφ of
such a series, that is, a series whose Borel transform is single valued and has only
simple poles, is exceptionally simple:

(3.11) Δφ =
∑
m≥1

Δy=2mπiαφ

with

(3.12) Δy=2mπiαφ =
exp(2mπiγ) + exp(−2mπiγ)

2m

(see [P], [Sa]). Hence, by using the alien calculus, we find

(3.13) Δy=2mπiα(expφ) =
exp(2mπiγ) + exp(−2mπiγ)

2m
expφ

(see [P], [CNP], [Sa]). For the convenience of the description of several formulae
below, we introduce

(3.14) y+(x) =
∫ x

−4α

S−1 dx =
∫ x

−4α

√
x + 4α

4x
dx.

Then, on the condition that (3.7) is satisfied, we find

(3.15) Δ
(
exp(−y+(x)η)ψ(∞)

+ (x, η)
)

= 0.

Hence we conclude that

Δy=−y+(x)+2mπiα

(
exp(−y+(x)η)ψ+(x, η)

)
= Δy=−y+(x)+2mπiα

(
exp(−y+(x)η) exp(φ(α,γ;η))ψ(∞)

+ (x, η)
)

=
exp(2mπiγ) + exp(−2mπiγ)

2m
(3.16)

×
(
exp(−y+(x)η) exp(φ(α,γ;η))ψ(∞)

+ (x, η)
)

=
exp(2mπiγ) + exp(−2mπiγ)

2m

(
exp(−y+(x)η)ψ+(x, η)

)
holds if x is chosen so that condition (3.7) may be satisfied.

Summing up the obtained results, we find the following.

THEOREM 3.1

Let ψ+(x, η) denote the WKB solution of the Whittaker equation which is nor-
malized at the simple turning point x = −4α as in (3.5). Then its Borel transform
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ψ+,B(x, y) is singular at

(3.17) y = −y+(x) + 2mπiα (m = 0, ±1, ±2, . . .),

where y+(x) is the function given by (3.14), and its alien derivative there, that
is, Δy=−y+(x)+2mπiαψ+(x, η), satisfies the relation (3.18) for x which can be
connected with a point at infinity by a path that is contained in the interior of a
Stokes region of the Whittaker equation:

(Δy=−y+(x)+2mπiαψ+)B(x, y)
(3.18)

=
exp(2mπiγ) + exp(−2mπiγ)

2m
ψ+,B(x, y − 2mπiα).

4. Structure of WKB solutions of the ∞-Whittaker equation

As Theorems 2.1, 2.2, and 2.7 show, the WKB-theoretic canonical form of an
MPPT equation for a �= 0 is the ∞-Whittaker equation

(4.1)
(

d2

dx2
− η2

(1
4

+
α(a, η)

x
+ η−2 c(a)

x2

))
ψ̃

(
x, η;α(a, η), c(a)

)
= 0,

where α(a, η) satisfies the condition (B.3) and c(a) is Q̃2(0, a). Hence the study
of the singularity structure of Borel-transformed WKB solutions of an MPPT
equation for a �= 0 is reduced to the study of the corresponding objects of the
∞-Whittaker equation. Thus the analysis of the ∞-Whittaker equation is our
next target, and by relating (4.1) with the Whittaker equation

(4.2)
(

d2

dx2
− η2

(1
4

+
α

x
+ η−2 c

x2

))
ψ(x, η;α, c) = 0,

we achieve the target. A crucial idea in achieving it is the use of microdifferential
operators, which becomes possible thanks to the estimate (B.3) of {α

(j)
k } (see also

(B.32.k.j)).
In what follows, to avoid technical complexities, we assume the following

condition:

(4.3)
(∂Q̃0

∂a

)
(0,0) �= 0.

This is a natural strengthening of the assumption (2.1); actually, by using the
Taylor expansion of Q̃0(x̃, a), one immediately sees that the assumption (4.3)
together with (2.2) entails (2.1). It is also clear from (2.18) that (4.3) entails

(4.4) α
(1)
0 �= 0,

and hence we find, by using (2.6),

(4.5)
dα0(a)

da

∣∣∣
a=0

�= 0.

Therefore, we may employ α0 as an independent variable in substitution for a;
thus we regard αj(a) (j ≥ 1) as functions of α0 in what follows.
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Now, in order to relate the Borel-transformed WKB solution ψB of the Whit-
taker equation (3.1) and the Borel-transformed WKB solution ψ̃B of the ∞-
Whittaker equation, we rewrite a WKB solution ψ̃(x, η;α(α0, η), c(α0)) of (4.1)
in the following manner:

ψ̃
(
x, η;α(α0, η), c(α0)

)
(4.6)

=
(∑

n≥0

(α1η
−1 + α2η

−2 + · · · )n

n!
∂n

∂αn
0

ψ(x, η;α0, c)
)∣∣∣

c=c(α0)
,

where ψ(x, η;α0, c) designates a WKB solution of (4.2) with

(4.7) α = α0.

Then the estimate (B.3) that the αk’s satisfy enables us to apply the Borel
transformation to (4.6); we then find

(4.8) ψ̃B(x, y) =
(

A
(
α0,

∂

∂y
,

∂

∂α0

)
ψB(x, y;α0, c)

)∣∣∣
c=c(α0)

,

where

(4.9) A
(
α0,

∂

∂y
,

∂

∂α0

)
=

∑
n≥0

(α1(∂/∂y)−1 + α2(∂/∂y)−2 + · · · )n

n!
∂n

∂αn
0

is a well-defined microdifferential operator on

(4.10)
{
(y,α0;η, θ) ∈ T ∗

C
2; |α0| < δ0, η �= 0

}
for some positive constant δ0. In what follows we identify η and θ, respectively,
with the symbol σ(∂/∂y) and the symbol σ(∂/∂α0); using these symbols, we
may write

(4.11) A = :
∑
n≥0

(α1η
−1 + α2η

−2 + · · · )nθn

n!
: .

In parallel with the above treatment of Borel-transformed WKB solutions with
the use of a microdifferential operator relevant to the parameter α, the Borel
transform VB(y) of the exponential of the Voros coefficient of the ∞-Whittaker
equation can be expressed in terms of the corresponding function of the Whittaker
equation in the following manner:

(4.12) VB(y) =
(

A(α0, ∂/∂y, ∂/∂α0)((expφ(α0, c, η))B)
)∣∣

c=c(α0)
.

REMARK 4.1

Although the target variable is α0, not x, we can use the same reasoning as in Sec-
tion 2 to see the concrete expression of the operator A as an integro-differential
operator; the right-hand sides of (4.8) and (4.12) should be understood as a mul-
tivalued analytic function acted upon by an integro-differential operator deter-
mined by the microdifferential operator A. While the estimate (B.3) guarantees
the existence of a common domain of definition of the operator as a tends to
zero, the quantity α0(a) tends to zero as a tends to zero. On the other hand,
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(3.17) means that a fixed singular point of ψ+,B(x, y) (“fixed” with respect to
y = −y+(x)) is located at y = −y+(x) + 2mπiα. Thus each individual fixed sin-
gular point of ψ̃+,B(x, y) is contained, for sufficiently small a, in the domain of
definition of the integro-differential operator in question. Hence, in what follows,
we do not worry about the existence of a sufficiently large domain of definition of
the integro-differential operator; if necessary, we assume that a (or, equivalently,
α0) is sufficiently close to zero.

Using the results obtained in Section 3 for the Whittaker equation, we obtain
the following.

THEOREM 4.1

Let ψ̃+(x, η) and φ(α(a), γ(a);η) denote, respectively,

(4.13)
1√
S̃odd

exp
(∫ x

−4α0(a)

S̃odd dx
)

and

(4.14)
∫ ∞

−4α0(a)

(S̃odd − ηS̃−1)dx,

where S̃odd designates the odd part of a solution S̃ of the Riccati equation

(4.15) S̃2 +
dS̃

dx
= η2

(1
4

+
α(a)

x
+ η−2 γ(a)2 + γ(a)

x2

)
with

(4.16) γ(a)2 + γ(a) = c(a).

Then the Borel transform ψ̃+,B(x, y) of ψ̃+(x, η) and the Borel transform VB of
the exponentiated Voros coefficient V = exp(φ(α(a), γ(a);η)) satisfy the following
relations:

(Δy=−y+(x)+2mπiα0ψ̃+)B(x, y)

=
exp(2mπiγ(α0)) + exp(−2mπiγ(α0))

2m
(4.17)

× : exp
(

−2mπi(α1 + α2η
−1 + · · · )

)
: ψ̃+,B(x, y − 2mπiα0),

(Δy=2mπiα0V )B(y)

=
exp(2mπiγ(α0)) + exp(−2mπiγ(α0))

2m
(4.18)

× : exp
(

−2mπi(α1 + α2η
−1 + · · · )

)
: VB(y − 2mπiα0),

where m = 1,2,3, . . . , and y+(x) denotes

(4.19)
∫ x

−4α0

√
x + 4α0

4x
dx.
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Proof
For notational convenience, let B −1ρ denote the inverse Borel transform of ρ.
(This is just to avoid the use of the sign Δρ when ρ is the Borel transform of a
formal series χ, although Δρ is sometimes used to mean Δχ in references in alien
calculus.) Then it follows from (4.8) and the definition of the alien derivative
that we obtain

(Δy=−y+(x)+2mπiα0ψ̃+)B(x, y)

=
(

Δy=−y+(x)+2mπiα0 B −1

(
A

(
α0,

∂

∂y
,

∂

∂α0

)
(4.20)

× ψ+,B(x, y;α0, c)
))

B

(x, y)
∣∣∣∣
c=c(α0)

=
(

A
(
α0,

∂

∂y
,

∂

∂α0

)(
(Δy=−y+(x)+2mπiα0ψ+)B(x, y,α0, c)

)
(x, y)

)∣∣∣∣
c=c(α0)

.

Then it follows from Theorem 3.1 that the rightmost term of (4.20) coincides
with (

A
(
α0,

∂

∂y
,

∂

∂α0

)[exp(2mπiγ) + exp(−2mπiγ)
2m

(4.21)

× ψ+,B(x, y − 2mπiα0;α0, c)
])∣∣∣∣

c=c(α0)

.

To relate this function with ψ̃+,B(x, y − 2mπiα0), we use the technique of [AKT4];
we introduce the following coordinate transformation from (y,α0) to (ỹ, α̃0):

(4.22)

{
ỹ = y − 2mπiα0,

α̃0 = α0.

Correspondingly, η̃ = σ(∂/∂ỹ) and θ̃ = σ(∂/∂α̃0) are related with η and θ in the
following manner:

(4.23)

{
η = η̃,

θ = −2mπiη̃ + θ̃.

Using the (ỹ, α̃0)-variable, we then find(
A

(
α0,

∂

∂y
,

∂

∂α0

)
ψ+,B(x, y − 2mπiα0;α0, c)

)∣∣∣∣
c=c(α0)

=
(
:
∑
n≥0

(α1η̃
−1 + α2η̃

−2 + · · · )n(θ̃ − 2mπiη̃)n

n!
:

× ψ+,B(x, ỹ; α̃0, c)
)∣∣∣

c=c(α̃0)

=
(
:
∑
n≥0

1
n!

(α1η̃
−1 + α2η̃

−2 + · · · )n
∑

k+l=n
k,l≥0

n!
k!l!

θ̃k(−2mπiη̃)l :(4.24)
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× ψ+,B(x, ỹ; α̃0, c)
)∣∣∣

c=c(α̃0)

=
(
:
∑
l≥0

1
l!

(
−2mπi(α1 + α2η̃

−1 + · · · )
)l :

× :
∑
k≥0

1
k!

(α1η̃
−1 + α2η̃

−2 + · · · )kθ̃k : ψ+,B(x, ỹ; α̃0, c)
)∣∣∣

c=c(α̃0)

=
(

: exp
(

−2mπi(α1 + α2η̃
−1 + · · · )

)
:

× A
(
α̃0,

∂

∂ỹ
,

∂

∂α̃0

)
ψ+,B(x, ỹ; α̃0, c)

)∣∣∣∣
c=c(α̃0)

= : exp
(

−2mπi(α1 + α2η
−1 + · · · )

)
: ψ̃+,B(x, y − 2mπiα0).

Combining (4.20), (4.21), and (4.24), we obtain (4.17). The proof of (4.18) can
be given in exactly the same manner. �

5. Analytic properties of Borel-transformed WKB solutions
of an MPPT equation for a �= 0

In Section 4 we have seen that the Borel transform ψB of a WKB solution of the
∞-Whittaker equation

(5.1)
(

d2

dx2
− η2

(1
4

+
α(a, η)

x
+ η−2 c(a)

x2

))
ψ

(
x, η;α(a, η), c(a)

)
= 0

can be represented in the form

(5.2)
(

A(α0, ∂/∂y, ∂/∂α0)ψ0,B(x, y;α0, c)
)∣∣

c=c(α0)
,

where A is a microdifferential operator and ψ0,B is a Borel-transformed WKB
solution ψ0 of the Whittaker equation

(5.3)
(

d2

dx2
− η2

(1
4

+
α0

x
+ η−2 c

x2

))
ψ0(x, η;α0, c) = 0,

where α0 and c are complex numbers. We note that we have changed the notation
(ψ̃,ψ) used in Section 4 to (ψ,ψ0) for the convenience of the presentation in this
section. On the other hand, Theorem 2.2 shows that the study of a WKB solution
ψ̃+(x̃, a, η) of an MPPT equation for a �= 0 can be reduced to that of a WKB
solution ψ+ of the ∞-Whittaker equation in that they are related as in (5.4) with
the infinite series x(x̃, a, η) and α(a, η) constructed in Theorem 2.1:

(5.4) ψ̃+(x̃, a, η) =
(∂x(x̃, a, η)

∂x̃

)−1/2

ψ+

(
x(x̃, a, η), η;α(a, η), Q̃2(0, a)

)
.

Furthermore, as is noted in Remark 2.2, the growth-order condition (B.4) that
{xk(x̃, a)}k≥0 satisfies has enabled us to rewrite (5.4) as the following microdif-
ferential relation between ψ̃+,B and ψ+,B :

(5.5) ψ̃+,B(x,a, y) = X ψ+,B(x, y),
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where

(5.6) X = :
(∂g

∂x
(x,a)

)1/2(
1 +

∂r

∂x

)−1/2

exp
(
r(x,a, η)ξ

)
:

with the notation in Section 2 (see (2.58)). In view of the concrete expression
(2.60) of X as an integro-differential operator, we find by Theorem 4.1 that the
singularities of ψ̃+,B(x,a, y) are confined to

(5.7) y = −y+(x,a) + 2mπiα0(a) (m = 0, ±1, ±2, . . .)

in a sufficiently small neighborhood of the origin (x,a, y) = (0,0,0), where

(5.8) y+(x,a) =
∫ x

−4α0(a)

√
x + 4α0(a)

4x
dx.

Then it follows from the comparison of the degree zero part of (2.8) that the
corresponding point is expressed in (x̃, a, y)-coordinates as

(5.9) y = −y+(x̃, a) + 2mπiα0(a),

where

(5.10) y+(x̃, a) =
∫ x̃

x̃0(a)

√
Q̃0(x̃, a)

x̃
dx̃

with x̃0(a) in (2.30) (i.e., the simple turning point of the MPPT equation in
question). Since the alien derivative of ψ+,B at the point is given by (4.17), the
application of the operator X entails the following.

THEOREM 5.1

Let ψ̃+(x̃, a, η) be a WKB solution of a generic (i.e., a �= 0) MPPT equation that
is normalized as in (2.32). Then for each positive integer m, the relation (5.11)
holds for sufficiently small a ( �= 0):

(Δy=−y+(x̃,a)+2mπiα0(a)ψ̃+)B(x̃, a, y)

=
exp(2mπiγ(a)) + exp(−2mπiγ(a))

2m
(5.11)

× : exp
(

−2mπi(α1(a) + α2(a)η−1 + · · · )
)

: ψ̃+,B

(
x̃, a, y − 2mπiα0(a)

)
,

where

(5.12) y+(x̃, a) =
∫ x̃

x̃0(a)

√
Q̃0(x̃, a)

x̃
dx̃,

(5.13) γ(a)2 + γ(a) = Q̃2(0, a),

and

(5.14) αj(a) =
1

2πi

∮
Γ̃(a)

S̃j−1(x̃, a)dx̃



136 Kamimoto, Kawai, Koike, and Takei

with Γ̃(a) being the closed curve in Figure 2.2 and with S̃k designating the degree
k part of S̃odd, the odd part of S̃ which satisfies

(5.15) S̃2 +
dS̃

dx̃
= η2Q̃(x̃, a).

Appendices

A. Convergence of the top-order part of the transformation which
brings an MPPT equation to its canonical form

In Appendices A and B, we give estimates of the transformation

(A.1) x(x̃, a, η) =
∞∑

k=0

∞∑
j=0

x
(j)
k (x̃)ajη−k,

which appears in Section 2 and which brings an MPPT equation

(A.2)
(

d2

dx̃2
− η2

( Q̃0(x̃, a)
x̃

+ η−1 Q̃1(x̃, a)
x̃

+ η−2 Q̃2(x̃, a)
x̃2

))
ψ̃(x̃, η) = 0

to its canonical form

(A.3)
(

d2

dx2
− η2

(1
4

+
α(a, η)

x
+ η−2 γ(a)

x2

))
ψ(x, η) = 0

with

(A.4) α(a, η) =
∞∑

k=0

∞∑
j=0

α
(j)
k ajη−k.

Here we assume that Q̃j (j = 0,1,2) are holomorphic in a neighborhood of (x̃, a) =
(0,0) and satisfy

Q̃0(0,0) = 0,(A.5)

∂Q̃0

∂x̃
(0,0) �= 0,(A.6)

γ(a) = Q̃2(0, a).(A.7)

We also obtain the estimates of α(a, η) in the course of the estimation of x(x̃, a, η).
The series x(x̃, a, η) and α(a, η) are constructed so that they satisfy (2.8),

that is,

Q̃0(x̃, a)
x̃

+ η−1 Q̃1(x̃, a)
x̃

+ η−2 Q̃2(x̃, a)
x̃2

(A.8)

=
(∂x

∂x̃

)2(1
4

+
α(a, η)

x
+ η−2 γ(a)

x2

)
− 1

2
η−2{x; x̃}.

For simplicity, we use the following notation. For multi-indices κ̃ = (κ1, . . . ,

κμ) and λ̃ = (λ1, . . . , λμ) in N
μ
0 with N0 = {0,1,2, . . .}, we define

|λ̃|μ :=
μ∑

j=1

λj ,(A.9)
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λ̃! :=
μ∏

j=1

λj !,(A.10)

C(λ̃) :=
μ∏

j=1

C(λj), C(λj) :=
3

2π2(λj + 1)2
.(A.11)

For (λj , κj)-dependent (j = 1,2, . . . , μ) quantities ρ
λj
κj and σκj , we also use the

following notation:

ρλ̃
κ̃ :=

μ∏
j=1

ρλj
κj

,(A.12)

∑∗

|κ̃|μ=l

σκ̃ :=

⎧⎨
⎩

1 for μ = 0,∑
|κ̃|μ=l,
κj ≥1

∏μ
j=1 σκj for μ ≥ 1.

(A.13)

In what follows, x
(j)
k or functions related to it such as dx

(j)
k /dx̃, and so on,

typically stand for ρj
k. We also use the notation

∑∗
|λ̃|μ=l ρ

λ̃
κ̃ to mean imposing the

constraint on λj in exactly the same way as in (A.13). We denote the supremum
of a function f(x̃) on {x̃ ∈ C; |x̃| ≤ r} by

(A.14) ‖f ‖[r] := sup
|x̃|≤r

|f(x̃)|.

As in Section 2, we introduce z(x̃, a, η) given by

(A.15) z(x̃, a, η) := x̃−1x(x̃, a, η).

The purpose of Appendix A is to confirm (2.5) and (2.6) for k = 0, that is,
to prove Proposition A.1. As we see in Appendix B, the convergence of the series
x0(x̃, a) and α0(a) plays a central role in our subsequent discussions.

PROPOSITION A.1

Let

(A.16) x0(x̃, a) =
∞∑

j=0

x
(j)
0 (x̃)aj and α0(a) =

∞∑
j=0

α
(j)
0 aj

be the top-order part (with respect to η−1) of the transformation and the coeffi-
cient of the canonical form constructed in Section 2, respectively. Then x0(x̃, a)
and α0(a) converge in a neighborhood of (x̃, a) = (0,0).

Proof
To begin, we briefly recall how to construct x

(j)
0 and α

(j)
0 .

Comparing the coefficients of η0 in (A.8), we have

(A.17)
Q̃0(x̃, a)

x̃
=

(∂x0

∂x̃

)2(1
4

+
α0(a)

x0

)
.



138 Kamimoto, Kawai, Koike, and Takei

Further, by comparing the coefficients of a0 in (A.17), we find

(A.18) Q̃
(0)
0 (x̃) =

(dx
(0)
0

dx̃

)2( x̃

4
+

α
(0)
0

z
(0)
0

)
,

where Q̃
(j)
k denotes the Taylor coefficient (with respect to a) of Q̃k at a = 0 (cf.

(2.17)). Our choice of x
(0)
0 and α

(0)
0 are as follows:

(A.19) α
(0)
0 = 0, x

(0)
0 (x̃) =

∫ x̃

0

2

√
Q̃

(0)
0 (y)
y

dy.

It follows from (A.6) that x
(0)
0 thus chosen is holomorphic in a neighborhood of

zero and satisfies

x
(0)
0 (0) = 0,(A.20)

dx
(0)
0

dx̃
(0) �= 0.(A.21)

By a similar procedure, we determine x
(j)
0 and α

(j)
0 succesively in the follow-

ing way. First, comparing the coefficients of aj in (A.17), we have

Q̃
(j)
0 (x̃) =

∑
j1+j2+j3=j

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃

(A.22)

×
(
δ0,j3

x̃

4
+

∑
j′
1+j′

2=j3

α
(j′

1)
0

z
(0)
0

j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(−1)μz
˜(λ)

0

(z(0)
0 )μ

)
.

Here and in what follows, δp,q designates Kronecker’s delta (i.e., is equal to 1 for
p = q and equal to 0 if p �= q). By multiplying (A.22) by −2z

(0)
0 (dx

(0)
0 /dx̃)−2 and

taking w = x
(0)
0 (x̃) as a new independent variable, we can rewrite (A.22) as

(A.23) w
d

dw
x

(j)
0 + 2α

(j)
0 = 2Φ(j)(w).

Here the explicit form of Φ(j)(w) is given by

Φ(j)(w) := −
∑

j1+j2+j3=j
1≤j3≤j−1

dx
(j1)
0

dw

dx
(j2)
0

dw

∑
j′
1+j′

2=j3

α
(j′

1)
0

×
j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(−1)μz
˜(λ)

0

(z(0)
0 )μ

(A.24)

−
∑∗

j′
1+j′

2=j

α
(j′

1)
0

j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(−1)μz
˜(λ)

0

(z(0)
0 )μ

− w

4

∑∗

j1+j2=j

dx
(j1)
0

dw

dx
(j2)
0

dw
+ z

(0)
0

(dx
(0)
0

dx̃

)−2

Q̃
(j)
0 (w).
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We then define α
(j)
0 by

(A.25) α
(j)
0 := Φ(j)(0).

With this choice of α
(j)
0 , we solve (A.23) to obtain

(A.26) x
(j)
0 (w) = 2

∫ w

0

Φ(j)(w̃) − α
(j)
0

w̃
dw̃.

In view of the definition of α
(j)
0 , we find that x

(j)
0 (w) is holomorphic in some

neighborhood of {w ∈ C; |w| ≤ r} for some r > 0.
To verify the convergence of the series x0(x̃, a) and α0(a), we use the majo-

rant series method; that is, we construct a majorant series A(a) =
∑

j≥0 A(j)aj

of x0(x̃, a) and α0(a). Hence our task is to find a sequence {A(j)}j≥0 of complex
numbers such that they satisfy the relation (A.27.j) for every j ≥ 0:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
|α(j)

0 | ≤ A(j)

4 ,

‖x
(j)
0 ‖[r] ≤ A(j),∥∥dx

(j)
0

dw

∥∥
[r]

, ‖z
(j)
0 ‖[r] ≤ A(j)

r .

(A.27.j)

To begin, we choose A(0) and A(1) so that they satisfy, respectively, (A.27.0) and
(A.27.1). To define A(j) (j ≥ 2), we introduce an auxiliary constant C so that
the following relations may be satisfied:

‖Q̃
(j)
0 ‖[r] ≤ Cj+1,(A.28)

∥∥∥(dx
(0)
0

dw

)−1∥∥∥
[r]

,
∥∥∥(dx

(0)
0

dx̃

)−1∥∥∥
[r]

, ‖(z(0)
0 )−1‖[r] ≤ C.(A.29)

Since Q̃0(w,a) is holomorphic at (w,a) = (0,0) and (dx
(0)
0 /dx̃)(0), z

(0)
0 (0) �= 0,

we can find such a constant C by taking r (> 0) sufficiently small. Using this
constant C, we recursively define A(j) by the following:

A(j) :=
∑

j1+j2+j3=j
1≤j3≤j−1

A(j1)A(j2)

r2

∑
j′
1+j′

2=j3
j′
1≥1

A(j′
1)

×
j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(C

r

)μ

A
˜(λ)

(A.30)

+
∑∗

j′
1+j′

2=j

A(j′
1)

j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(C

r

)μ

A
˜(λ)

+
∑∗

j1+j2=j

A(j1)A(j2)

r
+ 4Cj+3 A(0)

r
.

By using induction on j, we prove that A(j) satisfies (A.27.j).
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Let us now suppose that A(j) satisfies (A.27.j) for 0 ≤ j ≤ m − 1. Then by
using (A.24), (A.28), (A.29), and (A.30), we find

‖Φ(m)‖[r] ≤
∑

j1+j2+j3=m
1≤j3≤m−1

∥∥∥dx
(j1)
0

dw

∥∥∥
[r]

∥∥∥dx
(j2)
0

dw

∥∥∥
[r]

∑
j′
1+j′

2=j3

|α(j′
1)

0 |

×
j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

‖z
˜(λ)

0 ‖[r]‖(z(0)
0 )−1‖μ

[r]

+
∑∗

j′
1+j′

2=m

|α(j′
1)

0 |
j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

‖z
˜(λ)

0 ‖[r]‖(z(0)
0 )−1‖μ

[r]

+
|w|
4

∑∗

j1+j2=m

∥∥∥dx
(j1)
0

dw

∥∥∥
[r]

∥∥∥dx
(j2)
0

dw

∥∥∥
[r]

+ ‖z
(0)
0 ‖[r]

∥∥∥(dx
(0)
0

dx̃

)−1∥∥∥2

[r]
‖Q̃

(m)
0 (w)‖[r]

(A.31)

≤
∑

j1+j2+j3=m
1≤j3≤m−1

A(j1)A(j2)

r2

∑
j′
1+j′

2=j3
j′
1≥1

A(j′
1)

4

×
j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(C

r

)μ

A
˜(λ)

+
∑∗

j′
1+j′

2=m

A(j′
1)

4

j′
2∑

μ=min{1,j′
2}

∑∗

|λ̃|μ=j′
2

(C

r

)μ

A
˜(λ)

+
r

4

∑∗

j1+j2=m

A(j1)A(j2)

r2
+ Cm+3 A(0)

r

=
A(m)

4
.

To deduce (A.27.m) from (A.31), we use the following.

LEMMA A.2

Let v(w) be a holomorphic function on Dr = {w; |w| ≤ r}. We consider the fol-
lowing differential equation for u(w):

(A.32) w
du

dw
(w) + 2α = 2v(w),

where α is a constant. Then there exist a constant α and a holomorphic function
u(w) on Dr which vanishes at w = 0, so that (A.32) and the following inequalities
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are satisfied:

|α| ≤ ‖v‖[r],(A.33)

‖u‖[r] ≤ 4‖v‖[r],(A.34) ∥∥∥ du

dw

∥∥∥
[r]

,
∥∥∥ u

w

∥∥∥
[r]

≤ 4
r

‖v‖[r].(A.35)

Proof
By setting w to be zero in (A.32), we find

(A.36) α = v(0),

and then we define

(A.37) u(w) = 2
∫ w

0

v(w̃) − α

w̃
dw̃.

Then we easily see that u(w) is a holomorphic solution of (A.32) on Dr which
vanishes at w = 0. For this choice of α and u(w), (A.33) is clearly satisfied, and
the first inequality of (A.35) is an immediate consequence of the Schwarz lemma
because u(w) satisfies (A.38) as a solution of (A.32):

(A.38)
∥∥∥w

du

dw

∥∥∥
[r]

≤ 2‖v‖[r] + 2|α| ≤ 4‖v‖[r].

Since u(0) = 0, we also find the following:

(A.39) ‖u‖[r] ≤
∥∥∥∫ w

0

du

dw
(w̃)dw̃

∥∥∥
[r]

≤ r
∥∥∥ du

dw

∥∥∥
[r]

≤ 4‖v‖[r].

We thus obtain the second inequality of (A.35) by using the Schwarz lemma
again. �

By applying Lemma A.2 to α
(m)
0 and x

(m)
0 , we obtain (A.27.m). Thus the induc-

tion proceeds. This means that we have confirmed that

(A.40) A(a) :=
∑
j≥0

A(j)aj

is a majorant series of α0(a) and x0(x̃, a). Hence what we should show is the
convergence of the series (A.40). The required convergence follows from the
implicit function theorem by the following reasoning. First, by comparing the
coefficients of aj , we observe that A(a) satisfies the equation

A = A(0) + A(1)a +
1
r2

(
A2 − (A(0))2

)
(A − A(0))

( 1
1 − (A − A(0))C/r

)

+ (A − A(0))
( 1

1 − (A − A(0))C/r
− 1

)
(A.41)

+
1
r
(A − A(0))2 + 4C3 A(0)

r

(Ca)2

1 − Ca
.



142 Kamimoto, Kawai, Koike, and Takei

Therefore if we define Ξ(a,A) by

Ξ(a,A) := (A − A(0) − A(1)a)

− 1
r2

(
A2 − (A(0))2

)
(A − A(0))

( 1
1 − (A − A(0))C/r

)
(A.42)

− (A − A(0))
( 1

1 − (A − A(0))C/r
− 1

)

− 1
r
(A − A(0))2 − 4C3 A(0)

r

(Ca)2

1 − Ca
,

then we find that A(a) is a solution of Ξ(a,A) = 0. Since Ξ is holomorphic in a
neighborhood of (a,A) = (0,A(0)) and satisfies

(A.43) Ξ(0,A(0)) = 0,
( ∂Ξ

∂A

)
(0,A(0)) = 1 �= 0,

it follows from the implicit function theorem that Ξ(a,A) = 0 has a unique holo-
morphic solution satisfying A(0) = A(0) near (a,A) = (0,A(0)). Hence A(a) is
convergent. This implies the convergence of the series α0(a) and x0(x̃, a). �

B. Estimation of the transformation which brings an MPPT equation
to its canonical form

The purpose of this section is to prove (2.5), (2.6), and (2.7), that is, to prove
the following.

THEOREM B.1

Let

(B.1) x(x̃, a, η) =
∞∑

k=0

xk(x̃, a)η−k

be the transformation that brings an MPPT equation (2.33) to the canonical form
(2.35) with

(B.2) α(a, η) =
∞∑

k=0

αk(a)η−k.

Then x and α satisfy the following conditions for some positive constants r0 and
A0:

(i) xk and αk (k = 0,1,2, . . .) are holomorphic, respectively, on {(x̃, a); |x̃| ≤
r0, |a| ≤ r0} and {a; |a| ≤ r0};

(ii) the following inequalities hold for k = 1,2, . . .:

sup
|a|≤r0

|αk(a)| ≤ k!Ak
0 ,(B.3)

sup
|x̃|,|a|≤r0

|xk(x̃, a)| ≤ k!Ak
0 ,(B.4)

sup
|x̃|,|a|≤r0

∣∣∣∂xk

∂x̃
(x̃, a)

∣∣∣ ≤ k!Ak
0 .(B.5)
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In order to prove Theorem B.1, we use the following lemmas frequently.

LEMMA B.2

For l, μ ∈ N = {1,2,3, . . .} with μ ≤ l, the following inequality holds:

(B.6)
∑∗

|λ̃|μ=l

λ̃! ≤ 4μ−1(l − μ + 1)!.

Proof
We verify (B.6) by induction on μ ≥ 1. For the case μ = 1, (B.6) is trivial. For
μ = 2, we have∑∗

|λ̃|2=l

λ1!λ2! = (l − 1)!
(
2 +

∑
λ1+λ2=l
λ1,λ2≥2

λ1!λ2!
(l − 1)!

)

= (l − 1)!
(
2 +

2
l − 1

l−2∑
λ=2

λ(λ − 1) · · · 3
(l − 2)(l − 3) · · · (l − λ + 1)

)
(B.7)

≤ 2(l − 1)!
(
1 +

l − 2
l − 1

)
≤ 4(l − 1)!.

If we assume that (B.6) holds for μ − 1 ≥ 1, then we obtain∑∗

|λ̃|μ=l

λ̃! =
∑

l′+λμ=l
l′ ≥μ−1,λμ ≥1

λμ!
∑∗

λ1+···+λμ−1=l′

λ1! · · · λμ−1!

≤
∑

l′+λμ=l
l′ ≥μ−1,λμ ≥1

4μ−2(l′ − μ + 2)!λμ!

(B.8)
= 4μ−2

∑
l′+λμ=l−μ+2

l′ ≥1,λμ ≥1

l′!λμ!

≤ 4μ−1(l − μ + 1)!. �

LEMMA B.3

For λ̃ = (λ1, . . . , λμ) ∈ N
μ
0 with N0 = {0,1,2, . . .}, the following inequality holds

for C(λ̃) given by (A.11):

(B.9)
∑

|λ̃|μ=l

C(λ̃) ≤ C(l).

Proof
We first prove (B.9) for the case μ = 2:

(B.10)
( 3

2π2

)2 ∑
λ1+λ2=l

1
(λ1 + 1)2

1
(λ2 + 1)2

≤ 3
2π2

1
(l + 1)2

.
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Since

(B.11)
∞∑

λ=0

1
(λ + 1)2

=
π2

6
,

we have ∑
λ1+λ2=l

(l + 2)2

(λ1 + 1)2(λ2 + 1)2

=
∑

λ1+λ2=l

( 1
λ1 + 1

+
1

λ2 + 1

)2

=
l∑

λ1=0

1
(λ1 + 1)2

+
∑

λ1+λ2=l

2
(λ1 + 1)(λ2 + 1)

+
l∑

λ2=0

1
(λ2 + 1)2

(B.12)

≤ 2
∞∑

λ=0

1
(λ + 1)2

+ 2
( l∑

λ1=0

1
(λ1 + 1)2

)1/2( l∑
λ2=0

1
(λ2 + 1)2

)1/2

≤ 4
∞∑

λ=0

1
(λ + 1)2

=
2π2

3
.

Then (B.10) immediately follows from this. Since (B.9) is trivial for the case
μ = 1, we obtain (B.9) for μ ≥ 2 by the succesive use of (B.10). �

Proof of Theorem B.1
We rewrite (A.8) as (2.10); that is,

Q̃0(x̃, a) + η−1Q̃1(x̃, a)

=
(dx

dx̃

)2( x̃

4
+

α(a, η)
z

)
(B.13)

+ η−2

(
−R̃2(x̃, a) + 2

dz

dx̃

γ(a)
z

+ x̃
(dz

dx̃

)2 γ(a)
z2

)
− 1

2
η−2{x; x̃}x̃.

Here R̃2(x̃, a) is the function given by (2.11); that is,

(B.14) R̃2(x̃, a) =
Q̃2(x̃, a) − γ(a)

x̃
.

The choice (A.7) of γ(a) guarantees that R̃2(x̃, a) is holomorphic in a neighbor-
hood of (x̃, a) = (0,0). By comparing the coefficients of η−k (k ≥ 1), we obtain

δk,1Q̃1(x̃, a)

=
∑

k1+k2+k3=k

dxk1

dx̃

dxk2

dx̃

∑
k′
1+k′

2=k3

αk′
1

z0

k′
2∑

ν=min{1,k′
2}

∑∗

|κ̃|ν=k′
2

(−1)νzκ̃

zν
0

+
x̃

2
dx0

dx̃

dxk

dx̃
+

x̃

4

∑∗

k1+k2=k

dxk1

dx̃

dxk2

dx̃
− δk,2R̃2(x̃, a)(B.15)
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+ 2γ(a)
∑

k1+k2=k−2

dzk1

dx̃

1
z0

k2∑
ν=min{1,k2}

∑∗

|κ̃|ν=k2

(−1)νzκ̃

zν
0

+ x̃γ(a)
∑

k1+k2+k3=k−2

dzk1

dx̃

dzk2

dx̃

1
z2
0

k3∑
ν=min{1,k3}

∑∗

|κ̃|ν=k3

(−1)ν(ν + 1)
zκ̃

zν
0

− x̃

2

∑
k1+k2=k−2

d3xk1

dx̃3

(dx0

dx̃

)−1
k2∑

ν=min{1,k2}

∑∗

|κ̃|ν=k2

(−1)ν dxκ̃

dx̃

(dx0

dx̃

)−ν

+
3
4
x̃

∑
k1+k2+k3=k−2

d2xk1

dx̃2

d2xk2

dx̃2

(dx0

dx̃

)−2

×
k3∑

ν=min{1,k3}

∑∗

|κ̃|ν=k3

(−1)ν(ν + 1)
dxκ̃

dx̃

(dx0

dx̃

)−ν

.

Further, by comparing the coefficients of aj in (B.15) and taking w = x
(0)
0 (x̃) as

a new independent variable, we have

(B.16) w
dx

(j)
k

dw
+ 2α

(j)
k = 2

(dx
(0)
0

dx̃

)−2

z
(0)
0 Φ(j)

k ,

where Φ(j)
k is

(B.17) Φ(j)
k = Φ(j)

k,1 + Φ(j)
k,2 + Φ(j)

k,3

and Φ(j)
k,i (i = 1,2,3) are defined as

Φ(j)
k,1 = −2

∑
k1+k2=k−2

∑
j1+j2+j3+j4=j

γ(j1)
dz

(j2)
k1

dx̃

×
k2∑

ν=min{1,k2}
(−1)ν(z−ν−1

0 )(j3)
∑∗

|κ̃|ν=k2

∑
|λ̃|ν=j4

z
(λ̃)
κ̃

− x̃
∑

k1+k2+k3=k−2

∑
j1+j2+j3+j4+j5=j

γ(j1)
dz

(j2)
k1

dx̃

dz
(j3)
k2

dx̃

×
k3∑

ν=min{1,k3}
(−1)ν(ν + 1)(z−ν−2

0 )(j4)
∑∗

|κ̃|ν=k3

∑
|λ̃|ν=j5

z
(λ̃)
κ̃

+
x̃

2

∑
k1+k2=k−2

∑
j1+j2+j3=j

d3x
(j1)
k1

dx̃3

×
k2∑

ν=min{1,k2}
(−1)ν

((dx0

dx̃

)−ν−1
)(j2) ∑∗

|κ̃|ν=k2

∑
|λ̃|ν=j3

dx
(λ̃)
κ̃

dx̃
(B.18)
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− 3
4
x̃

∑
k1+k2+k3=k−2

∑
j1+j2+j3+j4=j

d2x
(j1)
k1

dx̃2

d2x
(j2)
k2

dx̃2

×
k3∑

ν=min{1,k3}
(−1)ν(ν + 1)

((dx0

dx̃

)−ν−2
)(j3)

×
∑∗

|κ̃|ν=k3

∑
|λ̃|ν=j4

dx
(λ̃)
κ̃

dx̃

+ δk,2R̃
(j)
2 (w),

Φ(j)
k,2 = δk,1Q̃

(j)
1 (w)

− x̃

4

∑∗

k1+k2=k

∑
j1+j2=j

dx
(j1)
k1

dx̃

dx
(j2)
k2

dx̃

−
∑

k1+k2+k3=k
1≤k3≤k−1

∑
l1+l2+l3=j

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

∑
k′
1+k′

2=k3

∑
l′
1+l′

2+l′
3=l3

α
(l′

1)

k′
1

(B.19)

×
k′
2∑

ν=min{1,k′
2}

(−1)ν(z−ν−1
0 )(l

′
2)

∑∗

|κ̃|ν=k′
2

∑
|λ̃|ν=l′

3

z
(λ̃)
κ̃

−
∑∗

k1+k2=k

∑
j1+j2+j3+j4=j

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃
α

(j3)
k1

×
k2∑

ν=1

∑
j′
1+j′

2=j4

(−1)ν(z−ν−1
0 )(j

′
1)

∑∗

|κ̃|ν=k2

∑
|λ̃|ν=j′

2

z
(λ̃)
κ̃ ,

Φ(j)
k,3 = −

∑
j1+j2+j3+j4=j

j3≤j−1

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃
α

(j3)
k (z−1

0 )(j4)

− x̃

2

∑
j1+j2=j
j2≤j−1

dx
(j1)
0

dx̃

dx
(j2)
k

dx̃

−
∑

k1+k2=k

∑
j1+j2+j3+j4=j

1≤j3

dx
(j1)
k1

dx̃

dx
(j2)
k2

dx̃
α

(j3)
0 (z−1

0 )(j4)(B.20)
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−
∑

j1+j2+j3+j4=j
1≤j3

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃
α

(j3)
0

×
k∑

ν=1

∑
j′
1+j′

2=j4

(−1)ν(z−ν−1
0 )(j

′
1)

∑∗

|κ̃|ν=k

∑
|λ̃|ν=j′

2

z
(λ̃)
κ̃ .

Here we denote the coefficients of aj of z−ν
0 and (dx0/dx̃)−ν , respectively, by

(z−ν
0 )(j) and ((dx0/dx̃)−ν)(j).

The above decomposition of Φ(j)
k into three parts Φ(j)

k,i (i = 1,2,3) is made so

that we may dominate each term in Φ(j)
k,i by constants of the uniform form

(B.21) ciM
(j)
k ,

where ci and M
(j)
k are described with notation to be given later in the following

manner:

c1 = δ0/A,(B.22)

c2 = δ0,(B.23)

c3 = B/C,(B.24)

M
(j)
k = k!(Aε−1)kC(j)Cjδ0M.(B.25)

We also note that Φ(j)
1,1 is regarded to be zero as a convention. As we discussed in

the proof of Theorem 2.1, α
(j)
k and x

(j)
k are determined by

α
(j)
k =

(
z
(0)
0 (0)

)−1Φ(j)
k (0),(B.26)

x
(j)
k =

∫ w

0

2
w̃

((dx
(0)
0

dx̃

)−2

z
(0)
0 Φ(j)

k (w̃) − α
(j)
k

)
dw̃.(B.27)

We now estimate the growth order of x
(j)
k and α

(j)
k , as j and k tend to infinity,

by using the induction on the double index (j, k) appropriately ordered. Since we
proved in Appendix A that

∑
j≥0 x

(j)
0 (x̃)aj and

∑
j≥0 α

(j)
0 aj are convergent near

the origin, we can find constants C0,B, and ρ such that the relations (B.28) ∼
(B.31) hold:

‖x
(0)
0 ‖[r], ‖z

(0)
0 ‖[r],

∥∥∥dx
(0)
0

dx̃

∥∥∥
[r]

,
∥∥∥(dx

(0)
0

dx̃

)−1∥∥∥
[r]

, ‖(z(0)
0 )−1‖[r] ≤ C0C(0),(B.28)

‖x̃(w)‖[r],
∥∥∥( dx̃

dw

)−1∥∥∥
[r]

, sup
|w|≤r,|a|≤ρ

∣∣∣(dx0

dx̃

)−1∣∣∣,
(B.29)

sup
|w|≤r,|a|≤ρ

|(z0)−1|, sup
|a|≤ρ

|α0| ≤ C0,

‖z
(j)
0 ‖[r],

∥∥∥dx
(j)
0

dx̃

∥∥∥
[r]

, |α(j)
0 |, ‖Q̃

(j)
1 ‖[r], ‖R̃

(j)
2 ‖[r], |γ(j)| ≤ C0C(j)Bj ,(B.30)
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∥∥∥∥
((dx0

dx̃

)−ν
)(j)∥∥∥∥

[r]

, ‖(z−ν
0 )(j)‖[r] ≤ Cν

0 C(j)Bj .(B.31)

We now try to show that the dominance relation (B.32.k.j) (k ≥ 1, j ≥ 0)
holds for some constants A,C, and δ0 which satisfy (B.33) and (B.34):

‖x
(j)
k ‖[r−ε], ‖z

(j)
k ‖[r−ε],

∥∥∥dx
(j)
k

dw

∥∥∥
[r−ε]

, |α(j)
k | ≤ k!(Aε−1)kC(j)Cjδ0(B.32.k.j)

for any ε that satisfies (B.35):

1 <
√

Aδ0, 0 < δ0 � 1,(B.33)

0 < B � C,(B.34)

0 < ε <
r

3
.(B.35)

We note that (B.32.1.0) is validated by (B.33) if we choose A sufficiently large.
Now we confirm (B.32.k.j) for every (k, j) (k ≥ 1, j ≥ 0) by using the follow-

ing induction procedure.

[I] We first confirm (B.32.n.m) by assuming that (B.32.n′.m′) (0 ≤ m′,1 ≤
n′ ≤ n − 1) and (B.32.n.m′) (0 ≤ m′ ≤ m − 1) are all validated, and then

[II] we confirm (B.32.n.0) by assuming that (B.32.n′.0) (0 ≤ n′ ≤ n − 1) are
validated.

As we know that (B.32.1.0) is valid for a sufficiently large A, these confirmations
suffice for our purpose. To attain this goal, we first note that application of
Lemma A.2 to (B.16) entails the following relations:

‖x
(j)
k ‖[r−ε] ≤ 4

(
C0C(0)

)3‖Φ(j)
k ‖[r−ε],(B.36)

∥∥∥dx
(j)
k

dw

∥∥∥
[r−ε]

, ‖z
(j)
k ‖[r−ε] ≤ 4

r − ε

(
C0C(0)

)3‖Φ(j)
k ‖[r−ε].(B.37)

From (B.26) we also find

(B.38) |α(j)
k | ≤ C0C(0)‖Φ(j)

k ‖[r−ε].

Thus it suffices for us to estimate Φ(j)
k under the appropriate induction hypoth-

esis.
Let us first consider the case [I]; we assume that (B.32.n′.m′) (0 ≤ m′,1 ≤

n′ ≤ n − 1) and (B.32.n.m′) (0 ≤ m′ ≤ m − 1) have been validated, and we try to
prove the following estimates:

‖Φ(m)
n,i ‖[r−ε] ≤ ciM

(m)
n(B.39.i)

for i = 1,2,3. Here ci and M
(m)
n are given by (B.22) ∼ (B.25) with M in (B.25)

being a constant independent of n,m, δ0,C,A.
Before embarking on the estimation, we note the following.
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LEMMA B.4

Suppose that (B.32.k.j) holds. Then we find

∥∥∥d2x
(j)
k

dw2

∥∥∥
[r−ε]

,
∥∥∥dz

(j)
k

dw

∥∥∥
[r−ε]

≤ e(k + 1)!Akε−k−1C(j)Cjδ0,(B.40)

∥∥∥d3x
(j)
k

dw3

∥∥∥
[r−ε]

≤ e2(k + 2)!Akε−k−2C(j)Cjδ0.(B.41)

Proof
Let ε̃ denote kε/(k + 1). Then (B.32.k.j) entails

sup
|w|≤r−ε̃

|z(j)
k (w)| ≤ k!Akε̃−kC(j)Cjδ0

= k!Ak
(
1 +

1
k

)k

ε−kC(j)Cjδ0(B.42)

≤ ek!Akε−kC(j)Cjδ0,

where e = exp(1). On the other hand, Cauchy’s formula tells us that

(B.43)
dz

(j)
k (w)
dw

=
1

2π
√

−1

∫
|w̃−w|=(k+1)−1ε

z
(j)
k (w̃)

(w̃ − w)2
dw̃.

In view of the definition of ε̃, we find that w̃ that appears in the above contour
integral satisfies (B.44) for w with |w| ≤ r − ε:

|w̃| ≤ |w̃ − w| + |w|

≤ (k + 1)−1ε + r − ε(B.44)

= r − ε̃.

Hence (B.42) shows (B.40) for dz
(j)
k /dw. The estimation of d2x

(j)
k /dw2 and

d3x
(j)
k /dw3 can be done in exactly the same manner. �

REMARK B.1

For a holomorphic function f(x̃) of x̃ and a change of variables x̃ = x̃(w), the
following relations hold for the differentiation of f(x̃) with respect to the two
variables x̃ and w:

df

dx̃

(
x̃(w)

)
=

(dx̃(w)
dw

)−1 d

dw
f
(
x̃(w)

)
,(B.45)

d2f

dx̃2

(
x̃(w)

)
=

(dx̃(w)
dw

)−2 d2

dw2
f
(
x̃(w)

)
+

1
2

d

dw

(dx̃(w)
dw

)−2 d

dw
f
(
x̃(w)

)
,(B.46)

d3f

dx̃3

(
x̃(w)

)
=

(dx̃(w)
dw

)−3 d3

dw3
f
(
x̃(w)

)
+

d

dw

(dx̃(w)
dw

)−3 d2

dw2
f
(
x̃(w)

)
(B.47)

+
1
2

(dx̃(w)
dw

)−1 d2

dw2

(dx̃(w)
dw

)−2 d

dw
f
(
x̃(w)

)
.
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Since (dx̃/dw)−1 satisfy (B.29), we obtain the following estimate from Cauchy’s
inequality: ∥∥∥ dk

dwk

(dx̃(w)
dw

)−l∥∥∥
[r−ε]

≤ k!ε−k
∥∥∥(dx̃(w)

dw

)−l∥∥∥
[r]

(B.48)
≤ k!ε−kCl

0.

Using relations (B.45) ∼ (B.47) and the estimate (B.48), we obtain the inequali-
ties ∥∥∥ df

dx̃

(
x̃(w)

)∥∥∥
[r−ε]

≤ C0

∥∥∥ d

dw
f
(
x̃(w)

)∥∥∥
[r−ε]

,(B.49)

∥∥∥d2f

dx̃2

(
x̃(w)

)∥∥∥
[r−ε]

≤ C2
0

∥∥∥ d2

dw2
f
(
x̃(w)

)∥∥∥
[r−ε]

(B.50)

+
ε−1

2
C2

0

∥∥∥ d

dw
f
(
x̃(w)

)∥∥∥
[r−ε]

,

∥∥∥d3f

dx̃3

(
x̃(w)

)∥∥∥
[r−ε]

≤ C3
0

∥∥∥ d3

dw3
f
(
x̃(w)

)∥∥∥
[r−ε]

+ ε−1C3
0

∥∥∥ d2

dw2
f
(
x̃(w)

)∥∥∥
[r−ε]

(B.51)

+ ε−2C3
0

∥∥∥ d

dw
f
(
x̃(w)

)∥∥∥
[r−ε]

.

Then the following estimates immediately follow from the inequalities (B.49) ∼
(B.51) and Lemma B.4 for k ≥ 1:

∥∥∥dz
(j)
k

dx̃

∥∥∥
[r−ε]

≤ C0e(k + 1)!Akε−k−1C(j)Cjδ0,(B.52)

∥∥∥dlx
(j)
k

dx̃l

∥∥∥
[r−ε]

≤ lCl
0e

l−1(k + l − 1)!Akε−k−l+1C(j)Cjδ0 (l = 1,2,3).(B.53)

For k = 0, we have the following estimates from (B.30) by the same discussion of
Lemma B.4:∥∥∥dz

(j)
0

dx̃

∥∥∥
[r−ε]

≤ eε−1C(j)BjC2
0 ,(B.54)

∥∥∥dlx
(j)
0

dx̃l

∥∥∥
[r−ε]

≤ lel−1(l − 1)!ε−l+1C(j)BjCl+1
0 (l = 1,2,3).(B.55)

REMARK B.2

Lemma B.4 explains the background reason for the asymmetry of the estimate of
|x(j)

k | with respect to j and k; we dominate |x(j)
k | by Cj+1 as j tends to infinity,

whereas we include a much worse factor k! to control their behavior as k tends
to infinity. As the estimate (B.64) below shows, the seemingly innocent term

(B.56) − x̃

2
d3xk−2

dx̃3

(dx0

dx̃

)−1
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in (B.15) forces us to introduce the k!-factor for making the induction reasoning
run smoothly. This observation indicates that the singular perturbative character
of the problem in question originates mainly from the Schwarzian derivative
multiplied by η−2 in (B.13).

Now we begin the estimation of Φ(m)
n,i (i = 1,2,3).

(1) The estimation of Φ(m)
n,1 . First, we estimate Φ(m)

n,1 . The background of
the expected form (B.39.1) is as follows. We observe that the sum of suffixes in
each term which are relevant to η−1, that is, the sum of kp’s, is n − 2. Hence, by
using (B.32.k.j), we encounter the factor An−2 in the resulting estimate. Then
(B.33) may be used to rewrite it as

(B.57) An−2 = AnA−2 < AnA−1δ2
0 .

Thus we expect the extra factor A−1 in our estimation. Let us concretely check
whether this argument really goes well. We estimate the first term of (B.18) for
n ≥ 2: By using (B.30), (B.31), induction hypothesis (B.32), (B.52), and (B.54)
we have the estimate∥∥∥2

∑
k1+k2=n−2

∑
l1+l2+l3+l4=m

γ(l1)
dz

(l2)
k1

dx̃

×
k2∑

ν=min{1,k2}
(−1)ν(z−ν−1

0 )(l3)
∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l4

z
(λ̃)
κ̃

∥∥∥
[r−ε]

(B.58)
≤ 2

∑
k1+k2=n−2

∑
l1+l2+l3+l4=m

C3
0C(l1)Bl1e(k1 + 1)!Ak1ε−k1−1C(l2)Cl2

×
k2∑

ν=min{1,k2}
Cν+1

0 C(l3)Bl3
∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l4

κ̃!(Aε−1)k2C(λ̃)Cl4δν
0 .

Here we applied (B.52) to dz
(l2)
k1

/dx̃ for k1 ≥ 1 by replacing δ0 of (B.52) with C0

in order to estimate dz
(l2)
k1

/dx̃ (k1 ≥ 1) and dz
(l2)
0 /dx̃ in the same form. Further,

by applying Lemma B.3 to the summation on l1, . . . , l4 and λ̃ and also by using
(B.34), we find

2
∑

k1+k2=n−2

∑
l1+l2+l3+l4=m

C3
0C(l1)Bl1e(k1 + 1)!Ak1ε−k1−1C(l2)Cl2

×
k2∑

ν=min{1,k2}
Cν+1

0 C(l3)Bl3
∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l4

κ̃!(Aε−1)k2C(λ̃)Cl4δν
0

(B.59)
≤ 2eC4

0C(m)Cmε−n+1An−2

×
∑

k1+k2=n−2

(k1 + 1)!
k2∑

ν=min{1,k2}
(C0δ0)ν

∑∗

|κ̃|ν=k2

κ̃!.
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Then we obtain the following estimation from Lemma B.2:

2eC4
0C(m)Cmε−n+1An−2

×
∑

k1+k2=n−2

(k1 + 1)!
k2∑

ν=min{1,k2}
(C0δ0)ν

∑∗

|κ̃|ν=k2

κ̃!

≤ 2eC4
0C(m)Cmε−n+1An−2

×
(
(n − 1)! +

∑
k1+k2=n−2

1≤k2

(k1 + 1)!k2!

×
k2∑

ν=1

(C0δ0)ν4ν−1 (k2 − ν + 1)!
k2!

)
(B.60)

≤ 2eC4
0C(m)Cm(Aε−1)nεA−2

×
(
(n − 1)! +

∑∗

k′
1+k2=n−1

k′
1!k2!C0δ0

∞∑
ν=1

(4C0δ0)ν−1 1
ν!

)

≤ 2eC4
0C(m)Cm(Aε−1)nεA−2

×
(
(n − 1)! + C0δ0e

4C0δ0
∑∗

k′
1+k2=n−1

k′
1!k2!

)

≤ 2eC4
0C(m)Cm(Aε−1)nεA−2

(
(n − 1)! + 4C0δ0e

4C0δ0(n − 2)!
)
.

Consequently, since we can assume that δ0 is sufficiently small as

(B.61) C0δ0e
4C0δ0 < 1,

we obtain the following inequality from (B.57):

∥∥∥2
∑

k1+k2=n−2

∑
l1+l2+l3+l4=m

γ(l1)
dz

(l2)
k1

dx̃

×
k2∑

ν=min{1,k2}
(−1)ν(z−ν−1

0 )(l3)
∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l4

z
(λ̃)
κ̃

∥∥∥
[r−ε]

(B.62)

≤ n!(Aε−1)nC(m)Cmδ2
0A−12eC4

0ε
( 1

n
+

4
n(n − 1)

)
.

We find that similar estimates hold for other terms:∥∥∥x̃
∑

k1+k2+k3=n−2

∑
l1+l2+l3+l4+l5=m

γ(l1)
dz

(l2)
k1

dx̃

dz
(l3)
k2

dx̃

×
k3∑

ν=min{1,k3}
(−1)ν(ν + 1)(z−ν−2

0 )(l4)
∑∗

|κ̃|ν=k3

∑
|λ̃|ν=l5

z
(λ̃)
κ̃

∥∥∥
[r−ε]

(B.63)
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≤
∑

k1+k2+k3=n−2

∑
l1+l2+l3+l4+l5=m

C6
0C(l1)C(l2)C(l3)Ak1+k2Bl1Cl2+l3

× e2(k1 + 1)!(k2 + 1)!ε−k1−k2−2

×
k3∑

ν=min{1,k3}
(ν + 1)Cν+2

0 C(l4)Bl4

×
∑∗

|κ̃|ν=k3

∑
|λ̃|ν=l5

κ̃!(Aε−1)k3C(λ̃)Cl5δν
0

≤ e2C8
0A−2(Aε−1)nC(m)Cm

( ∑∗

k′
1+k′

2=n

k′
1!k

′
2!

+
∑∗

k′
1+k′

2+k3=n

k′
1!k

′
2!k3!

k3∑
ν=1

(ν + 1)(C0δ0)ν4ν−1 (k3 − ν + 1)!
k3!

)

≤ e2C8
0A−2(Aε−1)nC(m)Cm

×
(
4(n − 1)! + 16(n − 2)!C0δ0

∞∑
ν=1

(4C0δ0)ν−1 2
(ν − 1)!

)

≤ n!(Aε−1)nC(m)Cmδ2
0A−1

( 4
n

+
32

n(n − 1)

)
C8

0e2,

∥∥∥∥ x̃

2

∑
k1+k2=n−2

∑
l1+l2+l3=m

d3x
(l1)
k1

dx̃3

×
k2∑

ν=min{1,k2}
(−1)ν

((dx0

dx̃

)−ν−1
)(l2) ∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l3

dx
(λ̃)
κ̃

dx̃

∥∥∥∥
[r−ε]

≤
∑

k1+k2=n−2

∑
l1+l2+l3=m

3
2
C4

0C(l1)Ak1Cl1e2(k1 + 2)!ε−k1−2

×
k2∑

ν=min{1,k2}
Cν+1

0 C(l2)Bl2
∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l3

Cν
0 κ̃!(Aε−1)k2C(λ̃)Cl3δν

0

(B.64)
≤ 3

2
e2C5

0C(m)Cm(Aε−1)nA−2

×
(
n! +

∑∗

k′
1+k2=n

k′
1!k2!C2

0δ0

∞∑
ν=1

(4C2
0δ0)ν−1 1

ν!

)

≤ 3
2
e2C5

0C(m)Cm(Aε−1)nA−2
(
n! + 4C2

0δ0e
4C2

0δ0(n − 1)!
)

≤ n!(Aε−1)nC(m)Cmδ2
0A−1

(
1 +

4
n

)3C5
0e2

2
,
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∥∥∥∥3
4
x̃

∑
k1+k2+k3=n−2

∑
l1+l2+l3+l4=m

d2x
(l1)
k1

dx̃2

d2x
(l2)
k2

dx̃2

×
k3∑

ν=min{1,k3}
(−1)ν(ν + 1)

((dx0

dx̃

)−ν−2
)(l3) ∑∗

|κ̃|ν=k3

∑
|λ̃|ν=l4

dx
(λ̃)
κ̃

dx̃

∥∥∥∥
[r−ε]

≤
∑

k1+k2+k3=n−2

∑
l1+l2+l3+l4=m

3C5
0C(l1)C(l2)Ak1+k2Cl1+l2

× e2(k1 + 1)!(k2 + 1)!ε−k1−k2−2
k3∑

ν=min{1,k3}
(ν + 1)Cν+2

0 C(l3)Bl3

(B.65)
×

∑∗

|κ̃|ν=k3

∑
|λ̃|ν=l4

Cν
0 κ̃!(Aε−1)k3C(λ̃)Cl4δν

0

≤ 3e2C7
0A−2(Aε−1)nC(m)Cm

×
( ∑∗

k′
1+k′

2=n

k′
1!k

′
2! + 2C2

0δ0e
4C2

0δ0
∑∗

k′
1+k′

2+k3=n

k′
1!k

′
2!k3!

)

≤ n!(Aε−1)nC(m)Cmδ2
0A−13

( 4
n

+
32

n(n − 1)

)
C7

0e2,

(B.66) ‖δn,2R̃
(m)
2 (z)‖[r−ε] ≤ δn,2(Aε−1)2C(m)Cmδ2

0A−1C0.

In the estimation of (B.64) and (B.65), we assumed that δ0 is sufficiently small as

(B.67) C2
0δ0e

4C2
0δ0 < 1.

Since n ≥ 2 and A−1, ε < 1, we obtain (B.39.1).
In the above estimates the worst one appears in (B.64) since no factor that

weakens n! is contained. This is the reason why (B.3) ∼ (B.5) must contain the
factor k!.

(2) The estimation of Φ(m)
n,2 . The appearance of the extra factor δ0 in the

estimate

(B.68) ‖δn,1Q̃
(m)
1 (z)‖[r−ε] ≤ Aε−1C(m)Cmδ2

0C0ε

is an immediate consequence of the assumption (B.33). To obtain this extra
factor in the estimation of other terms of Φ(m)

n,2 , we note that each term in the
summation contains two factors, each of whose suffix k is greater than or equal
to 1. It then follows from the induction hypothesis that we find the extra δ0-
factor. Let us confirm the estimation of the most complicated term in Φ(m)

n,2 .

Since x
(j)
k , α

(j)
k (k ≥ 1) and x

(j)
0 , α

(j)
0 , respectively, satisfy the different types of

estimation (B.32.k.j) and (B.30), we have to separate its summand depending
on its suffix. However, the procedure of its estimation is essentially the same as
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that of (B.58):

∥∥∥ ∑
k1+k2+k3=n
1≤k3≤n−1

∑
l1+l2+l3=m

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

∑
k′
1+k′

2=k3

∑
l′
1+l′

2+l′
3=l3

α
(l′

1)

k′
1

×
k′
2∑

ν=min{1,k′
2}

(−1)ν(z−ν−1
0 )(l

′
2)

∑∗

|κ̃|ν=k′
2

∑
|λ̃|ν=l′

3

z
(λ̃)
κ̃

∥∥∥
[r−ε]

=
∥∥∥ ∑

l1+l2+l3=m

( ∑∗

k1+k2+k3=n

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃
+ 2

∑∗

k+k3=n

dx
(l1)
0

dx̃

dx
(l2)
k

dx̃

)

×
∑

l′
1+l′

2+l′
3=l3

(
α

(l′
1)

0

k3∑
ν=1

∑∗

|κ̃|ν=k3

+
∑

k′
1+k′

2=k3

1≤k′
1

α
(l′

1)

k′
1

k′
2∑

ν=min{1,k′
2}

∑∗

|κ̃|ν=k′
2

)

× (−1)ν(z−ν−1
0 )(l

′
2)

∑
|λ̃|ν=l′

3

z
(λ̃)
κ̃

∥∥∥
[r−ε]

≤
∑

l1+l2+l3=m

C2
0C(l1)C(l2)

×
( ∑∗

k1+k2+k3=n

Cl1+l2k1!k2!(Aε−1)k1+k2δ2
0

+ 2
∑∗

k+k3=n

Bl1Cl2k!(Aε−1)kδ0

)

×
∑

l′
1+l′

2+l′
3=l3

(
C0C(l′

1)B
l′
1

k3∑
ν=1

∑∗

|κ̃|ν=k3

+
∑

k′
1+k′

2=k3

1≤k′
1

k′
1!(Aε−1)k′

1C(l′
1)C

l′
1δ0

k′
2∑

ν=min{1,k′
2}

∑∗

|κ̃|ν=k′
2

)

× Cν+1
0 C(l′

2)B
l′
2

∑
|λ̃|ν=l′

3

κ̃!(Aε−1)|κ̃|ν C(λ̃)Cl′
3δν

0

≤ (Aε−1)nC(m)CmC2
0

( ∑∗

k1+k2+k3=n

k1!k2!δ2
0 + 2

∑∗

k+k3=n

k!δ0

)

×
(
C0

k3∑
ν=1

∑∗

|κ̃|ν=k3

Cν+1
0 κ̃!δν

0

+
∑

k′
1+k′

2=k3

1≤k′
1

k′
1!δ0

k′
2∑

ν=min{1,k′
2}

∑∗

|κ̃|ν=k′
2

Cν+1
0 κ̃!δν

0

)
(B.69)
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≤ (Aε−1)nC(m)CmC2
0

( ∑∗

k1+k2+k3=n

k1!k2!δ2
0 + 2

∑∗

k+k3=n

k!δ0

)

×
(
C3

0k3!δ0

∞∑
ν=1

(4C0δ0)ν−1

ν!
+ k3!C0δ0

+
∑∗

k′
1+k′

2=k3

k′
1!k

′
2!(C0δ0)2

∞∑
ν=1

(4C0δ0)ν−1

ν!

)

≤ n!(Aε−1)nC(m)Cmδ2
0

× C3
0

( 16δ0

n(n − 1)
+

8
n

)(
(C2

0 + 4C0δ0)e4C0δ0 + 1
)
.

Similarly, we can estimate the other terms as follows:

∥∥∥ x̃

4

∑∗

k1+k2=n

∑
l1+l2=m

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

∥∥∥
[r−ε]

≤ C0

4

∑∗

k1+k2=n

∑
l1+l2=m

k1!k2!(Aε−1)k1+k2C(l1)C(l2)Cl1+l2δ2
0C2

0(B.70)

≤ n!(Aε−1)nC(m)Cm δ2
0C3

0

n
,

∥∥∥ ∑∗

k1+k2=n

∑
l1+l2+l3+l4=m

dx
(l1)
0

dx̃

dx
(l2)
0

dx̃
α

(l3)
k1

×
k2∑

ν=1

∑
l′
1+l′

2=l4

(−1)ν(z−ν−1
0 )(l

′
1)

∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l′

2

z
(λ̃)
κ̃

∥∥∥
[r−ε]

≤
∑∗

k1+k2=n

∑
l1+l2+l3+l4=m

C2
0C(l1)C(l2)C(l3)Bl1+l2k1!(Aε−1)k1Cl3δ0(B.71)

×
k2∑

ν=1

∑
l′
1+l′

2=l4

Cν+1
0 C(l′

1)B
l′
1

∑∗

|κ̃|ν=k2

∑
|λ̃|ν=l′

2

κ̃!C(λ̃)(Aε−1)k2Cl′
2δν

0

≤ n!(Aε−1)nC(m)Cmδ2
0

4C4
0e4C0δ0

n
.

Therefore we obtain (B.39.2).
(3) The estimation of Φ(m)

n,3 . To find the extra factor BC−1 in the estimate

of each term in Φ(m)
n,3 , we first note that the constant B is dominated by the

inverse of the radius of convergence of z0, α0, and so on (cf. (B.30)) and that the
constant C is relevant to the radius of convergence of zm, αm, and so on. Hence
we obtain this factor thanks to the fact that each term in the summation in Φ(m)

n,3

contains a factor that originates from the coefficient of η0aj (j ≥ 1); for example,
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we find ∥∥∥ ∑
l1+l2+l3+l4=m

l3≤m−1

dx
(l1)
0

dx̃

dx
(l2)
0

dx̃
α(l3)

n (z−1
0 )(l4)

∥∥∥
[r−ε]

≤
∑

l1+l2+l3+l4=m
l3≤m−1

C3
0C(l1)C(l2)C(l3)C(l4)

(B.72)
× Bl1+l2+l4Cl3n!(Aε−1)nδ0

≤ n!(Aε−1)nC(m)Cmδ0
B

C
C3

0

because l1 + l2 + l4 = m − l3 ≥ 1 holds by the constraint of the range of indexes,
which is due to the fact that α

(m)
n is excluded in the summation. Similarly, we find

∥∥∥ ∑
k1+k2=n

∑
l1+l2+l3+l4=m

1≤l3

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃
α

(l3)
0 (z−1

0 )(l4)
∥∥∥

[r−ε]

=
∥∥∥ ∑

l1+l2+l3+l4=m
1≤l3

( ∑∗

k1+k2=n

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

+ 2
dx

(l1)
0

dx̃

dx
(l2)
n

dx̃

)
α

(l3)
0 (z−1

0 )(l4)
∥∥∥

[r−ε]
(B.73)

≤
∑

l1+l2+l3+l4=m
1≤l3

C4
0C(l1)C(l2)C(l3)C(l4)(Aε−1)n

×
( ∑∗

k1+k2=n

Cl1+l2k1!k2!δ2
0 + 2Bl1Cl2n!δ0

)
Bl3+l4

≤ n!(Aε−1)nC(m)Cmδ0
B

C
C4

0

(4δ0

n
+ 2

)
.

This time the condition l3 ≥ 1 is due to the fact that α
(0)
0 vanishes.

By the same reasoning, we also find∥∥∥ x̃

2

∑
l1+l2=m
l2≤m−1

dx
(l1)
0

dx̃

dx
(l2)
n

dx̃

∥∥∥
[r−ε]

≤ C0

2

∑
l1+l2=m
l2≤m−1

C0C(l1)Bl1C0n!(Aε−1)nC(l2)Cl2δ0(B.74)

≤ n!(Aε−1)nC(m)Cmδ0
B

C

C3
0

2
,
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∥∥∥ ∑
l1+l2+l3+l4=m

1≤l3

dx
(l1)
0

dx̃

dx
(l2)
0

dx̃
α

(l3)
0

×
n∑

ν=1

∑
l′
1+l′

2=l4

(−1)ν(z−ν−1
0 )(l

′
1)

∑∗

|κ̃|ν=n

∑
|λ̃|ν=l′

2

z
(λ̃)
κ̃

∥∥∥
[r−ε]

≤
∑

l1+l2+l3+l4=m
1≤l3

C3
0C(l1)C(l2)C(l3)Bl1+l2+l3(B.75)

×
n∑

ν=1

∑
l′
1+l′

2=l4

Cν+1
0 C(l′

1)B
l′
1

∑∗

|κ̃|ν=n

∑
|λ̃|ν=l′

2

κ̃!C(λ̃)(Aε−1)nCl′
2δν

0

≤ n!(Aε−1)nC(m)Cmδ0
B

C
C5

0e4C0δ0 .

Hence we obtain (B.39.3).
In conclusion, Φ(m)

n satisfies the following inequality:

(B.76) ‖Φ(m)
n ‖[r−ε] ≤ n!(Aε−1)nC(m)Cmδ0

(δ0

A
+ δ0 +

B

C

)
M.

By taking δ0 sufficiently small at first and then taking A and C sufficiently large,
we can assume that the following holds:

(B.77) 6r−1
(
C0C(0)

)3
M

(δ0

A
+ δ0 +

B

C

)
< 1.

Since 0 < ε < r/3, from (B.36) ∼ (B.38), (B.76), and (B.77) we obtain (B.32.k.j).
Thus the induction proceeds in the case [I], and it remains to consider the case [II];
we are to confirm (B.32.n.0) under the assumption (B.32.k.0) (1 ≤ k ≤ n − 1).
But we can readily confirm this fact by the same estimation as in the case [I].
Actually Φ(0)

n,3 vanishes in this case, and the estimation is easier than before.
Therefore we obtain (B.32.k.j) for every k ≥ 1 and j ≥ 0. Then by fixing ε > 0
and taking r0 and A0 in Theorem B.1 as min{r − ε,C−1} and Aε−1, respectively,
we obtain Theorem B.1. �

C. Representation of the action of X as an integro-differential operator
Using the results obtained in Appendix B, we now study how the microdifferential
operator X constructed in Theorems 1.6 and 2.6 acts upon multivalued analytic
functions. Although the situation where this operator appears is different from
the situation where its counterpart (also denoted by X ) appeared in [AKT4],
their structures are essentially the same; the reasoning in [AKT4, Appendix C]
applies to our case almost word for word. But in order to make this article self-
contained, we describe the core part of the argument in this appendix. As the
following reasoning indicates, the operator X constructed in Theorem 1.6 and
that in Theorem 2.6 can be dealt with in exactly the same manner. In what
follows we discuss the operator X constructed in Theorem 2.6 for the sake of
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definiteness. It then follows from (2.58) that it has the following form:

(C.1) X = :
(∂g

∂x

)1/2(
1 +

∂r

∂x

)−1/2

exp
(
r(x,a, η)ξ

)
:,

where

r = r(x,a, η) =
∑
k≥1

rk(x,a)η−k,(C.2)

rk = xk

(
g(x,a), a

)
,(C.3)

and g(x,a) is the inverse function of x = x0(x̃, a) given in (2.52), that is,

(C.4) x = x0

(
g(x,a), a

)
.

Here xk (k ≥ 0) is the function given in (2.5) and ξ stands for the symbol σ(∂/∂x)
of the differential operator ∂/∂x. For the sake of convenience, we introduce r†

k(x)
by

(C.5)
(∂g

∂x

)−1(
1 +

∂r

∂x

)
=

∞∑
k=0

r†
k(x,a)η−k.

Then the coefficients {hk }k≥0 and {fl,k }1≤l≤k in the expansion (C.6) and (C.7)
can be explicitly expressed in terms of {rk } and {r†

k } as undermentioned in (C.8)
and (C.9): (∂g

∂x

)1/2(
1 +

∂r

∂x

)−1/2

=
∞∑

k=0

hk(x,a)η−k,(C.6)

exp
(
r(x,a, η)ξ

)
= 1 +

∑
1≤l≤k

η−kξlfl,k(x,a),(C.7)

⎧⎨
⎩

h0 = (r†
0)

1/2,

hk = (r†
0)

1/2
∑k

l=1
(−1)lΓ(l+(1/2))

l!Γ(1/2)

∑∗
|λ̃|l=k

r†
λ̃

(r†
0)l

(k ≥ 1),
(C.8)

and

(C.9) fl,k =
1
l!

∑∗

|λ̃|l=k

rλ̃.

Hence it follows from the definition (C.1) of X that its total symbol σ(X ) is
written down as

(C.10)
∞∑

k=0

η−k
(
hk +

k∑
k′=1

k′∑
l=1

ξlhk−k′ fl,k′

)
.

As the parameter a does not play an important role in the following discussion,
we omit a for the sake of simplicity.

Since rk and r†
k are given, respectively, by (C.3) and (C.5), Theorem B.1

and its proof tell us that there exist a neighborhood ω1 of (x,a) = (0,0) and a
constant C0 > 0 such that

sup
ω1

|rk | ≤ k!Ck
0 (k = 1,2, . . .),(C.11)
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sup
ω1

|r†
k | ≤ k!Ck

0 (k = 1,2, . . .),(C.12)

and

(C.13) max
{

sup
ω1

|r†
0|, sup

ω1

|(r†
0)

−1|
}

≤ C0.

Then it follows from Lemma B.2 that the following holds:

sup
ω1

|hk | ≤ C
1/2
0

k∑
l=1

Γ(l + (1/2))
l!Γ(1/2)

∑∗

|λ̃|l=k

λ̃!Ck+l
0

≤ C
k+1/2
0

k∑
l=1

4l−1(k − l + 1)!Cl
0

(C.14)

≤ C
3/2
0 k!Ck

0

k∑
l=1

4l−1Cl−1
0

(l − 1)!

≤ C
3/2
0 e4C0k!Ck

0

for k ≥ 1 and

(C.15) sup
ω1

|fl,k | ≤ (k − l + 1)!
l!

4l−1Ck
0 (1 ≤ l ≤ k).

Using these estimates together with Proposition C.1 below, we obtain The-
orem 2.7. Although the following Proposition C.1 is the same as [AKT4, Propo-
sition C.1], we include it here for the convenience of the reader.

PROPOSITION C.1

For a domain U in Cx, let Ω denote

(C.16) Ω =
{
(x, y; ξ, η) ∈ T ∗(U × Cy);η �= 0

}
,

and let P = P (x,∂/∂x,∂/∂y) be a microdifferential operator of order zero on Ω
with the total symbol

(C.17) σ(P ) =
∞∑

k=0

Pk(x, η−1ξ)η−k.

Here we assume that each Pk(x, ζ) is an entire function of ζ and that the following
growth-order condition should hold: there exists a constant C0 > 0 such that, for
any compact subset K of U × Cζ , we can find another constant MK satisfying

(C.18) sup
(x,ζ)∈K

|Pk(x, ζ)| ≤ MKk!Ck
0

for k = 0,1,2, . . . . Then the action of P upon a (multivalued) analytic function
φ(x, y) is represented in the form

(C.19) Pφ(x, y) =
∫ y

y0

K(x, y − y′, d/dx)φ(x, y′)dy′,
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where K(x, y, d/dx) is a differential operator of infinite order that is defined on
{(x, y);x ∈ U and |y| < 1/C0} and y0 is an arbitrarily chosen point that fixes the
action of (∂/∂y)−1 as an integral operator.

Although we omit the proof of Proposition C.1 and refer the reader to the proof of
[AKT4, Proposition C.1] for it, we describe below how the differential operator
K is expressed in terms of Pk. Let al,k(x) denote the coefficient of ζl in the
Taylor expansion of Pk, i.e.,

(C.20) Pk(x, ζ) =
∞∑

l=0

al,k(x)ζl.

Then we find

Pφ(x, y) =
∞∑

l=0

∞∑
k=0

: η−k−lal,k(x) :
( ∂

∂x

)l

φ(x, y)

(C.21)

=
∫ y

y0

( ∞∑
l=0

∞∑
k=0

al,k(x)
(y − y′)k+l−1

(k + l − 1)!

( ∂

∂x

)l
)

φ(x, y′)dy′

for some reference point y0 that fixes the action of : η−k−l : upon φ(x, y). Hence
the operator K should have the form

(C.22)
∞∑

l=0

( ∞∑
k=0

al,k(x)
yk+l−1

(k + l − 1)!

)( ∂

∂x

)l

,

and our task is to show that

(C.23) cl(x, y) =
∞∑

k=0

al,k(x)
yk+l−1

(k + l − 1)!

enjoys the following property.

(C.24)

For any compact subset K ′ of U , any constant r that is smaller than
C−1

0 , and any positive constant ε, there exists a constant M for which

sup
x∈K′,|y|≤r

|cl(x, y)| ≤ M
εl

(l − 1)!

holds for l = 1,2, . . . .

This fact can be confirmed by the assumption (C.18) (see [AKT4]).
In order to apply Proposition C.1 to the microdifferential operator X in

question, we rewrite the total symbol (C.10) of X in the following manner:( ∞∑
j=0

hjη
−j

)(
1 +

∑
1≤l≤k

fl,kη−kξl
)

=
( ∞∑

j=0

hjη
−j

)(
1 +

∞∑
k=0

η−k
∞∑

l=1

fl,l+k(ηξ)−l
)

(C.25)
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=
∞∑

j=0

hjη
−j +

∞∑
j,k=0

η−(j+k)hj

∞∑
l=1

fl,l+k(η−1ξ)l

=
∞∑

m=0

η−m
[
hm +

∞∑
l=1

( ∑
j+k=m

hjfl,l+k

)
(η−1ξ)l

]
.

Thus, if we define Pm(x, ζ) by

(C.26) Pm(x, ζ) = hm +
∞∑

l=1

( ∑
j+k=m

hjfl,l+k

)
ζl,

we find that the total symbol of X has the form (C.17). Then (C.14) and (C.15)
entail the following:

|Pm| ≤ |hm| +
∞∑

l=1

( ∑
j+k=m,

j,k≥0

|hjfl,l+k |
)

|ζ|l

≤ C
3/2
0 e4C0m!Cm

0(C.27)

+
∞∑

l=1

( ∑
j+k=m

C
3/2
0 e4C0

j!(k + 1)!
l!

4l−1Cj+k+l
0

)
|ζ|l.

Then the application of Lemma B.2 shows that this is further dominated in the
following way:

C
3/2
0 e4C0Cm

0

[
m! +

∞∑
l=1

4l−1Cl
0|ζ|l

l!

( ∑
j+k̃=m+1,

j≥0,k̃≥1

j!k̃!
)]

≤ C
3/2
0 e4C0Cm

0

[
m! +

1
4

∞∑
l=1

(4C0|ζ|)l

l!
(
(m + 1)! + 4m!

)]
(C.28)

≤ C
3/2
0 e4C0Cm

0 (m + 1)!
(
1 +

5
4

∞∑
l=1

(4C0|ζ|)l

l!

)

= C
3/2
0 e4C0

(
1 +

5
4
(e4C0|ζ| − 1)

)
(m + 1)!Cm

0 .

Therefore Pm(x, ζ) given by (C.26) is an entire function of ζ , and it satisfies the
growth-order condition (C.18). Hence Proposition C.1 entails the fact that the
operator X is represented as in (C.19) with a differential operator K of infinite
order. This completes the proof of Theorem 2.7. �
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