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substantial and has greatly increased my awareness of
the structure of regression problems, particularly with
regard to the role of individual and groups of obser-
vations. However, for progress beyond linear models
and a more complete understanding of past results, ad
hoc reasoning no longer seems sufficient. Competing
goals must be carefylly weighed and influence mea-
sures must be formulated with a broader base. Like-
lihood is the foundation for many analyses and in the
long term we should strive for methods that directly
reflect the difference between the full sample like-
lihood and the likelihood obtained after deletion.
From a Bayesian perspective, the pioneering work of
Johnson and Geisser (1982, 1983, 1985) is relevant.

Broadening the concept of influence to include more
than the deletion of observations is a second direction
that may prove fruitful. Deletion can be viewed as just
one of many ways of perturbing a problem formulation
to assess influence. Minor modifications of tke values
of a selected explanatory variable in linear or nonlin-
ear regression, for example, can uncover relevant
structure in the data that would not normally be
detected by deletion, and lead to fresh interpretations
of certain patterns in added variable plots. These and
related issues are addressed in Cook (1986).
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1. INTRODUCTION

The rapidity of acceptance of the group of tech-
niques known as regression diagnostics is remarkable.
The methods are already included in many regression
packages and there are at least three books devoted to
the subject. The emphasis of each book is distinct.
Belsley, Kuh, and Welsch (1980) are primarily con-
cerned with applications in economics; Cook and
Weisberg (1982) are the most mathematical of the
three; Atkinson (1985) includes much material on
transformations. In addition, an introduction is given
by Weisberg (1985, Chapters 5 and 6). Now we have
the present review article by Chatterjee and Hadi. In
my comments I shall go beyond the area defined by
their title, to describe several recent developments
which reflect important aspects of diagnostic regres-
sion analysis. An example of the use of these methods
is given in Section 5.
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Diagnostic

Diagnostic procedures are essentially concerned
with the detection of disagreements between the model
and the data to which it is fitted. As Chatterjee and
Hadi suggest, the variety of such procedures can be
bewildering. There are, however, some underlying
ideas which provide a framework for comparisons. A
succinct summary of principles is given by Weisberg
'(1983). Among other aspects he stresses: 1) the rela-
tionship with score tests for parameterized departures
from assumptions, 2) the importance of graphical
methods, and 3) influence analysis, that is calculation
of the effect of individual observations on inferences
drawn from the data.

2. GENERALIZATIONS

Chatterjee and Hadi’s discussion is almost entirely
concerned with the normal theory linear model. Pre-
gibon (1981) gives the extension of diagnostic methods
to generalized linear models, although his detailed
discussion and examples concentrate on the analysis
of binary data. Chapter 12 of McCullagh and Nelder
(1983), Model Checking, also describes the extension
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of these ideas to generalized linear models, including
explicit discussion of score tests, and gives an example
with gamma errors. The example in Cook and Weis-
berg (1982, Section 5) is again of logistic regression.

A difficulty in the diagnostic approach to the anal-
ysis of binary data is that the residuals can take only
one of two values; depending on whether a “success”
or a “failure” is observed. Landwehr, Pregibon, and
Shoemaker (1984) discuss graphical and diagnostic
methods for the analysis of binary data, some of which
use smoothing techniques. Wang (1985) provides
added variable plots for generalized linear models.
Jgrgensen (1983) indicates how the results of Pregibon
(1981) could be used in an extended class of general-
ized linear and nonlinear models.

3. TRANSFORMATIONS

Data are often better analyzed after a transforma-
tion of the response. Let this parametric transforma-
tion be y(A). In the family analyzed by Box and Cox
(1964)

1) yN) = (¥* = 1)/

where y is the geometric mean of the observations. In
many examples, use of such a transformation leads to
a simple additive model, approximate normality of
errors, and a reconciliation of apparent outliers with
the body of the data. Several examples are given by
Atkinson (1985, Chapter 6).

Conclusions about a transformation can, however,
be strongly influenced by one or a few observations.
Some form of influence analysis is therefore required.
One development leads to procedures analogous to the
added variable plot for the addition of an extra carrier
in multiple regression. The hope of the analysis is
that, for some suitable \, the observations will follow
the normal theory model

(2) z(\) = XB + e

Expansion of the transformed response (2) in a Taylor
series about the null value )\, yields the approximation

2(A) = 2(Ao) + (X — No)w(No)
with
(3) w(Xo) = 320\)/3)\] PESW
Box (1980) called w()\o) a constructed variable. The
approximate linear model is found by substitution in
(3) to be
(4) z(No) = XB — (N = MJw(Xo) + e.
Results such as equation (49) of Chatterjee and Hadi
can be used to provide an approximate score test for
the transformation, which is the ¢ test for regression
on the constructed variable in (4) (Atkinson, 1973).

The added variable plot of residual z(\,) against
residual w(\) provides an indication of the influence

of individual observations on the evidence for a trans-
formation. However, the plot can fail if points of high
leverage are present. Because leverage points give rise
to relatively small residuals, such points may make a
small contribution to the plot, even if they are impor-
tant for the transformation. Cook and Wang (1983)
give an example and describe alternative diagnostic
plots. Atkinson (1986a) provides a generalization of
their method based on writing the approximate score
statistic for the transformation as a function of sums
of squares and products of residual z(\;) and w(\).
Standard formulae for the effect of deletion on the
residual sum of squares (Chatterjee and Hadi, equa-
tion 14) can therefore be adapted to estimate the effect
on the score statistic of the deletion of individual
observations.

The idea of a constructed variable is not confined
to transformations. Pregibon (1980) develops the
method for a parameterized link function in a gener-
alized linear model. Atkinson (1985, page 240) gives
an added variable plot for such a constructed variable.
An alternative graphical procedure would be again to
calculate the effect of deletion on the score test.

The fit of a model to data, as measured by the
residual sum of squares, can often be improved by
transformation of the response, deletion of an obser-
vation, or addition of an extra carrier. Deletion of the
ith observation is equivalent to regression on a vari-
able in which all values except the ith are zero. Expres-
sion of transformation of the response as regression
on a constructed variable provides a formal link be-
tween the three possibilities. However, the physical
implications are quite distinct.

4. MASKING AND ROBUST REGRESSION

The methods described so far are, like those given
by Chatterjee and Hadi, concerned with the deletion
of a single observation. The extension to deletion of
several observations at once is algebraically straight-
forward, but a computational nightmare, as there is a
combinatorial explosion of possibilities to be explored.
Unfortunately, sequential deletion of observation can-
not be relied on to reveal multiple outliers. Some
examples of this phenomenon, known as masking, are
described by Chatterjee and Hadi in their Section 8.

One method of revealing masking relies on a com-
bination of robust regression and diagnostic methods.
The robust method is least median of squares regres-
sion described by Rousseeuw (1984). For the parame-
ter value b let the residual r; = y; — x7b. Then two
criteria for the choice of b are:

Least sum of squares regression: min Y, r?
b

Least median of squares regression: min median r?.
b i
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The purpose of least median of squares regression in
the presence of outliers is to fit a line to the “good”
observations while revealing the “bad” observations
as outliers. The proportion of outlying observations
can be large, but must be less than the asymptotic
limit of one-half (Hampel et al., 1986, page 330).

For a regression model with p carriers, the least
median of squares estimates of the parameters are
calculated by repeated sampling of elemental sets of p
observations until a stable pattern of residuals
emerges. The results of Rousseeuw (1984) and Atkin-
son (1986b) indicate that the method works excel-
lently as an exploratory tool. However, the estimates
of the parameters of the linear model have poor prop-
erties and a second, confirmatory, stage is required.

Rousseeuw (1984) uses the least median of squares
estimate as a starting point for robust regression with
M estimators. Atkinson (1986b) uses extensions of
some of the regression diagnostics described by Chat-
terjee and Hadi.

Inspection of an index plot of the least median of
squares residuals often suggests the exploratory dele-
tion of several observations. Let there be m of these.
The deletion residuals r} for the remaining n — m
observations are given by

(5) r¥=r/{syva = h)},

where r; is the least squares residual. The deletion
residual is Chatterjee and Hadi’s ¢t} in a different
notation. In particular, we use the standard notation
h, for the diagonal elements of the (n — m) X (n — m)
hat matrix H = X(X"X)'XT".

The variance of prediction at a point x, for a case
not included in the fitted model is

var($) = o1 + x7(XTX) %} = o%(1 + d).

Agreement between y, and the observed y; is tested by
the prediction residual

(6) r? = r/{sv(1 + d)}.

This ¢ test is the analogue of the deletion residual (5),
but with a change of sign in the denominator.

The modified Cook statistic (Chatterjee and Hadi,
equation 38) measures the effect of deletion of the ith
observation on the parameter estimates. The effect of
addition of an observation on the parameter estimates
is found from the analogous quantity

1/2
o_Jn—p-—m _d o
(7) CI { p 1+dl} Ir,l.

Atkinson (1986b) gives examples of the use of plots of
these quantities to check the deletion results of the
exploratory robust analysis.

]

5. AN EXAMPLE

Table 1 gives the record time for 35 hill races,
together with the distance in miles and the climb in
feet. The data, taken from the 1984 fixture list of the
Scottish Hill Runners Association, have been simpli-
fied by omission of a third explanatory variable, the
time of year. Analysis of the reduced data provides a
good illustration of many of the points discussed in
the two previous sections.

One way to start the analysis is to fit a first order
model in distance and climb with record time as re-
sponse. Half normal plots of the deletion residuals r}
and of the modified Cook statistics C; provide a check
for outliers and influential observations. Interpreta-
tion of these plots is aided by the use of simulation
envelopes (Atkinson, 1981; Dempster et al., 1984). The
plot of r ¥, not shown here, indicates that observations
7 and 18 are outliers. If these two observations are
deleted, the half normal plots of both r} and of C;
show observation 33 also lying outside the simulation
envelope. When these three observations are deleted,
the half normal plot of r}, Figure 1, clearly reveals
three appreciable outliers. One conclusion is that when
all observations are included in the analysis, the out-
lying nature of observation 33 is masked by observa-
tions 7 and 18.

A safer approach to the identification of outliers in
the presence of masking is to start with least median
of squares regression. An arbitrary number of 1000
elemental sets was sampled. Figure 2 is an index plot
of the residuals from the best fit, standardized by a
robust estimate of scale. The observations giving the
five largest absolute residuals are, in decreasing size
of residual, 7, 18, 11, 33, and 35. The best fit was
obtained from the 845th elemental set, for which the
estimate of o” was 6.21. The next smallest estimate
was 6.42, obtained after 79 sets, for which a similar
pattern of residuals was obtained.

Figure 2 is typical of the pattern which occurs in
the presence of leverage points. If the leverage points
are not included in the optimum elemental set, small
fluctuations in the fitted line can cause large residuals
at remote points in the space of the carriers. However,
the confirmatory application of diagnostic methods
leads to discrimination between outliers and well be-
haved leverage points. In this case half normal plots
in which all five observations are deleted show that
observations 11 and 35 agree with the bulk of the data.
The conclusion is again reached that observations 7,
18, and 33 are, in some way, different from the rest of
the data.

Although Figure 1 shows three clear outliers, there
are also some smaller residuals which are slightly too
large. This may be an indication that a transformation
of the response is needed. We now briefly look at the
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TABLE 1
Record times for Scottish Hill races

Observation

Name cf race x;: distance X2: climb y: record time
number
miles ft hr.min.sec

1 Greenmantle New Year Dash 2.5 650 16.05

2 Carnethy “5” Hill Race 6 2500 48.21

3 Craig Dunain Hill Race 6 900 33.39

4 Ben Rha Hill Race 7.5 800 45.36

5 Ben Lomond Hill Race 8 3070 62.16

6 Goatfell Hill Race 8 2866 73.13

7 Bens of Jura Fell Race 16 7500 3.24.37

8 Cairnpapple Hill Race 6 800 36.22

(Veterans only)

9 Scolty Hill Race 5 800 29.45
10 Traprain Law Race 6 650 39.45
11 Lairig Ghru Fun Run 28 2100 3.12.40
12 Dollar Hill Race 5 2000 43.03
13 Lomonds of Fife Hill Race 9.5 2200 65.00
14 Cairn Table Hill Race 6 500 44.08
15 Eildon Two Hills Race 4.5 1500 26.56
16 Cairngorm Hill Race 10 3000 1.12.15
17 Seven Hills of Edinburgh Race 14 2200 1.38.25
18 Knock Hill Race 3 350 1.18.39
19 Black Hill Race 4.5 1000 17.25
20 Creag Beag Hill Race 5.5 600 32.34
21 Kildoon Hill Race 3 300 15.57
22 Meall Ant-Suidhe Hill Race 3.5 1500 27.54
23 Half Ben Nevis 6 2200 47.39
24 Cow Hill Race 2 900 17.56
25 North Berwick Law Race 3 600 18.41
26 Creag Dubh Hill Race 4 2000 26.13
27 Burnswark Hill Race 6 800 34.26
28 Largo Law Race 5 950 28.34
29 Criffel Hill Race 6.5 1750 50.30
30 Achmony Hill Race 5 500 20.57
31 Ben Nevis Race 10 4400 1.25.35
32 Knockfarrel Hill Race 6 600 32.23
33 Two Breweries Fell Race 18 5200 2.50.15
34 Cockleroi Hill Race 4.5 850 28.06
35 Moffat Chase 20 5000 2.39.50

effect of outliers on the evidence for the power trans-
formation (1). For the null hypothesis of no transfor-
mation, that is Ao = 1, the constructed variable is

w(1) = yflog(y/y) — 1},

provided the model includes a constant.

The asymptotically standard normal approximate
score statistic for the power transformation for all 35
observations has the value —4.11, the negative sign
indicating a value of X less than 1. In fact the maxi-
mum likelihood estimator is 0.55, so a square root
transformation of y would seem to be indicated. How-
ever, the index plot of the value of the statistic as each
observation in turn is deleted (Figure 3) shows that
observations 7 and 18 have appreciable influence. If
these two observations, which we already believe to be
outlying, are deleted, the absolute value of the statistic
decreases to —2.91. The index plot analogous to Figure
3 now shows observation 33 to be highly influential.

If this observation is also deleted, the test statistic for
the remaining 32 observations equals —1.91, with the
deletion estimates oscillating around this nonsig-
nificant value. The analysis of transformations thus
reveals the importance of the same three outlying
observations as did the analysis of the untransformed
data. If these observations had not been detected,
there would have appeared to be appreciable evidence
for the square root transformation.

The purpose of this summary analysis is to illustrate
the use of some diagnostic techniques. Further under-
standing of the data can be obtained from scatter plots
of y against the explanatory variables. The stronger
univariate relationship is with x,;, distance, and the
plot reveals observations 7 and 18 as outliers. Obser-
vation 33 is not clearly outlying, whereas observation
11 appears strongly outlying on the plot against climb.
This is because it comes from a race with low climb
for its distance. As the preceding analysis has shown,
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this leverage point is in agreement with the rest of the
data. Further analysis would include checking the data
in Table 1 both against the original fixture list and
against the lists for other years. Another extension
would be to the use of extreme value distributions,
which are appropriate for modeling record times.
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