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Comment

R. Dennis Cook

Chatterjee and Hadi present a disturbing account
of the disorientation that can result from attempting
to sort through the variety of methods that are avail-
able for studying influence, leverage, and outliers in
linear regression. Their admonition that the goals of
an analysis must be used to guide our choice of meth-
odology is entirely appropriate. The question “Influ-
ence on what?” is indeed important, particularly when
it is asked of a specific method. I find that answers to
this question can form a useful guidebook to influence
methodology and can thereby remove much of the
perceived confusion. With this key question in mind,
Chatterjee and Hadi describe several useful distinc-
tions between the various methods, but some confu-
sion evidently remains, as exemplified by the all-but-
one-point-on-a-line problem. For further clarity, it is
necessary to take a closer look at the appropriate uses
of various influence diagnostics. Beginning with a
general introduction, the following discussion is
intended to emphasize critical distinctions between
selected methods and to further illustrate the impor-
tance of Chatterjee and Hadi’s question. Unless indi-
cated otherwise, notation is the same as that used by
Chatterjee and Hadi.

1. INTRODUCTION

Statistical models are extremely useful devices for

extracting and understanding the essential features of
a set of data. Models, however, are nearly always
approximate descriptions of more complicated proc-
esses and therefore are nearly always wrong. Because
of this inexactness, considerations of model adequacy
are extremely important. The recent paper by Freed-
man and Navidi (1986) in combination with the dis-
cussants’ remarks provides a forceful lesson on mod-
eling. Depending on the situation, a universally
compelling demonstration of the adequacy of a model
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may not be possible. But what we can always do is
strive for the reassurance that what we have done is
sensible in light of the available information, that the
data do not contradict the model or vice versa, and
that reasonable alternative formulations will not lead
to drastically different conclusions. How much reas-
surance we may need depends on the particular prob-
lem. In well studied situations where we have consid-
erable prior information and experience, a little reas-
surance may be sufficient, while in fresh problems we
may require much more. But some reassurance is
always necessary.

Many methods are available for gaining necessary
reassurance. For example, we may empirically validate
a model through continued observation of the process
under study or use robust methods to mitigate the
impact of questionable aspects of the model. In addi-
tion, diagnostic methods should be used to look for
contradictory or other relevant information in the
observed data. The absence of such information will
not prove that the model is accurate, but it can provide
the reassurance that the model is not contradicted by
available information or unduly influenced by isolated
characteristics of the data. )

Chatterjee and Hadi describe their experiences with
a particular class of diagnostic methods that are in-
tended to aid in assessing the role that individual
observations play in determining a fitted model. A
fitted model can be viewed as a smoothed represen-
tation that captures global and essential features of
the data, but this view is not always appropriate. Key
features of a fitted model can be dominated by a single
observation and conclusions in such situations tend
to depend critically on the model. It seems generally
recognized that a concern for influential observations
should be part of any analysis, and in recent years
there has been a proliferation of methods for their
detection.

2. t; AND t}

Chatterjee and Hadi discuss several reasons for
preferring t ¥ over ¢;, but their discussion seems to lack
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specificity since the intended use of the eventual
choice is not made clear. Why are these statistics
being compared? Perhaps they will be used in proba-
bility plots to assess distributional assumptions. If the
goal is to test for a single outlier based on a normal
mean shift alternative (see Cook and Weisberg, 1982,
page 20), then ¢; and ¢} are statistically equivalent
since t** is a monotonic function of t?. In this case,
the choice seems to hinge only on the availability
of tables or other mechanisms for generating
critical values. Under the hypothesis of no outliers,
t?/(n — p) follows a standard beta distribution so that
it may be more convenient to use t¥.

3. C; AND WK;

Judging from widely distributed regression pack-
ages, these are two of the most commonly used influ-
ence measures and, as the comments of Chatterjee
and Hadi make clear, they are often viewed as com-
petitors. However, it can be argued justifiably that
they should not be compared since they measure dis-
tinctly different aspects of the influence of a single
observation.

Originally developed by Cook (1975), C; measures
only the influence of a single observation on the
ordinary least squares estimate § of the coefficient
vector 3 in linear regression. It is the squared length
of 8 — B relative to the fixed inner product defined
by X7X/ps?, although useful alternative interpreta-
tions have been put forth (see Cook and Weisberg,
1982). The comparison of C; with the probability
points of an F distribution is nothing more than a
monotonic transformation to a more familiar scale
and is certainly not a test of significance. A discussion
of this interpretation is available in Cook’s (1977b)
response to Obenchain (1977). To my knowledge there
are only two other influence diagnostics—LD;(3) as
discussed below and that resulting from the Bayesian
approach of Johnson and Geisser (1985)—that are
intended to measure only the influence of a single
observation on 8.

According to Welsch (1982), WK, assesses the influ-
ence of a single observation on “coefficients and scale.”
In other words, WK; should be viewed as a measure
of influence for 3 and 62 simultaneously. The essential
algebraic difference between C; and WK, is in the use
of 6% (C)) or 6%),(WK;). One consequence of this differ-
ence is that if we try to view WK, as an influence
measure for coefficients, then we are forced to the
interpretation that WK, is the (signed) length of § —
B relative to the variable inner product defined by
X"X/6%. As Chatterjee and Hadi indicate, this makes
WK, difficult to interpret as a measure of inﬂuencg
on B only, since the ruler that we use to compare 3
and §;, changes with i. In this situation, the difficulty

of interpretation reflects the inappropriateness of the
interpretation.

Further, it has been argued that {; is preferable
since it is robust to gross errors in the ith observation.
When a robust estimate of scale is required and only
coefficients are of interest, it seems much better to
use C; with ¢” replaced by a robust estimate of o2 that
has a high breakdown point, thereby achieving a con-
stant metric and a robust scale. For further discussion
see Cook (1982) and Cook and Weisberg (1982).

4. ALL-BUT-ONE-POINT-ON-A-LINE PROBLEM

This problem has been promoted by a number of
authors (e.g., Welsch 1982) as a reason for the use of
WK over C;. Chatterjee and Hadi use it to argue that
using 67 as a scale estimate can produce noninforma-
tive results. Whether any influence measure is non-
informative depends on the desired information and
again this leads back to the importance of a clear
statement of goals.

An easy resolution of this problem can be obtained
by recognizing the appropriate uses of C; and WK,.
Figure 1 displays four points, three of which fall on a
line. Point A will be selected by C; as the most influ-
ential for the coefficients from a simple linear regres-
sion model and this is the correct choice. Deleting
observation A will change the coefficients consider-
ably, while deleting observation B, the only point
falling off the line, will change the coefficients by a
relatively small amount. Point B will be selected by
WK, as the most influential for 3 and 62 simultane-
ously and again this choice seems to be correct in view
of the intended use of WK;. Although j changes a lot
when point A is deleted, 65 = 0, clearly a dramatic
change in the estimate of ¢ This problem may be
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Fic. 1. Schematic illustration of the all-but-one-point-on-a-line
problem.
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used to emphasize the importance of carefully speci-
fying the objectives of an influence analysis (i.e.,
whether we should emphasize coefficients, scale, a
combination thereof, or some other aspect of the prob-
lem at hand), but C; and WK, seem to behave exactly
as expected. However, as described below, WK; does
have serious deficiencies as a measure of influence for
B and &2 simultaneously.

Generally, this problem represents situations in
which there are two influential observations, a high
leverage observation that is in substantial agreement
with the model (point A) and a low leverage obser-
vation that is not in agreement (point B). Again,
judgments about the relative importance of these
observations must depend on the goals of the analysis.
In many situations, we will wish to identify both
observations and this may require using more than
one measure or a multiple deletion version of a single
measure.

Various other reasons have been advanced for pre-
ferring WK, over C;. These arguments use little more
than special pleading since they nearly always neglect
any reference to the different uses underlying these
statistics.

5. C;, WK;, AND LD;

Likelihood displacement (a.k.a. likelihood distance)
was developed by Cook and Weisberg (1982) as a
unifying method for the development of influence
measures. Briefly, it assesses the amount that an
estimate is displaced when an observation is removed,
with displacement being gauged relative to the con-
tours of the appropriate profile log likelihood. The
methodology is not restricted to linear regression and
can easily be adapted to assess influence on parameter
subsets, predictions, etc. Cook and Wang (1983) use
this approach when developing influence measures for
transformation parameters and Cook (1986) uses it as
one ingredient in an extension of the notion of influ-
ence beyond the deletion of observations.

Let b, = t?/(n — p). Under the normal version of
the model that Chatterjee and Hadi describe in (1), b;
has a beta (Y2, (n — p — 1)/2) distribution. The
'hkehhood displacements for 3 only, ¢2 only, and 8 and
¢* simulatenously can be written as

) LD:(B) = N log[pCi/(N — p) + 1]
= N log[b;h;/(1 — h;) + 1],

@) LD;(¢*) = N log[N/(N — 1)] + N log[1 — b]
+b(N—-1)/1-0b) -1

and

3) LD;(B, ) = Nlog[N/(N —1)] + Nlog[1 — b]

+b6:(N-1)/[(1-b)(1 - h)] -1,

. observation A can influence only ¢ 0

respectively. Here, h; is the ith diagonal of the hat
matrix. Results (1) and (3) are given in Cook and
Weisberg (1982) in different notation, while (2) and
the version of LD; (8, ¢2) given in (3) are developed in
Cook, Pena, and Weisberg (1984).

The discussion of likelihood displacement by Chat-
terjee and Hadi is seriously misleading. First, like-
lihood displacement is not based on the change in
volume of confidence ellipsoids. As far as I know,
there is no fundamental connection between volume
change and likelihood displacement. Second, in con-
trast to the statement by Chatterjee and Hadi, equa-
tion (23) is not the likelihood displacement for meas-
uring the influence of the ith observation on 3 only.
Rather, equation (23) is the likelihood displacement
for measuring the influence of the ith observation on
3 and &% simultaneously. Apart from differences in
notation, equation (23) is the same as (3) above.

Several useful conclusions can be obtained from an
inspection of (1)-(3). First, LD;(3) is a monotonic
function of C; and is therefore equivalent to C; for the
purpose of ordering observations based on influence.
Second, LD;(c?) does not depend on h; in the sense
that the distribution of b; is independent of h; under
the normal theory version of (1) in Chatterjee and
Hadi. Third, LD;(¢?) = LDi(8, ¢?) when h; =
Evidently, leverage is unimportant when assessing the
influence of an observation on ¢ only.

Recall that WK; measures the influence of the ith
observation on 8 and ¢ simultaneously. Thus, WK;
and LD;(8, ¢2) may be compared without confusing
different aims and for this purpose it is useful to write
WK, in the form (Cook, Pena, and Weisberg, 1984)
(4) WK? = (n—p—Dbh/[(1 - b)1 — hy)].
Comparing (3) and (4), its clear that WK, and
LD:(B8, %) can respond very differently to b; and h,.
In particular, consider the data in Figure 2 which we
suppose are to be described by using simple regression
through the origin. Observation A is surely outlying.
Since ha = 0, 8 is independent of (xA, ya), and thus
. Further, since
WK; measures influence on 3 and & s1multaneously,
it is reasonable to expect it to identify observation A.
This will not happen, however, since WK, = 0. On
the other hand, both LD;(¢?) and LD;(8, ¢%) will
identify observation A. The conclusion to be drawn
from this example is that WK; is not sufficiently
sensitive to changes in scale. Similar comments apply
to Welsch’s distance W;. As an aside, LD;(3) will not
identify observation A, but this is entirely appropriate
in view of the stated obJectlve LD;(B) measures influ-
ence on B only, and B B(A)

As Chatterjee and Hadi indicate, Atkinson’s C¥ is
proportional to WK;. Thus, like WK,, it is not suffi-
ciently sensitive to changes in ¢ when viewed as a
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FI1G.2. Schematic representation of simple linear regression through
the origin with an outlier at X = 0.

measure of influence for (8, ). The advantages at-
tributed to C¥ are illusionary. For example, it is true
that C ¥ gives more weight to extreme values, but this
idea forces the question, “What is the right amount of
weight to give to extreme values?” As the previous
example demonstrates, the weight used in C ¥ does not
seem to be the right amount. The suitability of C ¥ for
graphical displays comes from taking the square root
in (38), a standard method that can be used with many
influence measures, e.g., JC..

The data from Mickey, Dunn, and Clark (1967) can
be used to illustrate the contrasting roles of these
influence measures. Chatterjee and Hadi state that
the point marked by an “0” in their Figure 1 is an
example of an outlier that does not matter. However,
this observation is identified as the most influential
when using either LD;(8, ¢ or LD;:(¢%), and the
numerical values of these two measures indicate that
the amount of influence is non-negligible. When using
LD:(B), or equivalently C;, to gauge influence, the
observation that Chatterjee and Hadi marked with an
“I” is identified as the most influential, but observa-
tion “o0” is the second most influential and is clearly
distinguished from the remainder of the data. From
these results, the sense in which observation “o” does
not matter is rather elusive. Observation “o0” is the
most influential when 62 is of interest, either solely or
in combination with 3, and has I}otable relative influ-
ence when interest centers on §8 alone. In the latter
case, adscititious information may be required for
decisions on the importance of this observation.

6. PARTIAL INFLUENCE

For the most part, the above remarks cover partial
influence measures. First introduced by Cook (1975),
D;; is intended to measure only the influence of the

ith observation on the jth coefficient. Similarly, al-
though the intent is a little vague, it seems best to
view D} as measure of the influence of the ith obser-
vation on (8;, 7).

As Chatterjee and Hadi emphasize, a measure that
involves all coefficients can be noninformative, partic-
ularly when special importance is attached to a subset
of 8. This need not be the situation, however, even if
we rely primarily on a measure that involves all coef-
ficients. It has been repeatedly pointed out in varying
degrees of generality (Cook, 1977b; Cook, 1979; Cook
and Weisberg, 1980; Cook and Weisberg, 1982) that
D;; < pC;. The important point is that we need not
worry about the effects of the ith observation on the
jth coefficient when pC; is sufficiently small. We may
need to compute D;; only when pC; is large enough to
cause concern.

7. CONCLUSIONS

I disagree with the conclusions of Chatterjee and
Hadi regarding the routine use of sufficient configu-
rations for the detection of influential observations in
linear regression. Although examining {WK;, CW,,
D,;} will provide much useful information, I would not
look forward to routinely examining (p + 2)N influ-
ence values in addition to diagnostics for heterosce-
dasticity, outliers, curvature, etc. The recommended
configurations are not sufficient to represent all of the
specific goals that can arise. They do not allow us to
concentrate attention on changes in ¢% for example.
Further, as indicated above, an inspection of C; will
often show that all D;;’s are negligible.

As discussed in Cook and Weisberg (1982), an al-
ternative approach is to select a single influence
diagnostic for application in every problem and, if
appropriate, supplement this with a parsimonious se-
lection from the remaining diagnostics that reflect the
specific objectives in the problem at hand. I personally
prefer to routinely examine LD;(3, ¢7). Since LD;(8),
LDi(az), and LD;(;), the likelihood displacement for
B; only, are bounded above by LD;(8, ¢%), I may need
to worry about individual coefficients and scale only
when LD, (8, ¢?) is sufficiently large. Occasionally, it
is necessary to compute additional influence diagnos-
tics that reflect more specific aims, but in many prob-
lems a single index plot of LD;(B, ¢?) is sufficient to
provide the necessary reassurance that the analysis is
not being dominated by a single observation. Multiple
influential observations is a more difficult issue and
is not covered by these remarks.

8. THE FUTURE

For the most part, the development of influence
methodology for linear regression is based on ad hoc
reasoning and this partially accounts for the diversity
of recommendations. The value of past work is
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substantial and has greatly increased my awareness of
the structure of regression problems, particularly with
regard to the role of individual and groups of obser-
vations. However, for progress beyond linear models
and a more complete understanding of past results, ad
hoc reasoning no longer seems sufficient. Competing
goals must be carefylly weighed and influence mea-
sures must be formulated with a broader base. Like-
lihood is the foundation for many analyses and in the
long term we should strive for methods that directly
reflect the difference between the full sample like-
lihood and the likelihood obtained after deletion.
From a Bayesian perspective, the pioneering work of
Johnson and Geisser (1982, 1983, 1985) is relevant.

Broadening the concept of influence to include more
than the deletion of observations is a second direction
that may prove fruitful. Deletion can be viewed as just
one of many ways of perturbing a problem formulation
to assess influence. Minor modifications of the values
of a selected explanatory variable in linear or nonlin-
ear regression, for example, can uncover relevant
structure in the data that would not normally be
detected by deletion, and lead to fresh interpretations
of certain patterns in added variable plots. These and
related issues are addressed in Cook (1986).

Comment: Aspects of
Regression Analysis

A. C. Atkinson

1. INTRODUCTION

The rapidity of acceptance of the group of tech-
niques known as regression diagnostics is remarkable.
The methods are already included in many regression
packages and there are at least three books devoted to
the subject. The emphasis of each book is distinct.
Belsley, Kuh, and Welsch (1980) are primarily con-
cerned with applications in economics; Cook and
Weisberg (1982) are the most mathematical of the
three; Atkinson (1985) includes much material on
transformations. In addition, an introduction is given
by Weisberg (1985, Chapters 5 and 6). Now we have
the present review article by Chatterjee and Hadi. In
my comments I shall go beyond the area defined by
their title, to describe several recent developments
which reflect important aspects of diagnostic regres-
sion analysis. An example of the use of these methods
is given in Section 5.
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Diagnostic

Diagnostic procedures are essentially concerned
with the detection of disagreements between the model
and the data to which it is fitted. As Chatterjee and
Hadi suggest, the variety of such procedures can be
bewildering. There are, however, some underlying
ideas which provide a framework for comparisons. A
succinct summary of principles is given by Weisberg
'(1983). Among other aspects he stresses: 1) the rela-
tionship with score tests for parameterized departures
from assumptions, 2) the importance of graphical
methods, and 3) influence analysis, that is calculation
of the effect of individual observations on inferences
drawn from the data.

2. GENERALIZATIONS

Chatterjee and Hadi’s discussion is almost entirely
concerned with the normal theory linear model. Pre-
gibon (1981) gives the extension of diagnostic methods
to generalized linear models, although his detailed
discussion and examples concentrate on the analysis
of binary data. Chapter 12 of McCullagh and Nelder
(1983), Model Checking, also describes the extension



