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mean information in 7(X) about 8(Y). (This does not
involve a Jacobian.)

ADDITIONAL REFERENCES

ALLISON, H. (1979). Inverse unstable problems and some of their
applications. Math. Sci. 4 9-30.

Comment

J. A. Nelder

I congratulate the authors on a fascinating piece of
work and offer three comments.

1. In order to make smoothing work it is necessary
to restrict it to one-dimensional covariate spaces,
hence the strong assumption of additivity. In principle
one could introduce cross-terms, e.g., have x;2 = x;x»,
as well as x; and x,, in the model; however, I suspect
the convergence of the algorithm might now become
immensely slow or even nonexistent because of the
functional relations between the covariates. An alter-
native might be to include a term of the form
s1(x1) - s2(x2), with coefficient to be estimated. Have the
authors any comments on this problem?

dJ. A. Nelder is Visiting Professor, Department of Math-
ematics, Imperial College, 180 Queen’s Gate, London
SW7, England.

Comment

Charles J. Stone

Hastie and Tibshirani deserve commendation for

the originality, significance, and interest of their ap- .

proach and the excellent expository review in the
present paper. )

Recently I have been working on a different ap-
proach to fitting more or less the same class of models,
but using polynomial cubic splines to model the com-
ponent functions s;(-) and the Newton-Raphson
method to calculate the ordinary maximum likelihood
estimate. In order to avoid artificial end effects of
polynomial fits such as those shown in Figures 2 and
3, the splines are constrained to be linear to the left

Charles J. Stone is Professor of Statistics, University
of California, Berkeley, California 94720.
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2. To me it seemed intuitively surprising that the
figures in Table 2 show the generalized additive model
to have one parameter more than the original para-
metric one, but a deviance nearly 6 higher. I then
realized that the latter has a cross-term in it, and this
appears to be important. What would be the effect of
adding a term in s;(x;)-s(x2) to the former? Also it
would help interpretation if the difference in deviance
were given when each term in their model was replaced
by a parametric form. This would give summary
statistics for differences visible in Figures 3, 4,
and 5.

3. The new version of GLIM (3-77) now available
has a facility for inserting new code. I very much hope
that the authors can be persuaded to exploit this in
order to make available the fitting of generalized
additive models in GLIM.

of the first knot and to the right of the last knot. To
avoid multiple representations of the constant term,
zero sum constraints are imposed on the individual
terms (when p = 2), as is done in this paper. Thus, if
there are N knots, there are N + 4 degrees of freedom
for the unconstrained spline and N — 1 degrees of
freedom for the constrained spline. There is also 1
degree of freedom for the constant term; so there are
(N — 1)p + 1 degrees of freedom in total. This ap-
proach will be referred to as the parametric spline
approach to distinguish it from the smoothing spline
approach favored by Wahba and others in which
smoothing is achieved by a roughness penalty instead
of by confining attention to spline models with a
modest number of degrees of freedom. In theory, N
should tend to infinity as the sample size n tends to

-

Statistical Science. RIKGIS ®

Www.jstor.org



GENERALIZED ADDITIVE MODELS 313

infinity so as to achieve the optimal rate of conver-
gence (see Stone (1985, 1986)). Asymptotically opti-
mal rules for selecting N based on the data have been
obtained by Burman (1985). In practice N = 5 has
proven sufficient. This is not surprising, since the
standard linear approach allows only 1 degree of free-
dom per component function. Allowing 4 degrees of
freedom should provide enough flexibility to fit the
regular departures from nonlinearity that are likely to
occur in practice, especially when linear constraints
are used in the tails. For the flexibility is then highest
in that portion of the axis that contains the bulk of
the data. Linear restrictions on splines lead to tail
behavior very similar to that of the linear smoothers
(local linear regression) recommended by Stone (1975,
1977), Cleveland (1979), Friedman and Stuetzle
(1981), and this paper. As Hastie and Tibshirani and
others have pointed out, it is desirable to have a
reasonable automatic default rule. The rule that has
emerged from Stone and Koo (1986b) is this: given a
specific covariate, order its observed values as x;),

-+, X(»; put knots at the minimum value x;, and
maximum value x,; put additional knots at x,, i =
i2, I3, ls, chosen so that the logits of 1/(n + 1),
b/(n + 1), i3/(n + 1), iy/(n + 1), n/(n + 1) are
approximately equally spaced.

In the few cases where the two approaches have
been applied to the same data, the resulting curves
appeared visually to be quite similar (see Stone and
Koo, 1986a, and Devlin and Weeks, 1986), except that
the approach of Hastie and Tibshirani leads to small
scale roughness not present in curve estimates ob-
tained by the parametric spline approach. The ap-
proaches seem equally feasible numerically and
equally automatic. But the parametric spline approach
has several conceptual advantages. In particular, the
standard maximum likelihood method can be used to
estimate the parameters and obtain confidence inter-
vals that are asymptotically valid, at least when N is
fixed. The x? approximation to the asymptotic distri-
bution of the logarithm of likelihood ratio statistics is

also asymptotically valid with an integral number of

degrees of freedom. The theory is analytically tracta-
ble even when N — ® as n — o, provided that the
covariates are restricted to a compact set. Undoubt-
edly, Hastie and Tibshirani could site advantages for
their approach.

In order to carry out the asymptotics for the para-
metric spline approach when N — o as n — oo, it
seems necessary that the log likelihood function be
strictly concave. Such concavity holds in generalized
additive models when 7 = 8 and for some other choices
of the link function (such as that corresponding to
probit models), but it is not true for an arbitrary link
function. Strict concavity is desirable even when N is
fixed, for it guarantees that the log likelihood function

have at most one local maximum and that a local
maximum, if it exists, be the unique global maximum.
Hastie and Tibshirani do not explicitly mention strict
concavity, which in their notation amounts to the
requirement that d2//dn? < 0. Even without this re-
quirement, it is true that E(d®l/dn?*|x) < 0, but per-
haps the algorithm in (23) of this paper is more reliable
when the log likelihood function is strictly concave.

Generalized additive modeling as studied by Hastie
and Tibshirani, by Burman, and by myself is an ex-
tension of the generalized linear models (GLMs) in-
troduced by Nelder and Wedderburn (1972). But, so
far at least, one limitation of GLMs has been pre-
served; namely, the restriction to exponential models
that involve a one-dimensional parameter 6. The most
obvious practical advantage of considering a multi-
dimensional parameter 6 is that the setup would then
include multinomial models for conditional distribu-
tions and thereby allow for categorical response vari-
ables Y having more than two possible categories.
Once covariates are included we have a natural setup
for developing reasonable and flexible multiple clas-
sification procedures. In the linear form of the model,
each coordinate of § would be a linear function of the
covariates. In the additive extension, each coordinate
would be an additive function of the covariates. Ide-
ally, the fitting procedure should be such that the
estimated conditional probabilities of the various cat-
egories are positive and sum to one. This can undoubt-
edly be done with the parametric spline approach. Can
it also be done with the approach of Hastie and
Tibshirani?

In the present paper, Hastie and Tibshirani treat
Cox’s proportional hazards model as being outside the
framework of GLMs. However, the logarithm of the
partial likelihood is of the form log-PL = ¥;ep [Bx; —
log(Y jer, €”%j)]. For each i, the expression enclosed by
brackets is exactly in the form of a multinomial model,
there being as many categories as there are elements
in the risk set R;. Thus the setup is essentially that of
independent but not identically distributed multinom-
ial response experiments. In particular, log-PL is a
strictly concave function of the unknown parameters,
so the parametric spline approach should also be via-
ble. But the asymptotics, especially when N — o as
n — o, have yet to be worked out.
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Comment

Peter McCullagh

Hastie and Tibshirani are to be congratulated for
presenting the theory and methodology of generalized
additive models in a form that keeps incidental math-
ematical details at an acceptably low level. I have little
to add and my single comment is therefore brief.

The whole thrust of the authors’ development seems

Peter McCullagh is Professor of Statistics, Department
of Statistics, The University of Chicago, 5734 Univer-
sity Avenue, Chicago, Illinois 60637.

Rejoinder

Trevor Hastie and Robert Tibshirani

1. THE GENERAL PROBLEM

In Section 5 of the paper, we motivated the local
scoring and local likelihood estimation procedures as
empirical methods for maximizing E(l(»(X), Y)). In
the two procedures, the maximization problem is ap-
proached in different ways. In the local likelihood
method, an estimate of E((I(n(X), Y)|X = x))
is constructed (for each x) and this has the form
(1/kn)- Y jen, Un(x)), ¥;) given in (26) of the paper. As
Brillinger notes (his Section 2), one can generalize

this and hence include robust estimates and many -

others.
~ On the other hand, the local scoring procedure
maximizes E(I(n(X), Y)) by estimating the quanti-
ties in the update expressions (22) and (36). Note,
however, that this procedure is not expressible as a
maximation of the kind that Brillinger describes,
ie., a maximization of a function of the form
> p(Y:| 9)W,:(X). However, it is possible to write
down a finite sample justification of local scoring (to
answer a question of Brillinger’s) based on the notion
of penalized likelihood. This justification applies only
in the special case in which the local scoring algorithm
uses linear smoothers. Recall that a linear smoother
is one for which the result of smoothing a vector z can
be written simply as z = Sz, for some matrix S, called

STONE, C. J. (1985). Additive regression and other nonparametric
models. Ann. Statist. 13 689-705.

STONE, C. J. and Koo, C.-Y. (1986b). Function Estimates. AMS
Contemporary Math. Ser., Amer. Math. Soc., Providence, R. I.

to be based implicitly on the following assumption,
here reduced to the bare essentials: zero interaction is
fundamentally more plausible than componentwise
linearity in the covariates. Has there been any attempt
to justify this point of view, either philosophically or
empirically by examining a large number of examples
or by any other means? A closely related question
concerning statistical strategy is the following: at what
stage of analysis does the assumption of zero interac-
tion come under scrutiny?

a “smoother matrix.” Now suppose we have data (y,
X115 X125, * * *) xlp)) oy (Vns Xnty X2y + -y xnp) and let Sj
be the smoother matrix for the jth variable. Let s; =
(s1(x1)), s2(29), -, sn(xn))', j = 1,2, ---, p and
consider the following problem. Find s,, s;, - - -, S, to
maximize

. o
(1) l(n) — 3 ; s;(S; — Ds;

where n = a + Y} s; and S; is a generalized inverse of
S;. Then it is easy to show that the local scoring
procedure is a Fisher scoring step for maximizing (1)
(see Hastie and Tibshirani, 1986a, for details). Now a
typical smoothe: matrix is close to symmetric, has
eigenvectors that are close to polynomials, and has
eigenvalues that tend to decrease with increasing order
of the eigenvector. Hence, the penalty term in (1) puts
greater penalty on the higher order polynomial com-
ponents of each s;. There is also a close tie here to
smoothing splines. If we start with a penalty of the
form Y7 \;s; K;s;, where K; is an appropriate quadratic
penalty matrix, we derive a local scoring procedure
that uses cubic spline smoothers. Hence, there is close
relation of local scoring to the work of O’Sullivan,
Yandell, and Raynor (1986), Green (1985), and
Green and Yandell (1985). These authors consider a



