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Comment: Well-Conditioned

Collinearity Indices

David A. Belsley

G. W. Stewart’s paper, Collinearity and Least
Squares Regression, is a substantive contribution to
an important and often ignored problem of statistical
analysis: assessing collinearity in least squares
estimation. The summary of relevant results from
numerical analysis given in Section 3 and the devel-
opments of Section 6 are alone worth the price of
admission. Furthermore, Stewart, the numerical ana-
lyst, is to be commended for this foray into the world
of statistics, for there is much these two disciplines
(to which I'll add econometrics) have to teach each
other. Indeed, the above two sections should become
part of the basic material in all advanced courses in
practical regression analysis. Sadly missing from the
Stewart paper, however, is one of the more important
notions that applied statistics has to teach the nu-
merical analyst, namely, the necessity of a context for
application: the fact that the data are not just a given
set of numbers and the model is not just a linear
combination of these data. Without this, elements are
ignored that are vitally important for determining the
meaning (or lack of meaning) of collinearity diagnos-
tics in a statistical (as opposed to a numerical) appli-
cation and that allow some conclusions to be drawn
which cannot truly be supported. I discuss these issues
here.

MODELS VERSUS DATA

Model and Data Confusion

I begin with a discussion of the relation between
model and data, a confusion between which mars the
Stewart paper and whose resolution motivates many
of the comments that follow. Thus, for example, on
numerous occasions throughout the paper, statements
are made to the effect that “The diagnostics are large,
and ‘this should make one pause about the model,” or
“. .. should lead us to reject the model.” In no such
instance, however, are there proper grounds for such
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a conclusion, and indeed one should usually counsel
the opposite. Let us see why.

The source of this confusion arises from the way
Stewart defines and uses the term model. Initially,
model is defined by (2.1) as y = Xb + e where X is
“simply a fixed array of numbers,” and then, shortly
thereafter, by “In other words, our model is specified
by the matrix X alone.” That is, a confusion occurs
between the model and the data to which the model is
applied. This is akin to confusing a random variable
with a sample drawn from it. Perhaps such usage is
current in some disciplines, but, as a rather exhaustive
search of leading texts attests, it is certainly not in
either statistics or econometrics, the disciplines
toward which I presume the Stewart paper to be
principally directed.

For those authors (on this, see Belsley (1986¢)) who
actually attempt a formal notion of an applied-statis-
tical model (as opposed to a probabilistic model),
modeling is an a priori description of the mechanism
that generates the data. It is not the data. A model
arises from the statistical investigator’s (hopefully
creative) imagination, and exists in a wholly different
realm of discourse from the data associated with it.
When applied to a specific context, it is assumed (not
always validly) that the observed data are generated
from the specific model, but, that they are only one
set of data that could have occurred and for which
that model is relevant. In fact, it is assumed that any
of an infinity of other sets of data could have been
generated by the same model, and the same model
could have been applied conditionally to any of an

_ infinity of other situations. That is, a model like (2.1)

is assumed relevant to a class of X’s (not just the
observed ones), and given any one of those X’s, any
of a class of ¥’s could have been generated.

Thus, the fact that there may be numerical problems
with a given data set, in and of itself, says nothing
about the validity of the model. A model can be
rejected if it implies things inconsistent with the ob-
served data, but a model cannot be adjudged invalid
merely because some of the data to which it is applied
are numerically funny. In so doing, one is putting the
cart before the horse.

So, the strange diagnostic values given in the dis-
cussion surrounding Table 1 should not “give one
pause about the model,” rather they should give one
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pause about the ability of the given data to tell
meaningful things about the model. This issue is es-
pecially clear here, for the data in Table 1 are known
relevant to the model given in Belsley (1984a, 1986a).
There is no issue here about the validity of the model,;
in this case “truth” is known. The y values given in
the Belsley papers were indeed generated correctly by
that model with these rottenly conditioned X’s. Thus,
the conditioning of the X’s clearly cannot be used to
invalidate the model, but this conditioning can lead
one to question the ability of these data (once gener-
ated) meaningfully to estimate the model. I cannot
overstate the importance of this issue. The conclusion
quoted above simply is not correct.

The same holds for the statement made early in
Section 6: “The resulting diagnostic is to reject the
model when the bias is unacceptably large.” Much
preferred would be “The resulting diagnostic is to
reject the ability of these data meaningfully to esti-
mate the given model by ordinary least squares.” It is,
however, to be noted that these same data could be
employed along with other suitably chosen data in,
say, an instrumental-variables estimator to produce
valid estimates of the model—the point being that the
diagnostics here do not reject the model but rather the
ability of the data meaningfully to estimate the model
with OLS.

Importance

This issue comes to a head in Section 5 defining the
term importance. Given a proper view of modeling, it
is clear that the importance of a variate to the model
is determined a priori. A variate can only be adjudged
important when the investigator has cast it in an
important role by knowing it, a priori, to be a variate
measuring a concept that figures centrally in the work-
ings of the real-life mechanism. The data, in and of
themselves, do not and cannot determine the impor-
tance of the variate. Thus, those statements directed
against the unsatisfactoriness of the model should
instead be directed against the usefulness of the given
data set for providing meaningful information about
the model. Stewart almost seems -to recognize this
problem when he says “This suggests that if we wish
to use collinearity indices to assess the ill effects of
near collinearity on regression coefficients, we must
introduce concepts from outside the classical model.”
This is true, but then the wrong outside source is used,
for one cannot dip again into the data but must go to
the prior information about the model and its real-life
context. '

The idea that the data can be used to determine
“importance” follows a growing and disturbing tend-
ency by some statisticians to use the data for model
building. This process is philosophically unsound, as

I (and many others before me) try to show in Belsley
(1986b, 1986¢). '

Thus, I strongly urge that the term “importance”
for the concept defined in Section 5 be dropped and
replaced perhaps with a term like “presence.” And I
strongly urge that the lack of presence be used as
an indication of data weakness rather than model
weakness.

A related matter arises in the statement: “But if we
attempt to replace the vague term “important” with
the mathematically precise term “statistically signifi-
cant,” we become involved in a paradox....” Several
problems arise here. “Important,” as noted, refers to
part of the a priori model-building process, not the
statistics (or data) used to estimate that model. Thus,
there is no possibility of replacing “important” with
“statistically significant.” Once again we have two
terms that exist in two wholly different realms of
discourse, and it is meaningless to try to use them
together, much less to replace one by the other. Sec-
ondly, there is nothing mathematically precise about
“statistical significance.” Such significance depends
upon a test level chosen, greatly arbitrarily, by the
statistical practitioner.

Despite my objections to the use of the term “im-
portance,” I do feel the concept in Section 5 is indeed

- of interest. It makes an attempt to determine the

degree to which a given data set in a specific estima-
tion context is able to manifest itself in the estimation
procedure. That is, it makes an attempt to measure
the degree of signal available in the data to estimate
a particular parameter. A closely related concept,
placed on a more solid statistical footing, is to be
found in Belsley (1982).

COLLINEARITY MEASURES

Let us now turn to collinearity measures and
centering.

. Measures of Collinearity

I quite agree with some of the objections raised by
Stewart against the condition number taken by itself.
Indeed it was for this reason in Belsley, Kuh, and
Welsch (1980) that I moved to a more complete set of
diagnostics growing out of the condition number,
namely the full set of condition indexes and the
variance-decomposition proportions (VDPs). It is the
diagnostic value of these, not the condition number,
that must be compared to the collinearity indices
(VIFs) advocated by Stewart, and I am disappointed
that no such comparison is made. Thus, in Section 3
it is indicated that condition numbers are too crude
for statistical applications and that a set of numbers
is needed “that can probe the effects of collinearities
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more delicately.” But, of course, the full set of condi-
tion indexes given in Belsley, Kuh, and Welsch (1980)
along with VDPs do exactly that, and Stewart’s effort
here by no means shows that the VIFs or his
collinearity indices as a practical matter are superior.

I do, by the way, have some regard for VIFs
(or tolerances, as Simon and Lesage (1986) call their
inverses). They involve less computation than do the
diagnostics of Belsley, Kuh, and Welsch (1980) and
are made more easily available in statistical and econ-
ometric packages, and so have some practical advan-
tage. But they fall short of the Belsley, Kuh, and
Welsch diagnostics in several important respects, and
so I must consider them second best. Specifically, the
Belsley, Kuh, and Welsch diagnostics give information
that the VIFs cannot. The VIFs are incapable, by
themselves, of probing into the delicacy of how many
dimensions of X are deficient, i.e., they cannot tell for
a particular parameterization how many near depend-
encies exist or what variates are involved in each. The
Belsley, Kuh, and Welsch diagnostics, however, can,
and this information is vitally useful in providing
proper corrective action (Belsley, 1982, 1984b).

Consider, then, a model with four variates x;,
i=1, .., 4. Suppose in case 1 that all four variates
are highly jointly collinear, so that any one regressed
on the others would produce an R? near 1, or a very
large VIF (or collinearity index) indeed. Suppose in
case 2 that x; and x, were highly collinear and x3 and
x4 were also, but the two pairs were not collinear with
each other. Again all VIFs would be astronomical, and
there would be no way of distinguishing these two
cases using VIFs or Stewart’s collinearity indices. By
contrast, the condition indexes of Belsley, Kuh, and
Welsch and the VDPs would clearly distinguish these
two cases and correctly indicate the type of corrective
action that was needed in each. In case 1, a single
piece of prior information on any one of the four
variates has the chance of removing the problems of
collinearity for all four variates, whereas in case 2 it
will require prior information on two variates, on
either of x; or x, and on either of x; or x4. Using VIFs
alone, one could not determine this, whereas the di-
aghostics of Belsley, Kuh, and Welsch would point
directly to the solution.

The inability of VIFs or collinearity indices to de-
termine the number of near dependencies in X and to
help point out where corrective action is best placed
is a serious weakness that is not mentioned in the
Stewart paper. Nor is the ability of the diagnostics of
Belsley, Kuh, and Welsch to help in this task. This
issue, of course, is related to the modeling considera-
tions examined above. If one believes that data weak-
nesses, in and of themselves, are indicative of model
weaknesses (an indefensible position), then corrective
action takes the form of model changes until one gets

a model that fits the data (regardless of how silly it is
otherwise—see the examples in Hendry (1980) or
Belsley (1986¢) if you wish to see how comical life can
get here). If, however, data weaknesses are merely
that, affecting estimation but not model specification,
then the issue centers on how to correct for them, and
the introduction of prior information from the inves-
tigator’s understanding of the phenomenon being
modeled becomes all important. VIFs leave a good
deal to be desired here.

Stewart also quite correctly criticizes the condition
number on the grounds that it is an upper bound that
can be unnecessarily pessimistic. He does not, how-
ever, show that his collinearity indices provide any
tighter bound in practice. To be sure, the VIFs are
bounded from above by inf(X), but that inequality
also has an equal sign. Thus I do not feel the impres-
sion given in the paper that the collinearity indices
will provide a tighter bound in practice is justified.
While this could be true, it must be more than stated.
I have not done a systematic study of this phenomenon
in my own work, but it certainly has not been my
experience that it is true to any noticeable degree. In
fact I can say that I have never learned anything about
a data set from VIFs that I did not learn as well or
better from the diagnostics of Belsley, Kuh, and
Welsch (which do not figure in the Stewart paper at
all), whereas the reverse has indeed been true.

Finally, Stewart criticizes condition numbers on the
grounds that it is an open question whether the scaling
should be done relative to X or to E. This too is a
legitimate issue, but not one that is automatically
debilitating to the use of condition numbers (or the
set of condition indexes and VDPs). In Belsley, Kuh,
and Welsch (1980) it is assumed (as is so marvelously
typical of econometricians) that the data are measured
without error. Here, then, the E’s do not indicate
measurement errors, but merely perturbations in the
X’s. The concern is not to determine the potential
effects of measurement error on the OLS estimates,
but to see the sensitivity of the estimates to new data
that are also measured without error but which are
within some relative shift from the first data set, each
column of X being treated equally. This is indeed a
special case, and it need not always be the most
interesting one, but under these circumstances equil-
ibration with respect to the columns of X, not E, is
what is called for. This view of the problem is, to my
mind, that which pairs up with what econometricians
are often interested in, and is what motivated the
development in Belsley, Kuh, and Welsch. There are,
then, cases where this criticism of condition numbers
can be answered.

Clearly, however, if different columns of X are to
be treated differently, the convention of scaling X
has its shortcomings. We recognize this problem and
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demonstrate one way of dealing with it in Belsley
and Oldford (1986). The perturbations used in the
example given there are variate-dependent and cor-
respond to equalizing the columns of the E matrix.

Centering

For those familiar with Belsley (1984a, 1986a), it
will come as no surprise to learn that I completely
disagree with Stewart’s stance on centering. To begin
with, note that he never demonstrates the efficacy of
centering and, in the final analysis, resorts strictly to
a psychological argument in its favor—not a numerical
argument, not a statistical argument, but a psycholog-
ical one. Thus, in Section 5:

Centering amounts to removing x;, which is a col-
umn of ones, from the other variables. If x; were
anything but a column of ones, we would feel that
we had defined a new set of variables—combina-
tions of x, with the remaining variable—and the
importance of the new variable would be open to
reassessment. It is only the simplicity of the center-
ing operation that makes us take exception to the
lack of invariance in (5.1). [Italics mine]

Note the italicized words. These are strictly psycho-
logical in value and in no way demonstrate the rele-
vance or necessity of centering. Not only that, the
statement isn’t so. Centering does not “remove x;,” it
only removes a very special multiple of x;, namely
mx,, where m is the mean of the elements of the vector
being projected (orthogonally) on x,. But there are
numerous other ways one could “remove x;.” One
could use any other “centercept” (to use Tukey’s ter-
minology), replacing m with such equally reasonable
measures as the median or the geometric mean or even
the max or the min. In each case, x; is “being re-
moved,” but the effects on any conditioning diagnos-
tics will be very different. Furthermore, all of these
“removals” can be mortally criticized on the ground
that they are data-dependent. That is, the adjustment
is made on the basis of the specific data set at hand,
despite the fact that the meaning of the variate in the
model is model-dependent and any meaningful adjust-
ment must therefore be made on a priori grounds.

The issue of centering and conditioning cannot
properly be dealt with without an understanding of
this distinction between data- and model-dependent
centerings. Since modeling is an a priori, non-data,
phenomenon, any adjustments in a given data set for
interpretation within the model must be made on the
basis of model considerations, not data considerations.
That is, data-dependent adjustments are almost al-
ways inappropriate for a conditioning analysis. This
point is made in greater detail in Belsley (1984a,
1986a) and Belsley and Oldford (1986). There, how-

ever, it is shown that model-dependent “centerings”
given a priori can indeed be appropriate. I put center-
ings in quotes because the adjustments need not (and
usually will not) be mean-centerings, and the adjust-
ments need not always be within the range of the data.
This latter point is important because, whereas cen-
terings that remove a constant factor within the range
of the data will tend to reduce the condition number,
constant adjustments outside the range of the data
(which are quite possible on a priori, theoretical
grounds) will tend to increase the condition number.
That is, “removal of x,” need not reduce the condition
number.

Nor do theoretical considerations always suggest
removal of a constant. One of the examples I give in
the previously cited papers deals with an adjustment
of the Dow-Jones index. The psychological base for
this index could change over time. Several years back,
a level of 800 had great importance, first for getting
over it, then for falling below it. Later 1200 became
the relevant base, and now it is 2500. An adjustment
of such a time series for a conditioning analysis could
well involve removals of different levels for different
elements of the time-series vector. The blind adjust-
ment of the given data series by its own mean is
merely mechanical, having, in general, nothing to do
with the real meaning of the data or its relation to the
model. Using such adjusted data for assessing condi-
tioning can do nothing but produce mechanical and
arbitrary results.

This point is seen perhaps more strongly by noting
the following: The same data series could figure in two
separate models. The conditioning of the data must
be assessed relative to the role those data play in the
specific model, and that role is only assessable a priori.
If, then, one always mean-centers the data, one is
assuming that the relevant role of the data can
mechanically be determined outside any context and
is always the same. This clearly cannot be. For any
conditioning analysis, the data must be put in a form

* that has meaning for the model at hand. For any data

series, this meaning will change from context to con-
text. No uniform and mechanical adjustment which
affects the conditioning of the data (such as shift of
origin) can therefore be justified.

The bottom line, however, is that mean-centering
simply and plainly produces collinearity diagnostics
(either those of Belsley, Kuh, and Welsch or Stewart’s
collinearity indices) that can overlook important di-
agnostic information. This point is irrefutably docu-
mented by the example given in Belsley (1984a, 1986a)
and the study of Simon and Lesage (1986) and is not
and cannot be answered by Stewart’s paper. If I ran
only Stewart’s diagnostics (or mine on centered data),
I would miss vital information about the weakness of
these data for estimating all parameters of this model,
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not just the intercept, and for providing a priori cor-
rective information. This point cannot be overempha-
sized, because many feel the intercept often to be a
nuisance parameter and ignoring it a costless blessing
(notice I say ignoring it, for centering does not get rid
of it (Belsley, 1986a)). Thus both Stewart (last para-
graph, Section 5) and Gunst (1983) claim that one
should examine the conditioning of the uncentered
data only if the estimate of the intercept is of interest.
But this is simply wrong. Collinearity with the inter-
cept can quite generally corrupt the estimates of all
parameters in the model whether or not the intercept
is itself of interest and whether or not the data have
been centered, a result readily seen theoretically and
demonstrated practically in Simon and Lesage (1986).
Hence, diagnostics that ignore the presence of the
intercept, such as ones based on centered data, are
insidiously misleading about data problems for esti-
mating all parameters.

In short, whereas some a priori justifiable origin
shift (perhaps not constant) may indeed be appropri-
ate to produce data amenable to a conditioning anal-
ysis, mechanical mean-centering is not in general of
this class. Centering is to be avoided. I do not feel
this; I know it. I have shown centered data generally
to lack the information needed properly to assess their
usefulness in estimating a linear model by least
squares. There is nothing psychological in this view.

Short Data

A related issue to centering is that of short data.
Both Stewart’s and my collinearity diagnostics miss
the boat here. But both his notion of “importance”
(whose name I hope will be changed) and my notion
of low signal-to-noise deal with this related phenom-
enon. Space prohibits examining this issue at length
here; one can find it in Belsley (1982). Briefly, how-
ever, if one mean-centers a data series with a strong
constant component, such as my data reproduced in
Stewart’s Table 1, the resulting series become short
data (or lack “presence”). The effect of this on the
standard error of the estimate of its regression coef-
ficient is equally as devastating as if the centered
variate were tightly involved in a collinear relation,
and indeed the problem is of an integrally related
character. Leamer (1978) even goes so far as to refer
to this as collinearity among a single variate. This is
because data that are collinear relative to one para-
meterization can become noncollinear, but necessarily
“short,” relative to another. That is, it is always pos-
sible to transform an ill conditioned data matrix into
a well conditioned one through a nonsingular linear
transformation. But such practices cannot buy the
statistical practitioner anything, for they merely con-
vert the source of a high standard error from colli-

nearity to short data, but the standard errors remain
high. This is, of course, as it should be; we would
otherwise be buying something for nothing.

CONCLUSIONS

It might be argued that the thrust of the above
criticisms rests on the ability of the investigator to
provide a good and meaningful model but that what
is needed in practice is a set of conditioning diagnos-
tics or collinearity measures that can be applied to a
data set without a context (model in my sense) in
mind. To which, I can only answer that the latter does
not exist; it’s a will-o’-the-wisp, and one is kidding
oneself to hope otherwise. Oh, to be sure, one can
always devise algorithms that provide the investigator
with diagnostic numbers, but will they mean any-
thing? In an applied statistical analysis, meaningful
conditioning (collinearity) diagnostics can only be ob-
tained relative to a specific goal and a specific context.
It is shown in Belsley and Oldford (1986) that chang-
ing the goal or the context changes the diagnostic
numbers, either Stewart’s or mine. Diagnostic num-
bers calculated without a goal and context, then, are
just numbers, wholly without meaning. Thus a regres-
sion package that provides the information indicated
in the last section of Stewart’s paper without first
making sure that the data are relevant to a particular
goal and context is merely providing the user with the
false security that somehow comes with firm numbers
whether or not they mean anything. Furthermore,
providing these numbers on the basis of centered data
virtually guarantees their being potentially misleading
regardless of goal, for such data almost always lack
context.

Thus, I do not object to VIFs (or Stewart’s related
collinearity indices), but they should be based on
uncentered R? values and applied to data known to be
interpretable in the context of a relevant model. They
otherwise become ill conditioned diagnostics. Further-
more, if additional information is needed regarding
multiple dependencies and the best use of prior infor-
mation, something more than such VIF-based diag-
nostics will be needed. In this case, try mine, you’ll
like ’em.
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Comment

Ronald A. Thisted

The statistics profession is fortunate indeed to have
such a friend as Professor Stewart. He has repeatedly
taken the time and energy to inform statisticians
about the relevance of numerical analysis to their day-
to-day work, and he has also taken the trouble to
understand and to explicate some of our problems
from our own point of view. This paper is an example
of what numerical analysis can have to say about
statistical problems, and it shows that there is a lot
that we statisticians can profit from. In particular,
Professor Stewart greatly improves our understanding
both of collinearity and of one indicator of collinear-
ity—the variance inflation factor.

As is true of most important papers, this one raises
as many questions as it answers. I would like to
comment on three issues that Professor Stewart only
touched on. First, although Stewart would relegate the
condition number x = || X || - || X' || to the dustbin for
statistical purposes, there is an important statistical
interpretation which rescues it. Second, Stewart’s pro-
cedures for using collinearity diagnostics depend upon
a measure :; of the importance of the jth regressor
variable. The notion of relative importance of a re-
gressor is an elusive one, however, particularly when
collinearity is present. Finally, I discuss the question
of whether statisticians should want collinearity di-
agnostics at all, and if so, what we should want from
them. Where possible, I adopt Stewart’s notation.
References to equations in his paper are preceded by
the letter “S.”
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1. THE CONDITION NUMBER

Stewart gives a clear description of the numerical
relevance of the condition number . In numerical
analysis, its primary significance is the inequality
(S-3.4), the righthand side of which gives a good
indication of the effect of numerical errors in the
regressors on the regression coefficients themselves.
Because the statistical errors represented by e in the
regression model (S-2.1) are generally much larger in
magnitude than the numerical errors resulting from
rounding and truncation, the bound from (S-3.4) is
often so pessimistic as to be useless. In addition, the
condition number is not invariant with respect to
rescaling columns of X, so that interpretation of « is
dependent on the way in which X has been scaled.
Although Stewart discusses three alternatives for scal-
ing X—equal column scaling of X, scaling X to pro-
duce equal column scaling of E, and implicitly, scaling
X so that the components of 8 are roughly equal in
size—he finds no single choice compelling.

" The condition number of X has an important sta-
tistical interpretation in the regression problem which
is generally overlooked. Consider an arbitrary linear
combination of the estimated regression coefficients,
say & = v’fB. The variance of & is given by

Var(a) = ¢’ (X’ X)W

=o' X"|2

From this computation it is apparent that the linear
combination with smallest variance (subject to the
constraint, say, that |v|| = 1) has variance
o?[inf(X")]2 The coefficients v; which achieve this

minimum value explicitly give the linear combination
a; = v{f about which the regression data are most

(1.1)



