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true distributions. Therefore, the values of AIC can
always be understood as an approximation to the
relative distance from the model to the reality. For
ARMA models, the distance is the error of the esti-
mated predictor, which is equivalent to the distance
my(T') in the frequency domain, as is mentioned in
the paper. Roughly speaking, the use of the minimum
AIC procedure is recommended if such distance suits
for the purpose of the analysis. Otherwise, for exam-
ple, if the purpose is to know the correct order or to
do classification rather than to get a good approxi-
mation to the reality in terms of prediction error, a
criterion like BIC is recommended provided that the
true order is finite and falls into the range of selection.
In any case, a plot of both criteria will be more helpful
in understanding the situation. The analyst is not
restricted to only selecting the minimizer of either
criterion.

Comment

V. Solo

Asusual Ted Hannan has provided a comprehensive
discussion of a number of important and difficult
topics in the statistical theory of linear systems. Some
readers will find the presentation fast paced so I would
like to expand on some topics and make various other
comments.

1. HANKEL NORMS

If you look at the state of time series in the 1950s,
particularly Whittle’s work and the book by Quen-
nouille (1957), it is quite sobering to see how well
developed the field was. One big problem though was
how to tackle the lag structure of multivariate time
series. Ted was the first in the statistical and econo-
metric literature to see how to handle the problem
through the theory of matrices of polynomials (Han-
nan, 1969). At about the same time, but independ-
ently; control engineers were on to the same idea.

The next step was from Akaike (1976) who gave
Kronecker indices (a control engineering develop-
ment) a statistical interpretation. An exposé of the
ideas is available in Solo (1982/1986).

To see the need for the Hankel norm theory that
Ted relates, it is useful to look at the univariate
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version of Akaike’s ideas. Very briefly it goes like this.
The generalized Yule-Walker equations for estimating
autoregressive parameters in ARMA models yields a
set of equations of the form

H,a, = b,

where a,, are the AR parameters; H,, is an m X m
Hankel matrix; and b,, is a vector of autocovariances.
The order of the ARMA model is the rank of H,,. By
computing the singular values of H,, for increasing m
and using an AIC criterion based on canonical corre-
lation ideas, one can choose the order.

There are two problems. First, the procedure has
very poor statistical efficiency. Second, if a, (r is the
order) is found from the above equations, there is no
guarantee it gives a stable polynomial. There are two
ways out of this problem, one is to use the Hankel
norm approach and the other is to use a properly
constituted maximum likelihood method.

If data

( L IERE yn) =y
are available, the likelihood may be specified as
loglik < In | 2| — YayT 371y,

where Y is the Toeplitz matrix of autocovariances
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and

9= (A --- ABo --- Bp)7,
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This method of calculating the likelihood means it
is only evaluated for stable A polynomials, and hence,
if it is maximized over a compact set, it has a maxi-
mum whose A polynomial is stable.

There is a weakness though; computation (1) must
be done numerically. It can be done algebraically but
the description of the necessary procedures is a little
long and out of place here.

2. MOVING AVERAGES

Ted comments in the second paragraph that moving
averages lack realism. Many time series workers have
made the same comment about ARMA models. I do
not agree with this for the following simple reason. A
sinusoid plus white noise can be treated as an ARMA
(2.2) model with ARMA factors equal, both having
roots on the unit circle. Such data can be fitted in this
way—my time series students have been doing this
for years. I have observed that the AR parameters
seem to be estimated much better than the MA ones.
It can be shown they have standard error of order
n~32, whereas the MA ones have standard error of
order n~'2, This shows that deterministic models can
be fitted within the stochastic framework. A priori
one does not usually know which case one is dealing
with, so this comprehensiveness of the stochastic
framework is invaluable.

3. ALGORITHMS

It is important to distinguish between two types of
on-line or adaptive parameter estimators. Those with-
out a forgetting factor, namely long memory schemes,
and those with a forgetting factor, namely short mem-

~ory schemes. Only a short memory algorithm can hope
to track varying parameters. Short memory algo-
rithms have been in wide use in electrical engineering
for the past twenty years (see Widrow and Stearns,
1985). The book by Ljung and Séderstrom (1983) deals
almost exclusively with long memory algorithms.

4. ORDER ESTIMATION

It is true that Akaike was early to deal with the
issue of order estimation. However, Mallows C, crite-
ria was also developed independéntly in the 1960s. It
was not, of course, applied initially to time series.

It seems to me that the specification of approxi-
mation error is an issue separate from sampling con-
siderations. Thus in fitting a stationary model for
prediction one might insist that the approximated
prediction variance be within a fraction 6 of the lower
limit. This specifies an order d as

min (62 = (1 + §)o2)?
d

where ¢2; is the prediction error of the approximation
and o2 is the Kolmogorov prediction variance. Now
one can consider what sort of order criteria are con-
sistent with the above value of d. More ingenuity or
knowledge of a particular problem should allow one to
define a deterministic sequence d(n) if one believes
the order should increase with sample size.

I do not understand Ted’s italicized comment, a
little after equation (6.2), that Akaike’s canonical
correlation method is hard to extend to the case of
observed inputs. I have done this myself for the single
input, single output case (Solo, 1983). One investigates
by singular value decomposition the rank of matrices
whose block elements are of the form

E (yk_s) (Uk-2541 Un-25).
Up—s

The multiple input, multiple output case is only more
difficult because of the care needed with Kronecker
indices. It seems to me that the approximate method
described by Ted after the italicized comment could
be made exact by embedding it in an EM algorithm
calculation. There is not room here to go into details,
but basically one treats the residuals as unobserved
data in the EM calculation.
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