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the technique of testing hypotheses is vastly overrated
in statistics as a method. It isn’t so much that the
classical methods give the wrong answers, as Berger
and Delampady correctly show, as it is that I find the
problem ill-suited to help me do statistics better. Thus,
I find myself in agreement with Berger and Delampady
that “when testing precise hypotheses, formal use of
P-values should be abandoned.” On the other hand, I

Rejoinder
Jamgs O. Berger and Mohan Delampady

We are grateful to the discussants for their com-
ments. All raise interesting issues that are highly
deserving of discussion. As usual, we will focus on
disagreements in our rejoinder.

REPLY TO COX

Professor Cox questions our argument that P-values
do not have a valid frequentist interpretation, stating
that the “hypothetical long-run frequency interpreta-
tion of a significance level seems totally clear and
unambiguous.” Over many years of trying to under-
stand what makes a valid frequentist interpretation,
we have come to agree with Neyman’s view that
one must have a stated accuracy criterion, a stated
procedure and determine the expected accuracy of
the procedure in repeated use; thus, an o = .05 level
test will indeed reject true nulls only 5% of the time
in repeated use. A P-value has no such real frequentist
interpretation. It has various pseudofrequentist inter-
pretations (cf. Cox and Hinkley, 1974), but these
are somewhat contorted so that their impact, or per-
suasiveness, is much less than that of the real fre-
quentist justification. Also, a thorough study of our
Example 6 is, we feel, very important in understanding
the role of frequentism here.

The reaction of Cox to our claim, that “. . . inclusion
* of all data ‘more extreme’ than x, is a curious step and
one we have seen no remotely convincing justification
for,” is to say that he finds the reasoning clear and
precise and at least sometimes relevant. He, of course,
is well aware of the many examples in statistics (some
due to Cox himself) where inclusion of “other data”
in the calculation leads to nonsense. We submit that
this is one of those situations, and indeed can marshall
(following Jeffreys) purely intuitive arguments against
including more extreme data: is it really fair to H, to
hurl against it not just the (mild) evidence xo, but also
all the much stronger “extreme” values, when these
extreme values did not occur?
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do not expect to test a precise hypothesis as a serious
statistical calculation.
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We, for the most part, agree with the remaining
comments of Cox. Our statement that “formal use of
P-values should be abandoned” was directed to the
formal use of P-values in providing quantitative meas-
ures of doubt of Hy. At the beginning of Section 5 we
agreed that the informal use of P-values “as a general
warning that something is wrong (or not) ... ” (to use
Cox’s phrase) is perhaps reasonable; this informal use
in data analysis may well justify the teaching and
consideration of P-values.

In regard to “sensible uses of P-values,” it is worth
considering an earlier comment of Cox to the effect
that for “dividing hypotheses ... the apparent dis-
agreements between different approaches are nor-
mally minor.” We used to think this, but the discus-
sion of Carl Morris to Berger and Sellke (1987) shows
that such may well not be so.

Finally, our response to Cox’s Rejoinder 8 or 4’ is
what would be expected of Bayesians: We feel that
using the Bayesian paradigm will give misleading
answers less often than use of alternative paradigms.

REPLY TO EATON

We agree with just about everything in Professor
Eaton’s discussion, leaving us little to do but applaud
the further insights provided. The objectivity issue is
indeed a fundamental concern. Eaton argues that ob-
jectivity is a vague, ill-defined concept, and may not
exist. We agree; indeed, one of the major purposes of
the paper was to show that Opinion 2 in the introduc-
tion is wrong. Testing a precise hypothesis is a situa-
tion in which there is clearly no objective Bayesian
analysis and, by implication, no sensible objective
analysis whatsover. In other problems, arguments
about whether noninformative priors are, or are not,
objective tend to be inconclusive, but here there simply
is no prior that can even be called noninformative.

Although the precise hypothesis testing scenario
was used to demonstrate that objectivity is at least
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sometimes unobtainable, there are compelling practi-
cal reasons to have, on the shelf (as Zellner says),
procedures that have the appearance of objectivity.
History has shown us that very many users of statis-
tics will only use off-the-shelf procedures that do not
require overt subjective inputs, and we feel that it is
important to provide a Bayesian version of this shelf.
The use of the phrase “conventional procedures,”
rather than “objective procedures,” to describe the
shelf is probably less objectionable and misleading. Of
course, we are not denying the force of Eaton’s argu-
ment; there is no good substitute for thinking about
the problem and the subjective inputs that are re-
quired. But among the substitutes for thinking, we
would argue that use of the conventional Bayesian
tests is vastly superior to use of P-values.

REPLY YO ZELLNER

We thank Professor Zellner for the kind words,
numerous additional references, and discussion of rel-
evant work. We had purposely avoided extensive dis-
cussion of the operational side of Bayesian testing, so
as to keep the scope of our paper reasonable. From
Zellner’s comments it is clear that this was an error;
many additional fundamental insights are available in
this literature. We organize our responses here ac-
cording to the numbering scheme used by Zellner.

2. General Points

Point 1. Zellner defends exact point nulls (in
interesting contrast to Kadane) and provides an
example from physics where 6, is a specific physical
constant. We certainly did not mean to preclude exact
point nulls; our purpose was mainly to show that
exactness is not a necessary requirement for our
results.

It is, however, of interest to briefly discuss the
realism of exact nulls, Hy: § = 6,. There is little
question that such nulls are reasonable conceptually,

but are they reasonable in practice? The problem is

that, in real experiments, there is virtually always
some type of bias. Thus, we don’t observe X; ~
N, %), say, but instead observe X; ~ N( + ¢, 02),
where ¢ is perhaps very small, but unknown. All we
can ever actually test, using such data, are hypotheses
like Hy: mean of X; = 6, or, equivalently, Hy: § =
0o — ¢, l.e., that 0 is close to 6,. Whether or not
experiments exist with exactly zero bias, allowing tests
of exact point nulls, is not really worth discussing,
because our results indicate that one can assume that
the null is exact if the bias is small enough.
Point 2. This is an excellent point. Considering H;:
6 =0vs. Hy: 6 <0 vs. Hs: § > 0 is often very desirable,
and synthesizes many of the ideas. It is a strength of
the Bayesian approach that it can as easily deal with

multiple hypotheses like these, as with two hy-
potheses. :

Point 3. We agree with this point, except for the
implication that on-the-shelf testing procedures cor-
respond to little prior information. They correspond
to the specific prior belief (when g is Cauchy(8,, ¢2))
that, under H,, 6 has half interquartile range ¢. Our
point here was that there is no sensible prior that
truly corresponds to “little previous information.”
Again, however, we agree to the need for off-the-shelf
procedures, and support the use of Jeffreys’s, Zellner’s
and others’ “conventional” priors. ‘

Points 4 and 5. We agree.

3. Technical Points

Point 1. We do not fully understand this comment.
We attempted to indicate when a small interval null
could be approximated by an exact point null, because
the prior elicitation process can be greatly simplified
in this case. Determining ¢ and the shape of the prior
spike in the null interval is very hard, and character-
izing situations where difficult prior assessments can
be avoided (because of robustness) is surely not a
waste of time.

Point 2. Our own preference is indeed for the Cau-
chy prior, rather than the normal prior, for robustness
reasons. The difference between the normal and Cau-
chy priors here is really not all that great, however,
especially if one properly scales the priors. The key
feature in scaling is to equate the height of the prior
densities as 8 — 0, this height being the dominant
term in any expansion of the Bayes factor. Matching
heights would result, as the normal analogue of the
Cauchy (6, o2 density, in a N(,, 7o2/2) density
(which also more nearly matches the quartiles of the
Cauchy density). The Bayes factor for this normal
analogue is

1\ 1, 2
BF—<1+§n1r> exp{—gt 1+n_1r ,

which will give very similar answers to Jeffreys (e.g.,
for n = 100 and ¢t = 1.96, BF = 1.86 compared to
Jeffreys’s BF = 1.91), except possibly for small n and
large t (where there is little question as to what the
conclusion should be).

Point 3. We did not attempt to compare the various
conventional priors that have been put forth, although
this comment makes us wish that we had! For our
reaction to “little information,” see our response to
Section II, Point 3.

Point 4. We entirely agree that the class (10) is
not suitable for actual use in arriving at an answer,
but that was not its purpose. Its purpose was to
unequivocably show the inappropriateness of the
P-value, and to indicate a reasonable lower bound on
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the Bayes factor. As we discussed in Section 5, how-
ever, this lower bound does not generally provide a
specific enough answer for a Bayesian; one must con-
sider specific prior information for the problem at
hand, as Zellner suggests.

4. Concluding Remarks

We agree with all comments in this section. In our
defense, we did not set out to provide a careful review
or a careful presentation of how a Bayesian should
handle hypothesis testing. The focus of our paper was
on a discussion of certain not-well-understood or
controversial issues. A general review of Bayesian
hypothesis testing would have provided much more
background on Jeffreys’s (and Zellner’s) work (and
would have also been another hundred pages). For
those who feel ready to try to do it the Bayesian way,
our paper is not a substitute for reading the Bayesian
literature.

REPLY TO BAYARRI

Professor Bayarri raises several extremely interest-
ing issues. The first is that the assumptions in Sec-
tion 2.2, under which we established that an interval
null can be approximated by a point null, cannot be
satisfied by many common priors, such as conjugate
priors. This is essentially correct. Indeed, about the
only easy way to construct an overall prior «(6), which
satisfies the conditions, is to choose it to be a mixture
of a concentrated distribution (a spike) in the interval,
and a more diffuse distribution outside the interval.
For precise hypothesis testing, however, we would
argue that such priors are inherent to the problem,
and that priors such as conjugate priors are unnatural.
Thus, for Hy: vitamin C has no effect on the common
cold, prior elicitation.will typically involve two distinct
thought processes. The first recognizes that there will
be a concentration of mass near “no effect” (the spike),
and the second recognizes that vitamin C could have
an effect, but if so the effect could be quite substantial
(i.e., w1 (8) will not itself be concentrated near zero).
This kind of prior information virtually requires a
mixture distribution for effective modeling. In essence,
we are defining precise hypothesis testing as that class
of testing situations in which the prior is of the above
type.

It is actually technically possible to apply Theo-
rem 1 (the approximation theorem) to more typical
prior distributions, such as conjugate priors, as long
as the distributions are fairly djffuse; it will still be
the case that B is approximately equal to B. For such
distributions, the prior probability of H, will tend to
be small (see also our “Reply to Casella and Berger”),
but approximation by a point null remains possible.
Thus, the only situations really excluded from consid-

eration are those in which the prior mass assigned to
H, is mostly concentrated very near H,. Such situa-
tions are rare.

Bayarri next turns to the class of important testing
problems (also discussed by Casella and Berger) in
which 6, has no special prior believability, but is
important for reasons of simplification or utility. We
agree that the important feature of such problems is
usually that of determining whether or not @ is close
enough to 6, to allow use of the simplifying 6y, and
that the type of decision-theoretic technique discussed
by Bayarri might well be very useful in this regard.
Bayes factors or posterior probabilities of hypotheses
will often be of little use for this type of problem
(although note that if 6,, in addition, has approxi-
mate prior believability then, as discussed in our Re-
joinder 7, the results of the paper do become relevant
to a decision-theoretic analysis).

REPLY TO CASELLA AND BERGER

General Remarks

The main thesis of Casella and Berger’s interest-
ingly provocative discussion strikes us as a prime
example of what I. J. Good calls the non-Bayesian
proclivity to SUTC (sweep-under-the-carpet) subjec-
tive input. Let us recast what Casella and Berger seem
to be saying in terms of a hypothetical Bayesian and
non-Bayesian report from an experiment.

Non-Bayesian. 1 have determined that the P-value
is 0.05, and so there is significant evidence that H, is
wrong.

Bayesian. My prior probability of H, is only 0.1,
and the Bayes factor against H, is Y. Hence the
posterior probability of H, is about 0.05, which I
feel is significant evidence against H,. (Note, from
Table 1 in the paper, that if the P-value is 0.05 and
n is 10 or less, then the Bayes factor will be
about %.)

The Bayesian feels confident that Hj is wrong, but
clearly states that, of the total evidence against Hj,
only a factor of 2 is due to the data, while a factor of
Y0 (clearly the most influential component of the
evidence) is due to prior opinion. Casella and Berger,
on the other hand, seem to be arguing that it is okay
to report a P-value of 0.05 in situations such as this,
and to interpret it as significant evidence against H,,
because even though the Bayes factor will be just %,
the prior probability of Hj is likely to be small (0.1 or
less). This strikes us as condoning the SUTC of the
prior probability of Hy. The P-value is reported and
stated to provide significant evidence against H,, with
no mention of the fact that this is sensible only
because the prior probability of H, is very small. Can
this really be superior to separately reporting the prior
probability of H, and the Bayes factor?
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As a specific example, let us add two rows to
Table 1 of Casella and Berger: here =, is the prior
probability of Hy, and B is the Bayes factor against
H,. '

TABLE 1 (modified)

x 1645 196 2576 2807 329 3.89
P-value 10 .05 .01 005 .00l .0001
e=¢* 257 221 173 .160  .138 .117
P(|0] <elx) .079 043 011 006  .002 .0003
o 102 088 069 .064 055 .047
B 1/1.32 1/2.15 1/6.66 1/11.33 1/29 1/164

We would argue that reporting only the P-value or
P(|0] = ¢]x) is grossly inadequate, hiding the fact
that much of the evidence against H, is due to m
being so small. It may be perfectly reasonable to
have m, small, but others certainly have a right to
know that this was an important component of the
conclusion.

Another problem with the argument of Casella and
Berger is that, even if it is true that the prior proba-
bility of H, is typically small, shouldn’t it matter
whether this prior probability is 0.1 or 0.2 or 0.05 or
0.01? The P-value will only typically correspond to
one of these, and it is a bit hard to single out a specific
prior probability as always appropriate.

In the same vein, the calculations made in Table 1,
Figure 1 and Table 2 are highly arbitrary. By choosing
various small interval sizes (we were not saying that
the ¢* we discussed gave, in any sense, a “typical small
interval”) and priors g(#) one could produce virtually
any posterior probabilities whatsoever. Surely Casella
and Berger do not mean to imply that it will almost
always happen, by chance, that the interval size and
g in a precise hypothésis test will be such that the
posterior probability and P-value are equal, especially
since these will also have to miraculously match up
with the sample size in the right way.

It is tempting to go on and on, but in some sense
the whole argument is irrelevant. We had focused on
the Bayes factor in the paper in the hope of avoiding
this issue. The fundamental equation

P(Holx)__ o _1_
P(H,|x) (1-m) B’

shows that the posterior odds are affected by the data
only through B, which in turn does not involve m,, the
prior probability of Hy. Focusing on what the data has
to say, through B, makes concerns as to which x, will
tend to be appropriate in practice rather irrelevant.
To emphasize the importance of this point, it is
helpful to imagine that we had written the paper
without ever mentioning m, or posterior probabilities,
and had considered only the Bayes factor. All the
arguments and conclusions we draw would remain

unchanged, yet the comments of Casella and Berger
would now be vacuous. Attention in these arguments
should always be focused on the Bayes factor.

Specific Remarks

(i) “Contrary to what Berger and Delampady would
have us believe, a great many practitioners should not
be testing point nulls, but should be setting up confi-
dence intervals,” state Casella and Berger. This is a
misrepresentation of what we (Berger and Delam-
pady) would have you believe. A confidence interval
for 6, say, will virtually always be necessary to provide
knowledge of where 6 is, should H, be false, and also
to judge whether 6 is far enough from 6, to make a
practical difference. Our only point was that a confi-
dence set cannot necessarily be used to reject a believ-
able precise null hypothesis. Thus, in our Rejoinder 3,
we observed that a minimal report will often be both
the Bayes factor against H, and a confidence set for
(conditional on H, being false); we never implied that
the Bayes factor alone would be sufficient for all
statistical questions.

(ii) Inregards to the third type of precise hypothesis
introduced by Casella and Berger, we certainly meant
to include this in our type (1). We meant “conven-
ience” to include the type of considerations that they
raise, and not just misspecified hypotheses. But we
were vague and Casella and Berger are clear; thus,
let’s grant the fundamental importance of the type (3)
hypothesis and proceed. Point 1. This type of hypoth-
esis is distinct from type (2), which was the focus of
our article, so we could simply say “different situation”
and stop. Point 2. “as Berger and Delampady admit
in Section 5, P-values are reasonable measures of
evidence when there is no a priori concentration of
belief about H,” state Casella and Berger. We indeed
said it, and we now regret it. The Bayes factor against
6o does not, in any way, depend on the prior believa-
bility of Hy, and so, if one is trying to determine if 6,
is compatible with the data or not, the issue of prior
believability is irrelevant. We are not arguing that the

- Bayes factor necessarily answers the questions of in-

terest here; the real questions of interest are probably
best answered by approaches such as those discussed
in Bayarri’s comments. But a P-value is even less
likely to answer the questions of interest.

(iii) The claim that “the Bayesian can use the P-
value as an approximate posterior probability for large
n, regardless of the value of 7,” is not really true. The
calculation in Section 2.3, that P(H,| %,) — «, was
based on (a) assuming that ¢, is known (and nonzero);
(b) assuming that %, = e + 2,0/ vn (so that the
P-value remains fixed at «); and (c) letting n — . In
practice it is rare to be able to precisely pin down e,
and one cannot say, for any given %, and n, whether
P(H, | %,) & a, without knowing the prior.
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REPLY TO KADANE

Our attitudes concerning what is important are
often shaped by the problems we encounter in appli-
cation of statistics. Professor Kadane provides an
enjoyable account of his own experiences, and con-
cludes that we should forget about testing altogether.
In contrast, we recall seeing a videotape of Sir Harold
Jeffreys several years ago, in which he stated that his
most important statistical contribution was the devel-
opment of a Bayesian version of significance testing.
Apparently Kadane and Jeffreys have worked on very
different problems.

Two more specific responses are: (i) we demon-
strated that interval nulls of width ¢/ Vn or smaller

can effectively be treated as exact point nulls, and
such interval nulls may be somewhat more common
in Kadane’s experience; and (ii) as pointed out by
Casella and Berger, there are often particularly inter-
esting values, 6, that one might care to determine the
evidence (say, Bayes factor) against, even if the values
are not specifically believable hypotheses. Of course,
we have already admitted that the Bayarri type of
calculation will tend to be more relevant for such

problems.
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