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Comment

Arnoid Zeliner

1., INTRODUCTION

In this stimulating and important paper, Bayes
factors, posterior probabilities and P-values are con-
sidered in relation to the problem of using data to
evaluate precise or sharp null hypotheses, for example
6 =0 or @ = 1.0. This is a very basic problem encoun-
tered in all areas of science and thus the fact that the
authors, along with Jeffreys (1967) and others, con-
clude that widely used P-values are unsatisfactory is
noteworthy. This conclusion has important implica-
tions not only for textbook treatments of the theory
of testing, but also for applied scientific work.

The authors explain Jeffreys’ approach to testing
and show that P-values diverge markedly from pos-
terior probabilities associated with sharp null hy-
potheses. They also derive lower bounds for Bayes
factors and posterior probabilities and provide some
advice in answer to the question, “What should be
done?” Although some of the points that the authors
raise have appeared in the literature, it is doubtful
that they have been expressed as clearly and forcefully
as in the present paper. However, as might be expected
in such a controversial area, where are some points
that deserve further discussion. See, e.g., Jeffreys
(1967, Chapters V to VII), Edwards, Lindman and
Savage (1963), Jaynes (1984) and Zellner (1971, 1980,
1984) for earlier considerations of testing issues and
computation of Bayes factors for a number of prob-
lems. After taking up some general points, I shall turn
to technical points and then provide some concluding
remarks.

2. GENERAL POINTS

Point 1. Hy: 0 = 0, versus Hy: |0 — 0p|< e, ¢ >0,
Given. For years I have stated that we should be able
to test either H; or H, or both. To say that H, is
* “realistic” or “true” is to make an unwarranted general
a priori statement about the “real world.” To be sci-
entific, one can compute a Bayes factor for H; versus
H,, as Jeffreys (1967, page 367) suggests. He also
states, “I think, however, that it is both impossible
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and undesirable [to replace H; with H,]” (page 367). I
won’t review Jeffreys’s arguments here since they are
readily available. It does seem relevant to remark that
in s = .5gt? and in E = mc?, the powers of ¢t and ¢ are
predicted by physical theory to be exactly equal to 2.
Also the coefficient of t* in the former relation is
exactly .5g¢ and of c? in the latter exactly m. Many
other examples of sharp or precise hypotheses can be
given and thus it is incorrect to exclude such hy-
potheses a priori or term them “unrealistic” and im-
portant to be able to test them well as Berger and
Delampady indicate.

Point 2. Laplace’s versus Jeffreys’ Approaches to
Testing. Jaynes (1980) raised this point, which is
equivalent to Rejoinder 3: Just Use Confidence Inter-
vals of Berger and Delampady. As pointed out in
Jeffreys (1967), Zellner (1971, 1980) and Berger and
Delampady, the background prior information is dif-
ferent when there is a suggested value 6, for . How-
ever, in Zellner and Siow (1979) and Zellner (1984) it
is shown that consideration of three hypotheses, H;: 6
=0, Hy: 8 > 0, and Hs: 6 < 0 with prior probabilities,
w1, w2 and ws, respectively, and truncated Jeffreys’
Cauchy priors under H, and H; leads to a Bayes factor
for H, versus Hj3 that can be exactly equal to the
Laplacian or diffuse prior credible region results. Also,
consideration of all three hypotheses together yields a
synthesis of the considerations in the present paper
and those in Cassella and Berger (1987).

Point 3. Berger and Delampady err in calling Jef-
freys’, my and some others’ Bayesian testing proce-
dures “mechanical” or “automatic” or “default” or
“conventional” or “objective.” Jeffreys (1967, page
252) explains that in testing there may be very little
previous information or a great deal. If there is a great
deal of prior information, Jeffreys (1967, page 252)
and others would use an appropriate prior distribution
to represent it. Although Jeffreys mainly analyzed the
situation of “little previous information” in his book,
this does not imply at all that he would use these
procedures when there is a great deal of previous
information. I have expressed similar views (Zellner,
1980, 1984). However, it is useful, as I believe that
Berger and Delampady recognize, to have testing re-
sults for the case of little previous information “on
the shelf” to be used when appropriate. Further, the
priors that Jeffreys used for the normal mean problem
and others can be given different location and scale
parameters without much difficulty as Jeffreys (1967),
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Berger and Delampady and others have recognized
and thus can represent a fairly broad range of previous
information.

Point 4. Do Classical and Likelihood or Bayesian
Answers Typically Agree? This is a difficult question
to answer because it’s difficult to know what is meant
by “classical answers.” For example, in his classic work
on hypothesis testing Lehmann (1959) states:

“Another consideration that frequently enters
into the specification of a significance level is the
attitude toward the hypothesis before the experi-
ment is performed. If one firmly believes the
hypothesis to be true, extremely convincing evi-
dence will be required before one is willing to give
up this belief, and the significance level will ac-
cordingly be set very low” (page 62).

If one follows Lehmann’s advice, he would not always
reject a null hypothesis, say 8 = 6y, when t = 1.96, but
would use a larger critical value for ¢ if he firmly
believes in the null hypothesis. Also, his probability
on the null would not be 7, = .5, but would probably
be higher. Thus, the analysis of Berger and Delampady
does not directly apply to a “Lehmann tester.” How-
ever, it is doubtful that most testers are “Lehmann
testers.”

Further, as noted in Zellner (1971, page 304), most
non-Bayesians would adjust a significance level from
say .05 to .03 and to lower values as the sample size
grows, perhaps in order to balance probabilities of
errors of the first and second kind. With such an
adjustment, the Jeffreys-Lindley paradox disappears,
as is perhaps now well-known. Still, it is difficult to
know how to adjust the significance level as the sample
size grows. Also, I have the impression from my own
experience, from Jeffreys’ report of what astronomers
do and from talking with others that many tend not
to reject a null hypothesis when ¢ = 1.96, but view the
matter as a situation in which more information is
needed. Finally, I don’t believe that Berger and Delam-
pady have pinpointed why many, at least in business
and economics use P-values. I believe that it is because
they find it very difficult to select an appropriate
significance level. Thus, many report P-values in their
papers and leave it to the reader to interpret them.

Point 5. No Alternative Hypothesis? This question
is discussed in Zellner (1980, 1984) where it is pointed
out that without an alternative hypothesis, it is diffi-
cult to select an appropriate test statistic. That is, as
Jeffreys (1967, page 385) points out, there is always
some function of the data that looks unusual given a
null hypothesis. Usually, selection of a test statistic
implies consideration of a specific type of departure
from the null. For example, if my null hypothesis is
that the dollar-yen exchange rate follows a Gaussian
random walk with a zero drift parameter, there are
obvious alternative hypotheses available. Thus, fre-

quently encountered null hypotheses such as “no
effect” or “all variation is random until shown other-
wise” are usually accompanied by almost obvious al-
ternative hypotheses as in the case of the dollar-yen
exchange rate example above. If one cannot think of
a relevant, important alternative to a null hypothesis,
perhaps he should not be considering hypotheses at
all. Finally, as Jeffreys (1967) asks, “Is it of the slight-
est use to reject a hypothesis until we have some idea
of what to put in its place?” (page 390).

3. TECHNICAL POINTS

Point 1. Instead of devoting a huge amount of
effort to approximating a sharp or precise null hy-
pothesis by an appropriate null hypothesis, which is a
misguided effort in my opinion, I recommend consid-
ering the following hypotheses and getting Bayes fac-
tors and posterior probabilities for them: H;: § = 6,,
H230<0—0o<8,H3: —8<0—00<0,H420—00>8
and H;: 0 — 6, < —¢, where ¢ > 0 is given. Also, Bayes
factors can be computed for H, versus various unions
of the remaining hypotheses.

Point 2. Jeffreys (1967, page 274) has analyzed the
normal mean problem with a known value for ¢ using
a Cauchy prior under the alternative hypothesis as
well as in the case in which ¢’s value is unknown. For
6 = 0 versus 8 # 0 with ¢ known, he obtains a Bayes
factor = van/2(1 + t%/n) exp{—t?/2}, which can be
compared with Berger and Delampady’s Bayes factor
= (1 + n)"2exp{—t*/2(1 + 1/n)}, used to compute
entries in Table 1 of Berger and Delampady. Although
the Bayes factors of Jeffreys and Berger and Delam-
pady are qualitatively similar in their behavior, they
do provide different values for Bayes factors. For
example, when t = 1.960 and n = 100, Jeffreys’s Bayes
factor = 1.91, whereas Berger and Delampady’s Bayes
factor = 1.50. Jeffreys’s reasons for choosing the par-
ticular Cauchy prior that he employed, and not, e.g.,
a normal prior, are not as inconsequential as Berger
and Delampady apparently suggest. See Jeffreys
(1967, page 268-270 and page 273) for discussion of
this point. Further, he obtains his Cauchy prior by
placing a uniform prior on a function of the Jeffreys-
Kullback-Leibler information divergence measure for
the data densities under the null and alternative hy-
potheses (Jeffreys, 1967, page 275). This rule for gen-
erating priors and considerations in Jeffreys (1967,
page 268) indicate why 6 and ¢ are not viewed inde-
pendent a priori and also appears to rationalize the
view that when there is little prior information, infor-
mation about 8 will be expressed in terms of /.

Last, the Jeffreys-Kullback-Leibler information di-
vergence approach to generate priors, mentioned
above, does generate the same prior for whomever uses
the approach and thus may be termed “objective” in
this sense.
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Point 3. The authors state, perhaps diplomati-
cally, “We would feel comfortable with the use of any
of the conventional choices of priors referenced [in
Section 2].” This is an unsatisfactory statement in my
opinion because use of one of the priors referenced
results in a posterior probability for the null hypoth-
esis, 0§ = 0y which tannot exceed .5, an absurd result
that is not a property of the results of Jeffreys and
others for this problem. Further, as stated above, the
reasonable conventional priors that Jeffreys and
others put forward are useful when little information
is available. Perhaps Berger and Delampady are sug-
gesting that they are also useful when a great deal of
previous information is available. In my opinion, this
view is erroneous.

Point 4. Is the class of prior densities in (10)
reasonable? In connection with the normal mean
problem, § = 0 versus 0 # 0, with ¢’s value unknown,
Jeffreys (1967, page 269) argued that if n = 1, the
Bayes factor should be equal to one that requires that
the prior density for 8/¢ under the alternative must
be symmetric and proper. However, the requirement
that a very large value of t = vn i/s leads to a Bayes
factor close to zero led him to adopt a Cauchy rather
than, for example, a normal density under the alter-
native. Thus, the requirement of Berger and Delam-
pady that the prior density be nonincreasing in
|8 — 60| seems too weak. Also, in other situations
with more information available, it may be wise to
consider asymmetric priors, priors not centered
at the null hypothesis, etc. Thus, I am suggesting
that broader prior densities be selected in reasonable
ways for the problem at hand and relevant Bayes
factors be calculated as in the case of considering
6 =0,0>0and # < 0 rather than § = 0 and 0 # 0.
These considerations make me believe that introduc-
tion of the class of priors in (10) and associated bounds
will introduce too much arbitrariness in analyses of
hypotheses.

4. CONCLUDING REMARKS

The authors have provided us with a significant
paper for which we should all be grateful. The main
* conclusion, forcefully and convincingly demonstrated,
that P-values should be abandoned requires immedi-
ate, serious attention by all testers. That the authors’
conclusion is in agreement with views put forward
earlier by others does not detract from its importance
but only magnifies it.

Second, I believe that the authors have not ade-
quately described the general approach of Jeffreys and
his specific treatment of testing hypotheses about a
normal mean.

Third, Berger and Delampady honestly and forth-
rightly recognize some deficiencies associated with
their class of densities in (10) and their bounds. I have
suggested that less general, important alternatives are
usually available and Bayes factors for them should
be computed to get a hold on the sensitivity of results
to specific, relevant broader assumptions. For exam-
ple, in testing the hypothesis of a Gaussian random
walk, H;: y, = y,-1, + & versus Hy: y, = oyy,—1 +
asyi—2 + &, a second order Gaussian autoregressive
process, the prior density for o; and a, might be
centered at (1, 0) if little is known. Alternatively, the
prior density might be centered at values of o; and «;
that give rise to oscillatory behavior of the process
with a reasonable period if this information about the
behavior of the process under H, is available. Also, for
Y. = pYy.—1 + & and Hi: p = 1 versus Hy: p # 1, Manas-
Anton (1986) found it unreasonable to consider values
of p much larger than 1 under H, because these would
lead to highly unlikely behavior of y, under H,. These
examples indicate how available information can be
employed to define reasonable, relevant alternative
hypotheses. It appears necessary for statisticians test-
ing hypotheses to have a good understanding of subject
matter considerations in order to obtain sensible re-
sults. :
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