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TABLE 1
AIC values of simple regression predictor (direct regression)

Previous measurements used

Y‘— Ye Yz— Ye Ya" YG

a. Mice data (prediction of Y;, n = 13)

k 6° 5 4

AIC -17.0 -18.0 -19.8

Y.-Ys Y:-Ys Ys None
3 2 1 0
-21.3 -23.1 —24 4% 2.0

Previous measurements used

Y1— Yg

Y, None

b. Ramus data (prediction of Y,, n = 20)

k 3 1 0
AIC —47.3 —49.3° —48.3 2.0
Previous measurements used
Y.-Y; Ys None

c. Dental Data (prediction of Yy, n = 27)

k 3

1 0

AIC —28.9 —30.5° —23.0 2.0

? Might be too large for the application of AIC for n = 13.

¢ Denotes the minimum.

distribution for prediction. The fitting is realized by
using the method of maximum likelihood and thus
AIC can be applied for the evaluation of estimated
models.

In this case, the AIC is not simply defined by the
estimated prediction error variance. A model with
small estimated prediction error variance may be
judged to be a poor fit to the data. In such a situation,
by using exp(—0.5 AIC) as the likelihood of an esti-
mated model, we may find a reasonable choice of the
predictor. This idea could have been applied even to
the example of the simple linear regression predictor
of the ramus data. This kind of scientific investigation
of the structure of data by models is not possible if we
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pay attention only to the cross-validatory assessment
of the prediction error variance.

I admit that the cross-validatory approach taken by
Professor Rao can be useful to provide pragmatic
solutions in certain situations. Nevertheless, my con-
viction is that only through the systematic application
of the scientific approach of statistical modeling and
evaluation can we expect the future development of
statistics as a science.
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involved in growth curves. His earlier work mainly
reflected his concern with estimation, testing and
various covariational structures. Recently he has be-
come more interested in the predictive aspects of this
subject.

In this regard there are basically three prediction
problems of interest. Assuming we have observed n
individuals (vectors) with complete data (over the
same components), we may be interested in predicting,
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for a new vector, values for

(i) all of the components;

(ii) the unobserved subset of components, assuming
the rest were observed,;

(ii1) an extended forecast, i.e., extended to compo-
nents of the vector for which none of the previous n
individuals have been observed (this is applicable to
any of the n + 1 individuals involved).

The last, and obviously most general situation, re-
quires a more stringent modeling than the first two,
precluding the introduction of any new parameters.
Our attention here will be restricted to (ii) except
to indicate that in the multivariate normal case,
Bayesian solutions for an arbitrary covariance struc-
ture and for a particular covariance structure intro-
duced by Rao (1967) and termed Rao Simple
Structure, were obtained by Geisser (1970) for (i).
Bayesian results for (ii) in the framework of a partially
observed matrix of vectors were obtained by Lee and
Geisser (1972), again in the arbitrary and Rao Simple
Structure cases. They also obtained approximate
Bayesian solutions when explicit solutions were overly
complex or computationally intractable. Rao’s paper
deals with various methods for providing predictions
for (ii). Among other things he discusses using empir-
ical predictive densities, i.e., the conditional sampling
density of the unobserved values given the observed
values and the parameters where the latter have been
replaced by estimates. Lee and Geisser (1975) tended
to call procedures like these approximations or ap-
proximate Bayes. There is, as Rao concedes, in the
frequentist framework, “no appropriate theory for tak-
ing the estimation errors of the parameters into con-
sideration especially when using the same parametric
estimates repeatedly.” Actually this is even true for a
single prediction as can readily be seen in the following
example. Let Xi, ---, X,, Xn+1 be N(u, 0®) and the
first n are observed while X, is to be predicted. For
example, using the (empred) normal distribution,
N(%, s?), wherex=n"(x;+ --- + x,) and (n — 1)s2 =
(x, — )2+ ... + (x, — %)% will yield confidence
intervals for X, ., even for moderate sample sizes that
are far too narrow for the stated confidence level.
Considerable improvement can be-made by using the
"approximate N (%, s2(1 + n™')) and of course exact
confidence (and Bayesian predictive) intervals are
obtainable from Student’s ¢ distribution with n — 1
degrees of freedom, where

p o X = X
Ve
Hence, if N (%, s?) is the empirical (Bayes) predictive
distribution a la Rao, I would prefer the approximate
Bayesian predictive distribution N(x, s>(1 + n™')) at
least for predictive regions. There is obviously no

difference between the two for point predictors, which
is mostly what Rao deals with here, because the den-
sity has negligible relevance as long as the “centers”
and general shapes are similar.

Section 2.3 deals with situations where the form of
the actual sampling densities are unknown. Rao here
proposes the sample reuse technique. Now, given the
many articles that appear in a variety of journals that
publish statistical research on growth curves, it is not
easy to be aware of all of them. Hence, I must bring
to Professor Rao’s attention that the sample reuse
approach has already been proposed for growth curves
with solutions for two different kinds of predictive
functions. The first involves a combination of predic-
tors, one from the n vectors and one from the partially
observed vector (Geisser, 1980a), and the second a
general regression predictor with various special cases
involving Markovian constraints (Geisser, 1981). In
fact the methods were illustrated on the ramus data
in the latter paper for predicting the last observation.
In this case the “best” linear predictor turned out to
be the constrained decreasing Markovian regression
predictor which gave about the same discrepancy or
(CVAE) as Rao’s empirical Bayes predictor using es-
timates of the covariational parameters. Similar dis-
crepancies for this data set were obtained by Lee and
Geisser (1975) using a serial correlation structure
and by Fearn (1975) using a two stage hierarchical
Bayesian approach somewhat similar to Rao’s factor
analytic model.

When the predictive sample reuse discrepancy or
(CVAE) was introduced (Geisser, 1974, 1975a; Lee
and Geisser, 1975), its principal motivation was its
use as a comparative measure for various predictors
and only with extreme caution as an actual estimate
of error. A discussion of this point appears in Geisser
(1975a, page 322) indicating among other things, what
error it is we are trying to assess, and the problems in
using various forms of the discrepancy as the error
estimate, particularly because of algebraic constraints
in repeated use of the same data. Hence, the claim
that the discrepancy is a reliable error estimate should
be treated with considerable reserve.

Further discrepancies other than squared error are
also useful. Absolute error and the number of times
one predictor is closer to the actual value than another
as well as the empirical distribution of the actual
differences are also valuable (Lee and Geisser, 1975;
Geisser, 1975b).

One additional point that is worth mentioning is
that sample reuse procedures are also of value for
estimating hyperparameters in empirical Bayes pro-
cedures when maximum likelihood and/or method of
moment estimators are computationally mfea31ble or
yield poor results (Geisser, 1980b).
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Rejoinder

C. Radhakrishna Rao

For ready reference, the problem considered in the
paper is the following. We have observations (U;, W;),
where U; is a p vector of measurements taken at p
time points and W; is the measurement taken at a
future (p + 1)th time point,oni=1, - - -, n individuals
drawn from a population S. Another individual drawn
from S provides the first p measurements U., and the
problem is to predict the (p + 1)th measurement W,
on the individual.

What is relevant in a problem of this kind is the
conditional (predictive) distribution of W, given U.,

(1) Ppred(Wcl Uc: ‘p),

with respect to some reference population, where ¢ is
a parameter specific to the reference population. One
choice of the reference population is S itself. However,
when ¢ is unknowg, we have two possibilities. We
may estimate y by ¢ from the available data

(2) (l]t’ Wi), i = 17 cce, N, and Uc
and consider an estimate of (1),
(3) Pempred(Wc | Uc’- ¢A)a

as the basic conditional distribution. An alternative is
to consider S as a member of a super population
generated by a prior distribution on ¢, in which case
the relevant distribution is

(4) PBaypred( Wc I UC)

obtained by integrating (1) with respect to the poste-
rior distribution of y given the observed data (2). On
the other hand, we may wish to consider the current
individual’s observations (U,, W.) as arising from a
stochastic process specific to the individual. In such a
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case the empred (3) is defined in terms of y estimated
from U, alone and the Baypred (4) is obtained by
choosing a prior on ¢ and computing the posterior
distribution based on U, alone. The second possibility
of considering an individual separately is specially
recommended when on the basis of an initial
examination of data, the measurements U, are found
to have an unusual pattern different from those of
Ul’ M) Un~

The theory as developed in Section 2 of the paper
and outlined above is complete in itself although its
practical applications involves various issues that I
would like to discuss on the basis of the comments
made by the discussants of my paper.

DATA AND CROSS-EXAMINATION OF DATA

For illustrative purposes I have chosen three real
data sets, which are well documented and which have
been studied by a number of authors for predictive
purposes. I thank Izenman for giving some details
about the mice data that will be helpful to future
investigators. I have made the necessary corrections
regarding the original source of the dental data based
on his comments. In my analysis of the mice data, I
omitted the measurements on one mouse (not reported
in Table 2, but can be found in Izenman’s comments),
which looked different from the others and whose
weight actually decreased at the end. Izenman asks
what effect it would have had on my results if this
mouse had been retained in the data set. I have delib-
erately chosen my reference population as the set of
mice that generally exhibit an increase in growth at
all time points and derived the appropriate prediction



