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o there is a strong emphasis on cross-validation to
aid in the selection of what are essentially smooth-
ing parameters in Rao’s methods (his choices of
degree of polynomial approximations to growth
curves and number of relevant time periods over
which the smoothing is to be done), and to supply
uncertainty assessments.

On the other hand,

e the paper is speculative in nature, with many
ideas, not all of them completely worked out. This
would be fine for a philosophy of inference paper
but is not so fine in a methodology article. The
paper’s general theory of Section 2 does not con-
nect well with its methodology and applications,
the cross-validation idea being the only one that
carries over systematically from the second sec-
tion to the other parts; and

e the paper features a curious use of data.

As an additional point of disagreement, Rao and I
appear to have rather different views on how to ap-
proach data of the type he considers, particularly in
the matter of forming judgments about what aspects
of the past and future are conditionally exchangeable,
in order that learning from past experience may occur.
I will begin with some comments about the role of
data in statistical research and will conclude with a
discussion of the part played by exchangeability judg-
ments in predictive modeling.

1. ON THE ROLE OF DATA IN STATISTICAL
RESEARCH

In his comments on the otherwise excellent paper
by Hastie and Tibshirani in this journal last year,
Brillinger (1986) offered the following criticism in a
section called “Some Quibbles”:

Two medical data sets are analyzed [in the Hastie
and Tibshirani paper], but no inferences are
made. Can the authors not set down some (bio-
logical) insight or understanding that has been
gained from the analyses? Otherwise they might

. just as well have presented the results of simula-
tions.

I want to expand on this point, which to me is more
serious than a quibble, by using the present paper as
one example of a fairly general feature of statistical
writing.

How are data used in statistical research? There
appear to be four main cases to distinguish.

(1) In the first case, a body of theory is developed
or extended without any recourse ever being made to
data, or an applied problem giving rise to data. There
are many examples of this, a large number of them
having appeared over the years in The Annals of
(Mathematical) Statistics. Some of this work turns out

ultimately to be useful, in the same way that mathe-
matics for its own sake has repeatedly in the past been
discovered fifty or a hundred years after the fact to be
just what was needed to solve a real-world problem.
But without the potentially firm footing of usefulness
supplied by a serious applied problem, there can be no
guarantees. (The two-by-two table with margins “ap-
plied versus theoretical” and “useful versus not useful”
also has another pejorative cell—applied work that is
not of much general usefulness because the solution
was too narrowly tailored to the specific problem—
but that’s another story.) Rao himself draws a distinc-
tion between this first case and the other three below,
as can be seen from this quote from his recent inter-
view in Statistical Science (DeGroot, 1987):

I always develop methodology from the data given
to me for analysis rather than look at others’
work and try to extend it in terms of mathematics.

Readers of this article who study Rao’s data sets a bit
will have to judge for themselves the extent to which
his methods have arisen from his data on this
occasion.

(2) In the second case, someone develops a meth-
odological idea from first principles, and then looks
for data to illustrate it. One or two data sets fitting
the methodology’s general template are pulled off the
shelf, usually from other publications. In this case, the
data are used principally to give examples of the
calculations. People often say that papers of this sort
have “real” data in them, as if this were a virtue. But
since no serious attempt is made to look at the data
or learn about the substantive issues, this is basically
just window-dressing. For the purpose of illustrating
the calculations, one might have done just as well or
even better with contrived data that make the arith-
metic easy, as in Searle (1971). Moreover, as Brillinger
points out, a different kind of fake data—simulated
according to a known mechanism—may also be more
useful, for another reason: the behavior of the method
with known inputs can then be studied. (This is one

" of the few really valuable uses of pure frequentist

reasoning, in fact.) Rao’s paper appears to fall into
this category.

(3) The third case is one in which the writer tries
to take the data seriously, but in a partial or complete
substantive vacuum. Useful plots and numerical sum-
maries are examined, and a serious effort is made to
have the data suggest the appropriate methodology
rather than the other way around, but key background
information about the substantive issues is scarce or
not well utilized. Much of the more thoughtful litera-
ture in exploratory data analysis (Velleman and Hoag-
lin, 1981; Hoaglin, Mosteller and Tukey, 1983, 1985)
is of this form. Such work can be quite useful in serving
as case studies of good data analytic practice for people
looking at their own data who do know a lot about the
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substantive issues, so this is better than (2), but it is
still possible for fairly silly conclusions to result from
insufficient grounding in substantive reality.

The ultimate example of this third case, and what
is both good and bad about work in this category, is
the book Data (Andrews and Herzberg, 1985), which
consists of 71 data sets each graced with from 1 to 7
pages (median 1 page) of narrative describing the
substantive issues. From the profession’s point of view
it is good to have sources like this, so that smart
people can give us data analytic insights in new con-
texts, rather than just beating to death the stack loss
and Minitab trees data (statistician heal thyself: I
have been as guilty of this as anyone). But this is also
potentially dangerous, for the same reasons pure ex-
ploratory data analysis (EDA) in the absence of sub-
stantive knowledge can be dangerous (a well known
statistician once characterized a well known EDA
expert to me as follows: “Give him 100 numbers out
of your favorite random number generator without
telling him about the lack of underlying structure, and
he will find 10 interesting things about them that
suggest structural insight, known in this case to be
spurious. What, then, about the next 100 numbers
that walk in his door?”).

(4) In the fourth case, the statistician, usually
working together with other investigators collabora-
tively, tries to learn a lot about the background issues
and conduct a good preliminary data analysis, and
then lets the methodology flow from these two. Ex-
amples of this category include Mosteller and Wal-
lace’s (1984) detailed, insightful investigation into the
authorship dispute surrounding the Federalist Papers,
and some articles in the applications section of the
Journal of the American Statistical Association
(DuMouchel and Harris, 1983; Weisberg, 1986; Laga-
kos, Wessen and Zelen, 1986; Reinsel and Tiao, 1987,
for instance). As anyone who tries to document this
category’s scarcity will quickly find, however, there
are precious few examples to mention, to the discredit
of the statistics profession.

One reason for this is that the medium by which we
convey most of our research findings to each other—
journal articles—is not well suited to fully describing
work of this type. It is difficult to fit all of the needed
background information and details on why particular
actions were taken in an applied context into a single
journal article, and extended case studies like that of
Mosteller and Wallace typically do not break up neatly
into a series of such articles, either. In my view what
we ought to be doing a lot more of as a profession is
writing detailed case studies, book length (like Mos-
teller and Wallace) when the problem warrants it, of
how we actually did things in applied contexts, warts
and all. People could then read these narratives and
make comparative judgments, after adjusting for rel-
evant differences, about what aspects of past experi-

ence can be usefully borrowed in present and future
situations.

The relevance of this discussion to the paper at
hand is that it is difficult to know what to make of
the paper’s general conclusions drawn on the basis of
its data sets, about which the author has shared so
few insights with us. If Rao had just used the data to
illustrate his prediction and cross-validation tech-
niques numerically, fine; but he wants more—he
wants to draw general conclusions about how to make
predictions in growth curve models. For that purpose,
multiple simulated data sets with known characteris-
tics would have been more useful. Or, if he really did
want to look carefully at these data sets, we might all
have gained some worthwhile insights about mouse
growth patterns or dental measurements, but he ap-
pears not to have tried very hard to find out what
these data were trying to say, and (because the data
sets were 6 to 18 years old and simply borrowed from
other publications) he wasn’t in a good position to
draw on substantive knowledge.

It is a risky business to suggest that someone has
not taken his data seriously without actually having
watched him prepare his paper. But the methods in
this article do not appear to have arisen out of a
process that began with activities as basic as plotting
individual growth curves (Figures 1 to 3) and exam-
ining them thoroughly: one of the paper’s methods
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F1G.1. Superimposed individual growth curves for the mouse weight
data set (the paper’s Table 2).
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F1G. 2. Superimposed individual growth curves for the 11 girls from
the dental measurements data set (the paper’s Table 4).

(“linear prediction”) has nothing to do with growth
curves, virtually ignoring the time ordering of the data,
and some of the methods that are based on growth
curves include models, like global linearity for all
individuals, that such plots reveal clearly do not pro-
vide good predictions for the three data sets in the
paper. As another example, the paper mentions in a
footnote to its Table 4 that 11 of the dental measure-
ment vectors in that table are from girls and 16 from
boys, but nothing is done with this information, in
spite of the fact that there are potentially important
differences (Figures 2 and 3) between these two sets
of growth curves: the boys exhibit systematically dif-
ferent departures from global nonlinearity than the
girls do, and display nonmonotonicities over time at a
rate about twice that of the girls. In addition, the two
groups exhibit different variability around their basic
growth curve shapes, suggesting that both the choice
of growth curve families in the modeling and the cross-
validation estimates of prediction error should be
stratified on sex.

As a final remark along these lines, consider one of
the growth curve plots, say Figure 1 on the mouse
weight data, in light of the paper’s “general finding
... that much of the information for forecasting is
contained in the immediate past few observations,”

[\
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Fi1G. 3. Superimposed individual growth curves for the 16 boys from
the dental measurements data set (the paper’s Table 4).

particularly the conclusion (Section 4.1) concerning
the “individual regression predictor” method that “the
best procedure is to fit a straight line to just the two
previous measurements - - - and extrapolate to predict
.. .” This conclusion is arrived at by fitting first global
and then increasingly local low order polynomials to
all individuals, and noting that the fit improves the
more local its basis (see the paper’s Table 6). To
anyone starting at Figure 1, could this conclusion be
anything more than an empirical rediscovery of Tay-
lor’s theorem?

There is another way of expressing the general point
I am trying to make about the role of data in statistical
work, which draws on the distinction between how
economists and statisticians approach data. Conven-
tional wisdom has it that economists start with theory
and then look for data to see if the theory is any good,
whereas statisticians start with data and look for
models that seem to fit. This distinction has been the
basis of a certain amount of name-calling (the distin-
guished President of The University of Chicago,
Hanna Holborn Gray, once threw fuel on this fire in
a speech on the triumph of models over data with the
following description: “An economist is a person who
sees something in the world around him, goes home,
takes out paper and pencil, and tries to figure out if
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what he saw with his own eyes is possible”), but there
is more at stake than style; this distinction has nor-
mative implications as well, as I tried to make clear
above in my characterization of the four categories of
data usage, and as I will attempt to illustrate below in
the description of how I would approach Rao’s mod-
eling problem. It-would seem that Rao has given us a
fairly standard economics paper here, starting with
some general theory about how prediction might be
attempted and then (in his own words) “choos[ing
three data sets] for illustration.” I just wish he had
gotten closer to his data.

2. ON EXCHANGEABILITY JUDGMENTS IN
PREDICTIVE MODELING

The problem addressed by this paper is predictive
in nature. Predictive modeling is the process of ex-
pressing one’s beliefs about how the past and the
future are connected. These connections are estab-
lished through exchangeability judgments: with what
aspects of past experience will the future be more or
less interchangeable, after conditioning on relevant
factors? It is not possible to avoid making such judg-
ments; the only issue is whether they are made explic-
itly or implicitly. I claim that it is better to approach
the modeling in a way that makes such judgments
explicit.

Many of the methods in this paper do not do this.
Most of its methods seem basically to be smoothing
techniques, some simple, some elaborate, all sidestep-
ping the issue of what beliefs the modeler has about
how the past and the future are related. To illustrate
this, the following is a brief restatement of the ideas
behind a number of the paper’s methods, for concrete-
ness in the context of the mouse weight data (Table
2) and with the goal of predicting the weight of mouse
13 on day 21.

Linear Prediction

Regress y»; on ys, ys, - - -, ¥1s for individuals 1 to 12;
then use this regression equation with the values of
Y3, -+, y1g for individual 13 to predict y,, for that
individual. Do this over again with subsets of the

" predictors ys, - - -, y1s, using cross-validation to pick
the predictor subset with the smallest mean squared
prediction error. With this representation of the data,
an entire growth curve is mapped onto a single point
in (p + 1)-space, where p is the number of predictors,
and the assumption is made implicitly that the indi-
viduals with which the current individual is more or
less interchangeable are the ones that are close to him
in the first p of these p + 1 coordinates. But this is a
strange scale on which to be making exchangeability
judgments, because no information about the time
relationships among the predictor values is used. The

regressor columns can be switched around to corre-
spond to any time order desired, and this method will
produce the same prediction. Potentially valuable de-
rivative information—shape, rate of change of growth
over time—is thus ignored, leading to the possibility
of false judgments both of exchangeability and of
nonexchangeability. In the latter category, for in-
stance, consider two individuals with quite similar
growth curves apart from a fairly large vertical shift
(the first two boys in the ramus height data set, the
paper’s Table 3, are an example of this). On the “linear
prediction” scale, these individuals will be far enough
apart that there will not be any clear predictive linkage
between them, whereas it would be obvious on the
growth curve scale how to use information from the
one to predict the other.

There is one way in which this method does pay
attention to the time order of the data: when Rao does
his variable selection by leaving out y;’s he drops the
y’s farthest back in time first. But, taken at face value,
there is nothing in this “linear prediction” method
that forces the oldest ones to go first—with this setup
the regression doesn’t know the meaning of “oldest.”
In fact, standard backward selection regression meth-
ods applied to the mouse data would suggest dropping
the predictors not in the order ys, ys, - - -, ¥15 but in
the order yi2, ¥o, Y15, ¥3, Ye.

Individual Regression Predictor

(1) Ignoring all other subjects, separately for each
individual j (from 1 to 12) fit a polynomial in (¢;; ¥;;)
(in the notation of the paper’s Table 1) of order k
using the s measurements immediately preceding ¢; =
day 21, the time point to be predicted, and extrapolate
this fit to predict. (2) Do cross-validation on mean
squared prediction error over all 12 members j of the
training sample to choose k and s. (3) When a new
individual, mouse 13, comes along, use k and s from
step (2) to fit the appropriate polynomial, again ig-
noring all other data, and extrapolate. With this
method there is no attempt to form an exchangeability
judgment on which member(s) of the training sample
the new individual is most like; in fact, the only sense
in which learning from past experience occurs is
through the implicit position that whatever was good
for the previous individuals as far as k and s is con-
cerned must also be good for the new individual. This
method performs predictably poorly on Rao’s data
sets (see his Table 8).

Calibration of Individual Predictors

As in the “individual regression” predictor ap-
proach, fit a polynomial of degree k to the s measure-
ments preceding y,;, separately for each of the 12
individuals in the training sample, and extrapolate by
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using each of these polynomial fits to get a total of 12
predicted values y.;. Form a new data set with 12 rows
and two columns, the observed y,’s and the predicted
$a1’s, and regress ys; on ¥, obtaining y» = Bo +
B1921. When a new individual appears, fit a polynomial
of degree k to the s previous measurements for him,
extrapolate to get his ¥», and plug into the regression
equation. Cross-validate this whole process on mean
squared prediction error to find the best & and s.

Regression on Polynomial Coefficients

Pick an individual j in the training sample consist-
ing of the first 12 mice. Fit a kth degree polynomial
to the s measurements preceding day 21, obtaining
first stage regression coefficients /§o PR /§k j- Do this
for all n = 12 individuals and construct a new data
set, using as columns y,, and the Bij- Regress y;; on
the ’s (?!), obtaining k + 1 second stage regression
coefficients. When a new individual (mouse 13) comes
along, fit a kth degree polynomial to the last s meas-
urements for this individual, obtaining his first stage
coefficients; then feed these into the prediction equa-
tion based on the second stage coefficients to get his
¥91. Cross-validate the overall process to pick k and s.

What can be said about the last two methods from
the point of view of using past experience in the
prediction of future events, other than that a kind of
elaborate smoothing is taking place that obscures the
role of any given individual’s growth curve in the
prediction of another individual’s growth? The situa-
tion is even less clear in the paper’s “Bayes,” “empir-
ical Bayes,” mixed-model and factor analytic methods,
although about the latter one comment is possible:
factor analysis can be viewed in general as a kind of
regression on fake predictor variables (the so-called
“common factors”), which have to be estimated from
the data along with the usual regression coefficients
(the “factor loadings”). In Rao’s problem, the predic-
tor variables carry the information about the growth
curve relationship between ¢ and y;. But why ignore
the powerful information you have on these relation-
ships, as conveyed by plots like Figures 1 to 3? No
wonder the factor analytic methods don’t do very well
‘on Rao’s data (see his Table 8).

Why is it better to approach predictive modeling in
a way that makes the necessary exchangeability judg-
ments explicit? After all, smoothing methods like
those in the paper may work well enough to satisfy
one’s predictive accuracy goals in a given situation.
There are three main reasons for preferring explicit-
ness, one philosophical and two practical. On the
practical side, because the smoothers do not make the
necessary judgments explicitly, (1) if they don’t predict
accurately enough it is difficult to see how to improve
them; and (2) you have no reason to believe that cross-

validation uncertainty assessments based on such
methods tell you anything about the predictive per-
formance of those methods for future observations.
But perhaps most importantly, on the philosophical
side (Hodges and Draper, 1987), modeling can be
viewed as a process of adding information to the data
set, which in the absence of such added information
refers only to itself. If we do not conduct the modeling
activity in a way that makes our judgments explicit,
how will we know when we are done what information
we have added? How will we assess how much of the
final answer is due to the insertion of modeling infor-
mation unchallenged by the data and how much comes
from the data speaking for itself?

What | Would Do Instead

My remarks have been too critical to follow Marcus
Tullius Cicero’s dictum about commenting on other
people’s work (“I criticize by creation, not by finding
fault”) to the letter, but in that spirit, at least, here is
an outline of how I would approach Rao’s prediction
problem, in a way that attempts to make the exchange-
ability judgments explicit, to capture uncertainty in
those judgments and to propagate that uncertainty
through to the final predictions and uncertainty
assessments. Time and space restrictions have pre-
vented me from completing this analysis and present-
ing the results here; I hope to do so elsewhere.

Consider the individual growth curves of Figures 1
to 3 (which in the interests of saving journal space
have been condensed into three plots, but which in
practice should be examined separately). In a given
data set, the methods in the paper under discussion
all implicitly treat all individuals as interchangeble,
when the growth curve plots indicate they may not be.
Conceptually, one can imagine that each individual
grows in a manner corresponding to one of a rather
small number of families of growth curves, each in-
dexed by a modest number of parameters. It is not
necessary to know what it might be about the individ-
uals structurally that divides them into subgroups, to
improve the flexibility of one’s modeling by positing a
small number of such families of growth curves and
then asking the data which subgroup each individual
belongs to. In this formulation the central exchange-
ability judgment is the family to which a given indi-
vidual’s growth curve belongs; conditional on this
choice, the data can help choose likely parameter
values in the usual manner.

With this way of looking at the problem there will
be three sources of uncertainty to assess: structural or
model uncertainty about which growth curve family
an individual belongs to, estimation uncertainty about
parameter values conditional on the family and pre-
diction uncertainty arising from the fact that, for each
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new individual, even if the family and the parameters
were known, there would be stochastic fluctuation
around the underlying growth curve. This character-
ization makes the modeling approach I have in mind
a special case of a general process that might be called
propagation of model uncertainty (Harrison and Ste-
vens, 1971, 1976; de Finetti, 1974, 1975; Leamer, 1978;
Smith, 1983; Hodges, 1987; Draper, Hodges, Leamer,
Morris and Rubin, 1987). The idea is as follows.

In a predictive context, a model is just a joint
probability distribution for the observables, so that
one can conceive of the space of all possible models as
a collection of such distributions. What we usually
refer to as a “model,” with unknown parameters, is a
low dimensional curve in this space indexed by some
parameters, and choosing a single “model” corre-
sponds in a Bayesian sense to putting a prior distri-
bution on model space that concentrates all its mass
on this curve. (In what follows I will use “model” to
denote a subspace of model space, indexed paramet-
rically in this way.) When structural uncertainty is
present, as it almost always is, such priors do not
realistically reflect this uncertainty; to improve on
usual practice it is necessary to entertain the possibil-
ity of a number of “models,” by starting with a richer
prior on model space that spreads it mass over more
_ than one low dimensional curve.

This will make a new layer of integration necessary
in the calculation of the posterior predictive distribu-
tion (ppd), p(future|data): in effect, one ends up
mixing the ppd’s conditional on each “model,”
p(future | data, “model”), to arrive at the overall ppd,
by using as mixing weights the posterior probabilities
of the “models” given the data, p(“model” | data).
Symbolically,

p(future | data)

(2.1) = f p(future | data, “model”)
- p(“model” | data)d “model.”

These “models” typically all have unknown parame-
ters, so this process also involves an integration over
uncertainty in the parameters, which has been sup-
pressed in the above notation. The necessary ingre-
dients turn out to be a prior on model space,
p(“model”), priors on the parameters conditional on
the “model,” p(parameters | “model”), likelihoods for
each “model,” p(data | “model,” parameters) and pre-
dictive distributions for each “model” given the data
and parameters, p(future|data, “model,” parame-
ters). This may seem like a lot to require, particularly
when other approaches to predictive modeling, like
those of the paper under discussion, appear to avoid
having to specify such distributions. But choices of
this type must be made; the only issue is whether or

not to make them explicitly. See Leamer (1978), Smith
(1983) and Draper, Hodges, Leamer, Morris and
Rubin (1987) for further details.

More specifically, in the context of the mouse weight
data, here is how the modeling would go. If covariates
were present, as in the dental data, the first step would
be to think about how such information should be
used to condition your exchangeability judgments, for
instance by carrying out the steps below separately
for girls and boys. The decision, if it turns out that
way, that the exchangeability need not be conditional
on sex would then be made only after the data support
this choice.

(1) Exploratory analysis to choose {prior on model
space} = {choice of growth curve families}. Draw sep-
arate curves for all individuals in the training sample
and study them. Examination may well suggest two
or three basic growth curve families (global linearity,
general downward curvature and basic sigmoidal
shape, for example), each indexed by a small number
of parameters (in the mouse data, not more than
three); for concreteness, say three families, with 2, 3
and 3 parameters, respectively.

(2) Mixing models. Starting with a flat prior (Y%,
Y3, Y3) on the three curve families, for lack of an initial
reason to differentiate between them as more and less
probable, and essentially flat priors on the parameters
within these families, pick an individual in the train-
ing sample and update to a posterior distribution on
model space, p(curve family | data). Do this separately
for each individual in the training sample and look at
all the resulting three vectors. If you have done a good
job choosing the families of growth curves, most of
these vectors will have dominant components, for
example (0.8, 0.05, 0.15) or (0.22, 0.74, 0.04). If there
are a number that are close to (¥3, V5, ¥4) (the standard
deviations of each of these vectors could be used as a
numerical index of closeness to a flat posterior, some-
what like the varimax criterion in factor analysis),
you probably don’t have a rich enough set of growth
curve families yet (for those individuals, the data are
trying to say that none of the curves fits terrifically).
If this happens, go back to the prior on model space
step and consider enlarging the number of growth
curve families you're willing to propagate uncertainty
over, repeating these first two steps as necessary.
Eventually, when you end up with a satisfactory set
of growth curve families, start over again with a flat
prior on model space and on the parameters condi-
tional on the “models,” take all the training sample
individuals as a batch and update to posteriors on
model space and on the parameters conditional on the
curve families.

(3) Prediction for the new individual. When a new
individual appears, using the posteriors on model
space and the parameters conditional on the “models”
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from the training sample as priors, construct a poste-
rior predictive distribution for the unobserved time
point given that individual’s growth curve up to that
point. The result of all this will be an analysis in which
the data help make the necessary exchangeability
judgments adaptively, and in which the posterior pre-
dictive variability captures all three sources of uncer-
tainty above—structural, estimation and prediction.

I am grateful to Professor Rao for having written a
paper that provoked a great deal of thought in me,
and I look forward to comparing the results of this
propagation of uncertainty analysis with those from
his prediction methods and from other approaches to
prediction in growth curve models.
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1. INTRODUCTION

It gives me great pleasure to comment on this paper
by Professor Rao. The central issues raised here are
choice of a prediction model and assessment of asso-
ciated prediction errors for growth curve data. Profes-
sor Rao has given us a number of different approaches
to these problems. I offer a few general comments and
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tions in growth curve modeling and prediction and
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also make some comments on the mice data used in
this paper.

2. SOME GENERAL COMMENTS

For a statistician, context should always play a role
in the modeling process. Too often, data are analyzed
without regard to the original purpose of their collec-
tion. This can be especially true when modeling a
growth process where biological reasoning may help
in the modeling and subsequent interpretation of re-
sults. The first thing I noticed about this paper is that
there is no clear description of the three data sets used
as illustrations or why they are even interesting for
prediction purposes. (Does anyone understand what



