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Comment

A. H. Welsh

This is a stimulating and timely paper written from
a practical data-analytic viewpoint. The introduction
contains a careful discussion of strategies for data
analysis which should be read critically by all statis-
ticians. The difference in perspective makes this dis-
cussion a most useful supplement to the related
discussions in Huber (1981) and Hampel, Ronchetti,
Rousseeuw and Stahel (1986). The remainder of the
paper provides an easily accessible exposition of two
rank-based approaches to analyzing linear models. I
would like to discuss several points which arise from
the paper.

1. INFERENTIAL STRATEGIES

Draper’s discussion of the widely used but naive
“do-nothing” approach to dealing with violations of
the classical assumptions highlights the failings of
the approach. Although the more sophisticated data-
analytic approach offers a potential improvement over
the do-nothing approach, it is not as widely appreci-
ated as it should be that the data-analytic approach
has serious pitfalls. Essentially, problems arise from
the fact that in linear model (and more complicated
model) problems, much of the data analysis is based
on the residuals from some preliminary parameter
estimate (which is usually the least squares estimate)
rather than on the observations themselves and any
subsequent analysis should take this fact into account.
This is particularly true of methods for outlier detec-
tion. It is a popular misconception, for example, that
we can proceed to delete outliers from the sample and
then apply classical least squares techniques to the
reduced sample. Ruppert and Carroll (1980) showed

that if we delete observations with extreme residuals .

and apply least squares to the reduced data set, the
initial estimator (from which the residuals were cal-
_ culated) has a persistent effect which does not vanish
asymptotically. Consequently, the second-stage esti-
mator can be no more efficient or robust than the
initial estimator and the standard errors obtained
from standard least squares formulae will be too small
so that confidence intervals and tests will be mislead-
ing. The problem is that the second stage of the
analysis (which is a naive least squares analysis)
incorrectly ignores the effects of the preliminary
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analysis. The problem is not solved by basing the
preliminary analysis on an initial estimator other
than least squares. However, the problem can be over-
come by constructing a trimmed estimator which
takes the preliminary analysis into account (see
Welsh, 1987a).

Incidentally, I cannot agree with Draper’s view that
recent developments in nonparametric regression are
a part of robustness work. Huber (1981) and Hampel,
Ronchetti, Rousseeuw and Stahel (1986) have argued
convincingly that robustness is concerned with under-
lying parametric models. Although some extension of
the theory away from this strict viewpoint may be
possible, without the specification of a precise under-
lying model, the whole concept of a deviation from
such a model loses its foundation. Indeed, in non-
parametric regression all data points are treated as
equally good and consequently receive equal weight in
the analysis.

2. ASYMMETRY

The role of symmetry in the robust analysis of linear
models has caused persistent confusion. Draper
makes some comments on the role of symmetry
which deserve clarification. In most applications of
linear models, the important inferential questions
involve the slope parameters. The slope parameters
are identifiable (and hence can be estimated) when
the errors have an asymmetric distribution. L- and
M-estimators, for example, estimate the slopes when
the errors have an asymmetric distribution (see Car-
roll and Welsh (1987) for references) and the same
ought to be true of R-estimators. If symmetry has any
role to play, it is in the estimation of the intercept.
However, as Draper notes, in practice we can either
use the ordinary median of the residuals (as advocated
by Aubuchon and Hettmansperger, 1984b) as the in-
tercept estimator or we can try to determine a more
appropriate estimator based on the nature of the prob-
lem at hand. Hence, the presence of asymmetry in the
errors means that we should think carefully about the
choice of intercept estimator; it certainly does not
mean that a robust analysis is inappropriate.

3. VARIANCE ESTIMATION

The problem of estimating the variance of R-
estimators is interesting and important but still seems
to have been relatively little studied. A number of
questions immediately arise.
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At a basic level, there is a question as to whether,
in Draper’s notation, we should regard 1/ or § as the
parameter to be estimated. I have a personal prefer-
ence for 1/6 because this seems more natural to me
and because I feel that the bias enters in a simpler
way than when we take the reciprocal of an estimator
of 6.

For the L;-estimator (which is related to the R-
estimator with sign scores; see (3.10) in Draper), we
can construct a kernel estimator of 1/6 directly
(Welsh, 1987c). What is interesting about this esti-
mator is that the shape of the kernel or window
function does seem to matter as a poor choice can
lead to an estimator with excessive bias. This is in
conflict with the usual advice (reperted by Draper)
that in estimating a density, the choice of kernel is
unimportant.

In evaluating competing estimates of the variance
of an R-estimator, we should evaluate their properties
as studentizing factors rather than as estimates of the
variance per se. Although this is quite often done in
simulation studies, it is not often done in theoretical
investigations. However, recently Hall and Sheather
(1988) derived an Edgeworth expansion for the sample
median studentized by a particular variance estimator
and showed that the optimal choice of smoothing
parameter is different from that obtained from mean
squared error considerations. In fact, their result in-
dicated that it is important to decrease the bias more
than one would if the variance was a parameter of
interest. In other words, the bias/variance tradeoff is
different when the density is a nuisance parameter
than when it is a parameter of interest. These results
are in agreement with the practical experience re-
ported by Draper that the bias is more important than
the variance in estimating 1/6 (or 6).

Comment

Roger Koenker and Stephen Portnoy

David Draper’s survey of rank-based robust meth-
ods for estimation and inference in linear models
vividly illustrates the vitality of the R approach. The
emphasis on inference is, in our view, particularly
welcome, because despite the rapid growth of the
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4. L-, M- OR R-ESTIMATORS?

In advocating the use of R-estimators over M-
estimators, Draper notes only that they often have
simple, closed-form expressions. He does not men-
tion that perhaps a more serious objection to M-
estimation is that scale equivariance is usually
achieved through the use of a concomitant scale esti-
mator which may have subtle effects on the properties
of the M-estimator and on the resulting inference.
Now L-estimators (Welsh, 1987b; Koenker and
Portnoy, 1987) have been developed further since
Draper’s work and they share the advantages of
R-estimators. However, they have one further advan-
tage: if the weight function is chosen to be smooth,
the asymptotic variance of the resulting L-estimator
is straightforward to estimate. That is, the com-
plete analysis (including inference) is easier for
L-estimators than for R-estimators. Consequently, I
welcome Draper’s paper for the indirect support it
provides for the use of L-estimators in the linear
model problem.
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foundations of robust estimation for linear models, the
framework for robust inference has languished in a
state of benign neglect. Certainly in applied fields like
econometrics, unless we are able to suggest simple, yet
reliable, robust methods of computing “those little
numbers in parentheses,” robust methods in general
will continue to be a curiosity of the “theorists” with
little impact on empirical research.

On Draper’s three desiderata for a successful robust
method: (i) intuitive appeal, (ii) unified theory and
(iii) computability, we would like to offer some highly



