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Comment

D. V. Hinkley and S. Wang

Professor Reid provides a stimulating review of the
theory and application of saddlepoint methods in
parametric statistical analysis. As is indicated in
Sections 6.4 and 6.6, similar approximations can be
applied to certain nonparametric statistical calcu-
lations. Robinson (1982) applies the saddlepoint
technique to obtain approximations to permutation dis-
tributions, and more recently Davison and Hinkley
(1988) have applied saddlepoint approximations to
several bootstrap and randomization problems. Great
numerical accuracy is evident in most of these appli-
cations. The corresponding theoretical development,
which requires some delicacy, is contained in Wang’s
Ph.D. dissertation for statistics which are sums of
random variables. We should like to summarize and
illustrate some of the results for a simple bootstrap
problem here.

Let (Xi, ..., X,) be independently sampled from
the continuous distribution function F whose mean is
u = E(X;). Suppose that we wish to calculate the
cumulative distribution function (CDF) G of the esti-
mation error D = X — u, where X =n' ¥ X,. If F
is known, and if the cumulant generating function
K(t) = log{[Z. e'®™ dF(x)} exists in a neighborhood
of t = 0 and is calculable, then a saddlepoint formula
will give a very accurate approximation to G (see
Section 6.3).

But suppose that F is completely unknown. The
bootstrap approach (Efron and Tibshirani, 1986) is to
calculate G with the empirical CDF F in place of F.
That is, one estimates G by G, the CDF of X* — %
when X* is the average of (X%, ..., X¥*) which are
sampled randomly with replacement from the fixed,
observed set (xi, ..., x,). A standard implementation

of the bootstrap would approximate G by Monte Carlo .

methods, e.g., by direct simulation of hundreds of
samples (X%, ..., X}) and calculation of empirical
cumulative frequencies for X — x. Saddlepoint
methods offer an alternative, efficient approach to
approximation to G.

In principle some care is needed here because F and
hence G, are discrete, and slightly different saddle-
point formulas apply in discrete cases. Suppose that
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the x;’s are given to m decimal places, so that X* is a
multiple of n7*10™™. Define

K@) = log{[ et=%) dF‘(x)}

(A1)
= log[n‘1 > expft(x; — 32)}].

Then the saddl~epoint approximation to G(d) =
Pr(X* — x = d| F) when d is a multiple of n™'10™™ is,
corresponding to Reid’s equation (28),

(®(w) — p(w) [107{1 — ™"}
. {nK"(T)}‘l/Z _ w—l],
d; #0,

Yo + Ye(2rn) R "(0)} K" (0)
— 141027 K" (0)}72,

L di =0,
where d, =d + n™'10™, K’(T) = d, and
w = [2n{Td; — K(d1)}]"*sgn(T).
Wang has proved that
(A3) G(d) = G,(d){1 + Ox(n 7},

but that the relative error is not strictly uniform in
the tails for fixed n. In this latter sense the saddlepoint
approximation is not as strong as usual, although in
practice this seems unimportant.

Recall that G is itself intended to be an approxi-
mation, to the continuous CDF G. For this purpose it
may be sensible to modify (A2) with a continuity
correction, i.e., to approximate G by

(A4) Gi(d) = G,(d — Yn™1107™).

Note that G, is continuous.

A somewhat more casual approach is to ignore the
discreteness, and to apply Reid’s (28) with K as in
(A1) replacing K. We denote the result by Gs. In fact,
as the following numerical example shows, there will
often be negligible differences among G;, G, and G,.

The numerical example involves the sample of
n = 10 numbers, with m = 1,

9.6 104 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8.

Approximate percentage points for X* — % have been
calculated using G;, G, and G,. Some of the results are

(A2) G.(d) =+
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TABLE Al _
Approximations to bootstrap percentage points of X — u based on a
sample of n = 10 numbers with 1 d.p.

Via saddlepoint
Probability ~ “Exact” @proximation  Normal
——————————  approx.
G, Gy
0.0001 —6.34 —6.32 —6.3130 —8.46
0.0005 —5.79 —=5.79 —5.7842 —7.48
0.001 —5.65 —5.53 —5.4223 —17.03
0.005 —4.81 —4.81 —4.8051 —5.86
0.01 —4.42 —4.44 —4.4331 -5.29
0.05 —3.34 -3.33 —3.3296 —3.74
0.10 —2.69 —2.69 —2.6863 —2.91
0.20 —1.86 —1.86 —1.8556 -1.91
0.80 1.80 1.79 1.7956 1.91
0.90 2.87 2.85 2.8516 2.91
0.95 3.73 3.74 3.7480 3.74
0.99 547 5.47 5.4765 5.29
0.995 6.12 6.12 6.1212 5.86
0.999 7.52 7.46 7.4634 7.03
0.9995 8.19 7.98 7.9889 7.48
0.9999 9.33 9.11 9.1145 8.46

compared in Table A1, which includes also the “exact”
results obtained by Monte Carlo with 50,000 simulated
samples, as well as normal approximation results
obtained with the correct mean and variance for D.

Comment

Luke Tierney

Professor Reid’s paper is an excellent review of the
use of saddlepoint methods in statistics. In this
comment I would merely like to expand briefly on
Professor Reid’s discussion of the relation between
saddlepoint approximations for sampling distribu-
tions and approximations to posterior moments and
marginal densities based on Laplace’s method.

As described, for example, in De Bruijn (1970) the
basic Laplace method and saddlepoint method both
involve approximating a number a, defined as a, =
[ f.(y) dy for some function f, when n is large. For
Laplace’s method the function and its arguments are
real, for the saddlepoint method the function is com-
plex and the integral is over a path in the complex
plane. In both cases it is assumed that the behavior of
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Calculations using G never differ from those using G,
by more than 3 X 107,

The success of the saddlepoint approximation in
this example extends to many bootstrap and permu-
tation distributions, so long as we restrict ourselves to
problems involving sums as in Daniels’s papers. We
are unaware of comparable saddlepoint approxima-
tions for general nonlinear statistics. For practical
purposes the key result would be the analog of Reid’s
(28) for statistics T}, of the form

T.=0+n"'Ya(X;) +n? Y bi(X;, Xr),

because many statistics are very well approximated
by such an expression. The relevant approximation
would apply, for example, to the bootstrap distribu-
tions of studentized linear estimates.
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the integral is determined by the behavior of f, in the
neighborhood of a particular point y,. For Laplace’s
method y, is a local maximum, for the saddlepoint
approximation it is a saddlepoint.

The statistical applications of the saddlepoint

_approximation discussed by Professor Reid add some

new features. Rather than approximate a single num-
ber a, these methods approximate a density function
&n(x) given as g,(x) = [ fu(x, y) dy. As n increases the
density g.(x) becomes concentrated about some point
x, at rate n~2 The point x, represents the mean or
some other measure of the center of the distribution
with density g.(x). For each value of the argument of
the density g.(x) the saddlepoint approximation
involves the determination of the corresponding sad-
dlepoint y, = y,(x) of the function f,(x, -).

This use of the saddlepoint approximation closely
resembles the use of Laplace’s method for computing
approximate marginal posterior densities as described
in Leonard (1982) and Tierney and Kadane (1986). In



