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Saddlepoint Methods and

Statistical Inference

N. Reid

Abstract. This paper reviews Daniels’ saddlepoint approximation to the
distribution of the mean of a random sample, and the many aspects of
second order asymptotic inference that have been developed from it. These
include Barndorff-Nielsen’s approximation to the distribution of the max-
imum likelihood estimate, Bartlett factors for the likelihood ratio statistic
and approximations to predictive and conditional likelihood. The emphasis
is on statistical applications of the saddlepoint method. The intention is to
provide fairly broad coverage of the literature and to indicate possibilities
for future development. An annotated bibliography is included.
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1. INTRODUCTION

A very accurate approximation to the density of the
mean of a sample of independent, identically distrib-
uted observations was derived by Daniels (1954) using
the saddlepoint technique of asymptotic analysis. The
resulting approximation, often more accurate than the
normal approximation or even the one- or two-term
Edgeworth series approximation, is generally called
the saddlepoint approximation. Occasional examples
of its use have appeared regularly in the statistical
literature (Cox, 1948; Good, 1957, 1961; Daniels, 1956,
1958; Keilson, 1963; Blackwell and Hodges, 1959),
but with the appearance of a discussion paper by
Barndorff-Nielsen and Cox (1979) its importance and
usefulness in statistics began to be more widely appre-
ciated. Since that paper several statistical applications
of the saddlepoint approximation have been devel-
oped, many of them representing substantial con-
tributions to the asymptotic theory of statistics.
Examples include Barndorff-Nielsen’s formula for
the distribution of the maximum likelihood estimate,
development and interpretation of the Bartlett factor
for the likelihood ratio test, highly accurate approxi-
mations to the distribution of M estimates, improve-
ments in goodness of fit tests and residual analysis for
generalized linear models, accurate formulae for
approximating tail probabilities and approximations
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to posterior means and densities in Bayesian analysis
using the closely related Laplace approximation.

It is the purpose of this paper to summarize these
recent developments and show how they are all related
to Daniels’ original saddlepoint expansion. In Section
2, Daniels’ (1954) derivation from the Edgeworth
expansion is reviewed and discussed. The next three
sections develop from this approximations to the
densities of the maximum likelihood estimator, the
likelihood ratio statistic and the score statistic, respec-
tively. In these sections, we assume that a sample of
independent, identically distributed observations is to
be used for inference about a vector parameter § and
that inference is required for all components of .
Section 6 considers various extensions and recent
developments. Inference in the presence of nuisance

. parameters is discussed in Section 6.1 from a Bayesian
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point of view and in Section 6.2 from a conditional
point of view. The nonindependent, identically dis-
tributed case is considered briefly in Section 6.5.
Other extensions include saddlepoint expansions for
von Mises functionals, saddlepoint-type expansions
derived from general orthogonal series expansions and
tail area approximations.

2. THE SADDLEPOINT APPROXIMATION

Let X, ..., X, be independent, identically distrib-
uted random vectors from a density fx(-) on R
Denote the moment generating function by M(¢) =
E exp(¢TX) and the cumulant generating function by
K(¢) = log M(¢). The moment generating function is

Statistical Science. NINOIE ®

www.jstor.org



214 N. REID

assumed to exist in an open neighborhood around the
origin. The saddlepoint expansion of the density of
X=n13Y X:is

fx (@) = (27)™*2{n/| K"($) |}/
. exp[n{K($) — 7%}](1 + R.).

The righthand side of (1), excluding the factor (1 +
R,), will be called the saddlepoint approximation to
the density of X. The value ¢ = ¢(%) is called the
saddlepoint and is defined by
(2) K'(¢) = %,
where K’(¢) is the vector (K(¢)/d¢1, ...,
0K (¢)/3¢:)T. The k X k matrix K”(¢) has (i, j) com-
ponent (9°K(¢)/d¢:0¢;) and determinant |K”(¢)|.
The remainder R, has an expansion in powers of n™’
and will be discussed in more detail later.

To express 6 explicitly as a function of %, define the
function

(1)

K*#®) = ¢7% — K(¢)

3
® = sgpw - K(4)},

called the Legendre transform of the function K(¢).
Differentiating l)oth sides of (3), anAd applying (2),
gives K*' (%) = ¢ and K*”(x) = {K"(¢)}™", so (1) can
be re-expressed as

fz (%) = 2m)**{n | K*"(%) | }'/?exp{—nK*(%)}{1 + R,}.

This version of the saddlepoint expansion is derived
and discussed in McCullagh (1984b, 1987, Chapter 6).
Conditions ensuring the existence of a unique solution
to (2) can be derived from conditions on the existence
of the Legendre transform of K(¢); see Barndorff-
Nielsen (1978, Chapter 5) and Rockafellar (1970,
Chapter 26). In the scalar case Daniels (1954, Section
7) shows that a unique real root of the saddlepoint
equation (2) exists under very broad conditions. In
particular, the random variables X; may have a dis-
crete distribution.

Approximation (1) is usually derived by one of two

arguments, both of which were treated in Daniels
(1954) in the scalar case. The first, from which the
approximation takes its name, is as an application of
the saddlepoint method of asymptotic analysis. The
density for X is expressed as the inversion integral of
its characteristic function,

e = 2= [ expinixcio) - o311 do,
Tl Jr—iw

where 7 is any point in the open interval around 0 in
which M(-) exists. The contour of integration in the
complex plane can be deformed (within the strip of
convergence of M(-)) to ensure that the leading con-

tribution to the value of the integral comes from a
small region near one point, the saddlepoint. A Taylor
series expansion of the integrand and term-by-term
integration leads to (1). For a more detailed summary
of this argument, see Daniels (1987). For all the
details, see Daniels (1954, Section 2). The saddlepoint
method is explained in many books on asymptotic
analysis; concise summaries are provided in Courant
and Hilbert (1950, Chapter VII, Section 6.3), De
Bruijn (1970, Chapter 5) and Jeffreys and Jeffreys
(1961, Chapter 17).

A more statistical version of the derivation begins
by embedding fx (x) in a conjugate exponential family

(4) fx (x; ¢) = exp{px — K(8)}fx (x).

The term conjugate exponential family is used in the
literature on large deviations, and does not refer to
the Bayesian meaning of conjugate posterior and prior
distributions. The technique is usually attributed to
Cramér (1938), but was also used by Esscher in 1932.
Efron (1981) and others call the operation of (4)
“exponential tilting.” Note that K(¢) is the cumulant
generating function for the original density fx (-).
From (4),

fz (%) = fx(%; ¢)exp[n{K(¢) — oi}].

The Edgeworth expansion for the conjugate density
[z(%; ¢) is now used to derive an expansion for the
density of interest fxz (). This expansion is

fx(x; ¢)
(5) = Y(2)(vary, X) %1 + p3(¢)hs(2)/6
+ pa(P)ha(2)/24 + p5(P)hs(2)/72 + - -},

where ¥(2) is the_standard normal density, and z =
(¥ — E,X)/(var,X)"/? is the standardized version of

%. Under the conjugate exponential family, E,X =
K’(¢) and var,X = K”(¢). The standardized cumu-
lants p3(¢) and p4(¢) are given by

ps(6) = KD(¢)/(K" (&)},

pa(9) = K¥(¢)/{K"($)}>.
The Hermite polynomials h;(z) are defined by

hia) = -1y 22 / e
explicit expressions for those appearing in (5) are
hs(z) = 2° - 3z,
hy(z) = 2* — 622 + 3,
he(z) = 28 — 152* + 4522 — 15.

Because X is the mean of n independent, identically
distributed random variables, ps is O(n2) and p, is
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O(n™'), and the (- - -) appearing in (5) is O(n~*'?). The
main difficulty with the Edgeworth approximation
using the three correction terms in (5) is that as
|2] = o, i.e., £ is in the tail of the distribution, the
Hermite polynomials become unbounded. However,
because ¢ is arbitrary, it can be chosen so that for
each value of % the Edgeworth series is evaluated
at the mean of the conjugate density. As noted
above, this mean is precisely é = ¢(%) defined by
(2). Combining (4) with (5), we have

1/2
fx(@ = {2—7;1{”—(@} exp[n{K($) ~ 4811 + O(n ™),

which is the scalar version of the saddlepoint expan-
sion (1). For a rigorous derivation of the univariate
Edgeworth expansion see Feller (1971, Section XVL.6);
the multivariate expansion is discussed in the appen-
dix of Barndorff-Nielsen and Cox (1979) and in
Bhattacharya and Rao (1976).

Daniels (1954) presented expansion (1) for the sca-
lar case and gave explicitly the form of the O(n™")
term. Good (1957) gave the form of the O(n~?) term
in the scalar case, and derived the bivariate (k = 2)
version up to and including the O(n™!) term. For
general k the difficulty is not in deriving the leading
term given in (1), but rather in devising suitable
notation for recording the remainder term. The bivar-
iate and multivariate approximations are derived in
Barndorff-Nielsen and Cox (1979, Sections 3 and 4),
but the notation introduced in McCullagh (1984b) is
somewhat more convenient.

The coefficients in the expansion of the remainder
R, depend on the higher order derivatives of K(¢).
For k = 1, the coefficient of the O(n™") term is

(6) {304(6) — 5p3($)}/24.
In the multidimensional case, this term takes the form
@ {304(d) — 3p%s(d) — 20%:(4)}/24,

where p, is Mardia’s measure of multivariate kurtosis
and p%;, pZ; are the two invariant skewness meas-
ures for multivariate distributions (Mardia, 1970;
McCullagh, 1987, Chapter 2). Formulas for these
invariants are provided in the Appendix.

In order to study the relative error R, in the saddle-
point approximation, it is necessary to examine the
behavior of the saddlepoint ¢ as a function of %,
or more conveniently, as a function of ¥ — u, where
= [ xfx(x) dx. It is not difficult to verify that R, =
R,.(%* — u) is uniformly bounded and has uniformly
bounded derivatives for | ¥ — u | < 8, where 6 does not
depend on n (cf. Feller, 1971, Section XVL.7). In fact
this property is ensured by the method of construction
of the conjugate family. The importance of this is that

the saddlepoint approximation is accurate for rela-
tively large values of x. In contrast, the relative error
in the Edgeworth series approximation for fz(x) is
bounded only for shrinking neighborhoods | — u|<
on~'2, and Edgeworth series approximations tend to
be very poor in the tails. Furthermore, in a wide class
of continuous univariate densities, Daniels (1954, Sec-
tion 7) showed that R,(X — u) is uniformly bounded
for all values of % in the support of fx(-). This is
further discussed in Jensen (1988).

The leading term in (1) will not in general integrate
exactly to 1, and the approximation can be improved
by renormalizing it to do so. Then the approximation
is written

(8) fx(®) = c{n/|K"($) | }"?exp[n{K($) — ¢7%}]

and is called the renormalized saddlepoint approxi-
mation. For some special densities fx (-) the invariants
appearing in (6) or (7) do not depend on ¢. In that
case the O(n™!) term will be absorbed into the nor-
malizing constant, and the error in the renormalized
version will be 1 + O(n™2).

In the one-dimensional case, there are just three
families for which (8) is exact; the normal, gamma and
inverse Gaussian. Exactness requires not only that
3p4(¢) — 5p%(¢) is independent of ¢, but also that the
coefficients in the n™%, n™2, ... terms are also free of
¢. An elegant proof that this holds only for the three
families above is given in Blaesild and Jensen (1985),
where they also give Good’s (1957) expression for the
n~? coefficient in the one parameter case, an expres-
sion for the n™2 coefficient in the bivariate case, and
discuss exactness cases for k = 2. Daniels (1980) also
proves the exactness result, by a somewhat lengthier
argument. The fact that (8) is exact for the normal
and gamma was shown in Daniels (1954).

Even if the invariants appearing in (6) do depend
on ¢, the order of the approximation can often be
improved by renormalization. This is suggested by the
interpretation of ¢ as the maximum likelihood esti-

.mate in the conjugate exponential family. The argu-

ment usually presented (e.g., Barndorff-Nielsen and
Cox, 1979, Section 2.4; Daniels, 1956, Section 7) is
that (6) can be replaced by 3ps(¢) — 5p3(¢)/24, thus
incurring an error of order n~/2. This term is absorbed
into the normalizing constant, and the relative error
is now O(n~%?). To make this argument precise it is
necessary to truncate the range of integration to
{%:| ¢ — ¢ |< on~%} and show that the error incurred
is negligibly small. In Durbin (1980a, Section 2.7) this
is verified for the case that fx (-) is itself a member of
the exponential family. (Durbin also considers renor-
malized saddlepoint approximations outside the inde-
pendent, identically distributed setting; cf. also
Section 6.6.) I am not aware of any detailed discussion
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of renormalization in the k-dimensional case, where
the leading term of R, is given by (7).

A referee has suggested that the renormalization
issue can be clarified by choosing the simpler renor-
malization of dividing by f(u). Using f(-) to denote
the saddlepoint approximation to f(-), we can write

© f@ _ f® {1

i @ - u)R;m/n}
fw  fu ’

1+ R;(0)/n

for some { between % and u, by the mean value theo-
rem. Because R, and R}, are uniformly bounded in a
neighborhood of u, the renormalized approximation
has a relative error of O(n™") for fixed | — x| and
O(n™2) for | — u| = O(n™?).

Many of the statistical applications of (1) derive
from the fact that the saddlepoint ¢ = ¢(%) is the
maximum likelihood estimate of the “parameter” ¢
in the density (5) and that n{K($) — $7%} is the
maximized “log likelihood ratio” for an independent,
identically distributed sample from that density. The
density is an artificial construct, however, and the
true parameter of interest will be the parameter of the
original density fx(-), which has been suppressed in
the present notation. An important exception is the
case when fx(-) is itself an exponential family density
with canonical parameter 6, in which case there is a
simple relationship between § and ¢, and between
n{K(¢) — ¢7%} and the maximized log likelihood ratio
statistic for 6. This connection will be exploited in
each of the next three sections.

3. MAXIMUM_LIKELIHOOD ESTIMATION

Suppose that the density of X; takes the exponential
family form

(10)  fx(x; 6) = exp{fTt(x) — ¥(8) — d(x)}

where 0 is the canonical parameter and t(x) = (¢,(x), .

, to(x))T is the minimal sufficient statistic. The
conjugate family is again of the form (10), with canon-
ical parameter 6 + ¢, and K(¢) = ¢ (0 + ¢) — ¢ (0) is
the cumulant generating function for fx(x; ). The
density of T'= Y #(X;) is given by

fr(t; 0) = exp{0t — ny(8) — h(2)},
and we now approximate exp{—h(t)} using the saddle-
point approximation. The saddlepoint equation is sim-
ply ny’(¢) = t, so that the saddlepoint occurs at the
maximum likelihood estimate 8, and (1) gives

2m) 72 | ny”(0) | V?exp{(6 — 6)t
— ny(0) + ny @)} - {1 + 0(nYH)}.

;0) =
(11) fr(¢; 9)

REID

As was first pointed out in Daniels (1958), equation
(11) has a very simple likelihood formulation:

= (20)721j(6) | 7HLO)/L@}L + O(n ™)}

In (12) L(6) is the joint likelihood for the sample
(1, --+, x,) and j(@) = —a3%log L(0)/3606T is the
observed Fisher information, in this case equal to
ny”(#). Both L and j should properly be written L(6,
t) and j(0, t), to emphasize their dependence on the
data. The transformation from ¢ to # is one-to-one,
with Jacobian |j(f) |, giving

(13)  fo(6; 0) = c|j(6) [VHLO)/LE}1 + O(n~*?)}.

We have replaced (2r) %2 by ¢ to indicate that an
improvement via renormalization is incorporated into
(13). In this case the renormalization does reduce the
error to O(n"%?), because _the region of integration
can be truncated to vn|6 — 0| < ¢ and the error
incurred is exponentially small (Durbin, 1980a,
Section 2.3).

The righthand side of (13) is often called Barndorff-
Nielsen’s approximation, as Barndorff-Nielsen has
investigated extensively its application outside the
exponential family. This will be discussed in detail
below, but for the moment we simply point out that it
is readily obtained from the saddlepoint approxima-
tion, in full exponential families. The argument out-
lined above is given in Barndorff-Nielsen (1983).

Example 1. Gamma density with unknown shape.
We write fx(x) = (v/u)’x""'e™/*I'"'(v). The maxi-
mum likelihood estimate 6 = (g, v) is given by g =
ti/n and ¢y (») — log O = (t2/n) — log(t,/n), where
to= 2 log x;, t; = Zx;, and ¥ (v) is the digamma function
dlog T'(v)/dv. It is easily shown that (13) is

fla, v p v) = cgi(i; pu, v)g(5; v)
where
&l 1, v) = (v/u)"a™ 'exp(—nvi/p)
and
& (; v) = {T"G)T )}y’ (7)) — 1}*2

- expln{( —v)Y(@) + v — v In v},

showing that (i, #) are independent to the order con-
sidered, and that the approximation to the density of
u is exact after renormalization. The renormalized
version of g»(; v) is displayed in Figure 1, for n = 10,
v=1. Also shown are the “exact” density of » estimated
from 10,000 simulations, and the approximating nor-
mal density with mean » and variance jq, (v).

The gamma example is further discussed in Jensen
(1986b), where an alternative approximation to the
density of » and approximations to the similar test for
w are derived.
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Fi1G. 1. Saddlepoint approximation (dotted line) to the density of
the maximum likelihood estimator of the shape parameter of a gamma
distribution, based on a sample of size 10. The “exact” density (solid
line) was estimated from 10,000 simulations. The normal approxi-
mation (dashed line) is shown for comparison.

To construct a confidence interval for » it is neces-
sary either to carry out repeated numerical integration
or to expand (13) and invert it algebraically. For the
general one-parameter case, the details of the expan-
sion are carried out in Barndorff-Nielsen (1985b) and
McCullagh (1984a). Unfortunately, the relatively sim-
ple approximations to tail probabilities discussed in
Daniels (1987) (cf. also Section 6.3) cannot be directly
applied to this example because § is not a one-to-one
function of a sample average. It may be possible to
adapt the conditional probability tail approximation
of Skovgaard (1988b) to this example.

Outside the exponential family setting, the maxi-
mum likelihood estimator will not be a one-to-one
function of the minimal sufficient statistic, so even if
we contemplated using the righthand side of (13) we
would not be able to write L(0; x) for example, as a
function only of 8 and 6. However, (13) does continue
to provide an approximation to a conditional density
of 0, as is illustrated in the next example.

Example 2. Location-scale family. Suppose fx (x; 0)
is an arbitrary continuous density on R', with 6 as a
two-dimensional location-scale parameter (u, o), so
that for an independent, identically distributed
sample, ‘

n

fx, oy 2 n, 0) = [ o7 xl(xi — u)/o}.

i=1

Without further assumptions about f, the minimal
sufficient statistic is the order statistic (x), - - -, X(n)-
It can be separated into two components, §, the max-
imum likelihood estimate of 6, and a = (a4, - - -, a,),
where a; = (x4 — u)/s. The vector a has n — 2 inde-
pendent components, and is ancillary; i.e., its dis-
tribution does not depend on 6. The conditional
distribution of 6, given a, is

fora(@]a; 0) = cola)e™ Mfx(Ga; + f; u, o)
which can be re-expressed as
(14)  f@la; 8) = c(a) |j(@B) 1"*L(©9)/L()},

using the fact that |j(i, ¢) | = 6 *d(a), where d(-)
depends on the derivatives of log f.

Note the similarity of (14) to approximation (13),
and also that (14) is the exact conditional density of
6, given the maximal ancillary a. Fisher (1934) derived
(14) and argued that inference for 6 should be based
on this conditional distribution; see also Cox and
Hinkley (1974, page 115). Different versions of for-
mula (14) have been derived by several authors,
including Pitman (1938), Fraser (1968), Efron and
Hinkley (1978), and Barndorff-Nielsen (1980, 1983).
Barndorff-Nielsen (1983) emphasized the similarity
of (13) and (14), and showed further that (14) provides
an expression for the conditional density of the
maximum likelihood estimate in any transformation
model, i.e., any model generated by a group.

That the same formula provides either a highly
accurate approximation or an exact expression for the
distribution of the maximum likelihood estimator in
full exponential families or transformation families
is rather surprising. Exponential families and trans-
formation families are usually considered to be
quite different statistical objects, but this suggests
that there may be a close connection between them.
McCullagh (1987, Chapter 8) has investigated to what
extent an arbitrary family of densities can be made to

" “look like” an exponential family, by conditioning on

some approximately distribution-free statistic. Also
relevant is Mitchell (1988) in which the geometry of a
subclass of transformation models, the elliptic fami-
lies, is studied. This geometry has some striking
similarities to the geometry of exponential families
outlined in Amari (1982; 1985, Chapter 2) and
Efron (1978).

What about densities that are not members of
exponential or transformation families? Remarkably,
the same formula continues to provide an approx-
imation to the conditional distribution of the
maximum likelihood estimate, conditioned on an
approximately ancillary statistic a. Approximately
ancillary is taken to mean that the distribution of a
depends on 6 only in terms of O(n™") or higher, for 6
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within O(nY2) of the true value. We write

5 A L(; 6, a)
fora@1a; 0) = c(6, @) 1j(0) |/{——}
(15) L(0, 0, a)
X {1+ O(n™)}.

In (15) we have supposed that the sufficient statistic
based on our sample is a one-to-one function of (0, a),
where a is to be specified. In fact what is required is
that (4, a) is approximately sufficient to the same
order that a is approximately ancillary. The accuracy
of this approximation has been extensively inves-
tigated, particularly by Barndorff-Nielsen (1980,
1983, 1984, 1985a, 1985b, 1986a, 1986b), but also by
McCullagh (1984a, 1987, Chapter 8), Cox (1980),
Hinkley (1980), Durbin (1980a) and Barndorff-
Nielsen and Cox (1984a). Many of these papers
restricted attention to curved exponential families, for
which particular approximate ancillaries could often
be defined. A (k, d) curved exponential family is an
exponential family with & sufficient statistics but only
d < k parameters of interest. This typically arises
when the components of the vector of canonical or
natural parameters of a full exponential family are
constrained by some nonlinear relationship. The
parameter space is thus confined to a curve in the
natural parameter space for the full family. Curved
exponential families and their properties are exten-
sively discussed in Amari (1985). However, McCullagh
(19844, 1987, Chapter 8) was able to show that (15) is
valid in arbitrary families, to O(n™'), using any
approximate ancillary statistic.

The renormalization implied by the way we have
written (15) might be expected to reduce the error to
O(n~%?). Barndorff-Nielsen (1985a, 1985b, 1986a,
1986b) showed that there is a unique approximate
ancillary for which this is the case. The 1985 papers
considered curved exponential families but in 1986a
(Section 1.3) the result was extended to a more general
setting involving nuisance parameters.

Example 3. A (2, 1) curved exponential family. Sup-
pose we are observing failure times following an
exponential (f) density, but censored at a fixed

"time T. The likelihood based on the n observations
(xl‘, 51), M) (xn’ 5n) iS

L(g) = ™"

where no = ¥ 6; is the number of failures andt=73 x;
is the total time on text. Then 6 = ny/t, j (8) = no /62,
and (15) becomes

(16) f(6|a; 0) = cn¥/?6 "exp{t(d — 0) — nolog(6/0)}

where ¢t and n, must be expressed as functions of 4
and a. There have been a variety of approximately

ancillary statistics suggested in the literature. Three
such are the Efron-Hinkley ancillary, defined in Efron
and Hinkley (1978, equation 5.6), the local ancillary
defined in Cox (1980, equation 8) and Barndorff-
Nielsen’s affine ancillary (1986a, Section 2.2), which
is related to the likelihood ratio statistic. In this
example the computation of any of these approximate
ancillaries is not entirely straightforward, which
somewhat limits the usefulness of (16) for inference.
(In this example the exact density for § has a point
mass at 6§ = 0, so in fact (12) cannot be uniformly
accurate to O(n™?), but this is in a sense a technical
difficulty.)

Example 4. N(6, b%0%), b% known. The sufficient
statistic based on n independent, indentically distrib-
uted observations from this density is (¢, t,), where
ti =n"'Zx;and t, = n"'Zx?. There is an exact ancillary
for this problem, which is a function of ¢%/t, (Hinkley,
1977; Amari, 1982). Expression (15) becomes

. (262 + 1] %(6\"
f(0la,0)=c{——:t2_t10} ;

oxp— AL L) g (L 1
LT S V) A VR | &

where again (¢, &) flepend on (8, a) through the equa-
tions t,0—t,+b%% = 0 and (¢3/ty) = hla),
where h(a) = (1 + ka)’/(1 + b%> + ka), and k =
V2b%/(2b% +1). In fact the N(6, b%0%) density is a
transformation model, so from Barndorff-Nielsen
(1983) we know that (17) is exact. For further discus-
sion of this example, see L. Skovgaard (1984).

As can be seen from Examples 3 and 4, formulae
(13) through (15), while intriguing, can be rather
difficult to use for inference about 6. The saddlepoint
approximation is also very useful in approximating
the distribution of the likelihood ratio statistic and
the score statistic, as we now describe.

17)

4. THE LIKELIHOOD RATIO STATISTIC

In the exponential family there is a simple relation-
ship between the sufficient statistic, ¢, and the maxi-
mum likelihood estimate, §. This is the basis for the
derivation of Barndorff-Nielsen’s formula from the
saddlepoint approximation; but as described in Sec-
tion 3, the formula holds much more widely. There is
also a simple relationship between ¢ and the likelihood
ratio statistic; this leads to an approximation to the
distribution of the likelihood ratio statistic that also
holds outside the exponential family.

Let W= W(0) = —2 log{L(8)/L(#)} be the likelihood
ratio statistic for testing the hypothesized value 6.
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Standard large sample theory shows that W is asymp-
totically distributed as x ;. Furthermore, in wide gen-
erality EW = k{1 + b(8)/n + O(n™?)}, so that W’ =
W/{1 + b(8)/n} has expected value k to O(n"?). The
correction b(f) is called a Bartlett factor. Bartlett
(1937, 1953) suggested such a rescaling to improve the
x? approximation to the distribution of W. In 1956,
Lawley showed that in fact all cumulants of W’ agree
with those of a xZ, to the same order, but the proof
was exceedingly complicated. A much simpler deriva-
tion is obtainable from the saddlepoint approximation,
as was first discussed in Barndorff-Nielsen and Cox
(1979, Section 6.3).

From the saddlepoint approximation (13), with the
normalizing constant explicitly included,

fw(w; 0) = (27|-)—k/2{1 + d(a)/n}e—(l/mw

(18) . f e Rw)}1j(6)|2db
* {1 + O(n_3/2)}’

where 1{-} is an indicator function, R(w) is the set of
6 values giving the same value of w and d(#) is com-
puted from (7). To first order w = (6 — )7 6)(@6 - 0),
but to keep accuracy of O(n~') it is necessary to
expand j and w as functions of 6 to higher order.
Expression (18) simplifies to

fw W; 0) = ¢ - w2~ Y2*{1 + h(@)w/n + O(n™*/3)}.

Using the fact that fw (w; ) must integrate to 1, and
wfw (w; ) must integrate to k{1 + b/n + O(n™?)}, gives
= —2d/k and

for (w; 0) = cw@P*1e=2u(1 + O(n™3/%)},

where c;, is the normalizing constant for x 7 density.
This result is derived in Barndorff-Nielsen and Cox

(1979, Section 6) for k = 1, and Barndorff-Nielsen and

Cox (1984a) for general k. A more direct proof starting

from the Legendre transform version of the saddle- -

point approximation (4) is given in McCullagh (1987,
_ Chapter 6). For an interesting .application of this
result, see Eriksen (1987).

In fact it is not necessary to restrict attention to
full exponential families. It was only used in (18)
to replace the O(n™') term d(f)/n by d(f)/n, and
to ensure that the transformation from the minimal
sufficient statistic to the maximum likelihood esti-
mate is one-to-one. Barndorff-Nielsen and Cox
(1984a) derived the same result from the more general
approximation (15): If

fo14(8 | a;0) = c(8,a) | j () | *{L(8)/L(6)}
1+ 0(n~?)}

then

(19) (6, a) = (27) *2{1 + d(0)/n + O(n™*?)},
(20) b(6) = —2d(0)/k

and

(21)  fwiaw|a) = @@ 1e=WD(1 + O(n~?)}.

In other words, the Bartlett factor for W is a one-to-
one function of the norming constant in (13), and the
rescaled version of the log likelihood ratio statistic has
all cumulants agreeing with those of a xi random
variable, to O(n~%2). It is essential for this argument
that (13) be accurate to O(n~3%); which is of course
true for exponential families and transformation
models. Outside these cases the result of Barndorff-
Nielsen (1986a) that a unique approximate ancillary
exists for which (13) is accurate to O(n~*/%) is impor-
tant. Note, however, that result (21) holds uncon-
ditionally as well: To the order considered W’ is
independent of the ancillary.

Several examples of Bartlett factors are provided in
Barndorff-Nielsen and Cox (1984a,b). Depending on
the problem, it may be easier to compute the Bartlett
factor from the norming constant, or from the
expected value of the likelihood ratio statistic. Both
of these require integrations over the sample space. A
general formula for the Bartlett factor for
k = 1is given in Lawley (1956) and Cox and Hinkley
(1974, page 339) and for k> 1 in McCullagh and Cox
(1986). DiCiccio (1984, 1986, 1988) provides several
alternative formulae: In location-scale and regression
models he has obtained expressions that depend only
on observed log likelihood derivatives, thus avoiding
the need for high dimensional integration. This should
make approximations (15) and (19) much more useful
in practice. At the present time, general correction
factors are not built in to available software such as
GLIM, although this is to be expected in the near
future.

Of possibly more relevance for inference, at least
for a scalar parameter 6, are related results on the
signed square root of W, the sign taken being that of
§ — 6. Barndorff-Nielsen (1986a) and McCullagh
(1984a) show that R = + W2 can be recentered and
rescaled to follow a N(0, 1) distribution to O,(n~*?).
The recentering is of a particularly simple form: R* =
R + p30/6, where py is the standardized skewness of
the score statistic, follows a N (0, 1) distribution to
0,(n™"). Pierce and Schafer (1986) exploit this result
to study normal approximations to deviance residuals
in generalized linear models. The multivariate version
of R, called the directed log likelihood ratio, is dis-
cussed in McCullagh (1984b), Barndorff-Nielsen
(1986a) and Bickel and Ghosh (1987). For inference
about scalar 6 in the presence of nuisance parameters
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(cf. Section 6.2), the recentering and rescaling con-
stants are somewhat more complicated, and may both
be equally important (Barndorff-Nielsen, 1986a).

5. THE SCORE STATISTIC

An alternative to the likelihood ratio statistic or the
maximum likelihood estimate is the score statistic

(22) U@®) = X Ui(6) = X 9 log f(X;; 6)/08.

To first order U follows a normal distribution and it
has exact mean 0 and exact variance i(6) = E{j(0); 6}.
In exponential families U(0) = T — ny’(0), so the
saddlepoint approximation to the density of T'is effec-
tively also the saddlepoint approximation to the score
statistic.

Noting that (22) is a sum of independent, identically
distributed random variables, a saddlepoint approxi-
mation for U(#) follows directly from (1), whether or
not the observations are from an exponential family.
Let K(t, 0) = log E[exp{tU;(0)}; 0] be the cumulant
generating function for the score. Then (1) becomes

fo (@ 0) = 2m)™*{n/| K" (to, 0)|}"*
- exp[n{K(to, 0) — tou}],

where U. = n™'U, and t, is the saddlepoint, defined
by K’(t, #) = @. In general the function K and the
saddlepoint ¢, may be difficult to compute. In expo-
nential families,A K(t, 0) is simply ¢ (¢ + 0) — ¢(0) —
ty’'(@) and to =6 — 6.

In the case that 6 is a scalar, the approximation (23)
can be used to approximate both the density and the
distribution function of the maximum likelihood
estimate, as shown in Daniels (1983). Writing
Ui(a) = 9 log f(X;; a)/da and K,(t, a) for its cumu-
lant generating function under the density f(x; 6), a
generalization of (23) is

fow(@; 0) = {n/27K," (to, a)}'?
. exp[n{Ke(to, a) - t()a”

Then if U is monotone decreasing in 6 we have

(23)

(24)

pr(é >aq; )

= pr{U(a) > 0; 6} = f fo(u; 0) du
(25) 0

= f (nKy"(t, a)/(2m)}"

- exp[n{K,(t, a) — tK;(¢, a)}] dt

where t§ and ¢, are defined by K;(t¢, a) = 0 and
Ki(t., a) = ». Version (25), which is equation (3.6)
of Daniels (1983), avoids the need for repeated solu-
tion of the saddlepoint equation. Note that (25)
provides an approximation to the tail area for the

distribution of the maximum likelihood estimate.
Except for exponential families, it will not be equiva-
lent to integrating Barndorff-Nielsen’s approximation
(13), because (24) is not conditional on an exact or
approximate ancillary. Numerical comparison of (25)
to the tail area approximation of Lugannani and Rice
(1980) (cf. Section 6.3) is given in Daniels (1983).

The derivative of (25), with respect to a, provides a
saddlepoint approximation to the unconditional den-
sity of 4. (Explicit expressions for this density in the
case of curved exponential families are provided in
Hougaard (1985) and Skovgaard (1985b).) An alter-
native approximation is also derived by Daniels
(1983); the differentiation is carried out in the inver-
sion integral and then the saddlepoint method is
applied. This gives

1/2
. n
fo(8; 6) = {m}
] Kolto, 0)
[7

0

(26)
}exp{nKO (t09 5)19

where K;(¢t, a) = dKy(t, a)/da, and t, depends on ]
through the saddlepoint equation. This version of the
approximate distribution of the maximum likelihood
estimate is equivalent to one derived by Field and
Hampel (1982), as shown in the appendix of Daniels
(1983). Field and Hampel’s result is extended to
arbitrary M estimates and multivariate parameter 0
in Field (1982).

Note that in the above, the correspondence between
U. and 8 given by the first equality in (25) is exact,
as opposed to the usual large sample approximation
(8 — 0)i(9) = nU.(9). By expanding U() to higher
order as a function of §, Barndorff-Nielsen’s approxi-
mation (15) can be used to provide an approximation
to the density of U, conditional on the exact or approx-
imate ancillary in (15). This has been carried out by
Barndorff-Nielsen (1987b).

Neither approximation (24) nor (26) has been much
used in practice, presumably because of the difficulty
of computing the cumulant generating function.

Recall that in the case of the likelihood ratio statis-
tic, the saddlepoint approximation essentially led
to an improvement in the x> approximation by the
Bartlett factor rescaling. No such Bartlett factor exists
for the score statistic (Bartlett, 1953), i.e., there is no
scaling constant that uniformly improves the x?
approximation to U7(0)i"*(9)U(#). Harris (1985) has
investigated alternative asymptotic approximations to
the score statistic by adjusting the x? distribution
rather than the statistic itself. His method proceeds
from the Edgeworth expansion; it may be that an
alternative improvement can be derived from the sad-
dlepoint expansion. Improved sample-based inference
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from score statistics using the saddlepoint approxi-
mation to tail areas (Section 6.3) is discussed in
Tingley and Field (1986).

6. FURTHER DEVELOPMENTS
6.1 Approximations in Bayesian Inference

The saddlepoint method is a technique for approx-
imating integrals over the complex plane by deforming
the curve of integration. A closely related technique
for approximating integrals over R* is Laplace’s
method, and an important application of Laplace’s
method is to evaluating integrals arising in Bayesian
analysis.

Tierney and Kadane (1986) consider approxima-
tions to the posterior mean of a function g(9),

Eg(9) = f g(0)e*?x(9) db / f e %971 (9) db,

where the dependence of the log-likelihood function
on the sample size is indicated explicitly. As n
increases, with 7(8) and g(#) fixed, the main contri-
bution to the integrands in the numerator and denom-
inator come from a neighborhood of the respective
maxima, leading to a very accurate approximation to
the posterior mean. In fact the maxima for the two
integrands differ by a term of O(n™") only, so that the
relative error in the ratio of the approximations is
O(n™2) and hence is more accurate than the individual
approximations to the numerator and denominator.
Tierney and Kadane (1986) also discuss approxi-
mations to the marginal posterior density for some
components of # obtained by two applications of
Laplace’s approximation. In this case the relative error
is not reduced by an order of magnitude, essentially
because the maxima of the two integrands are not
sufficiently close. Further developments on second-
order approximations in Bayesian inference are
reported in Tierney, Kass and Kadane (1987) and
Kass, Tierney and Kadane (1987, 1988). The last
includes some discussion of the important practical
issue of implementation.
A similar development in Davison (1986) is used to
approximate the posterior density of §. The resulting
approximation,

fe|x(0 | x)

_ (on-iplfxio(x] 0)} NP -
(2m) {fx.e(x 1) 17 0) |41 + O(n™)},
is in form identical to formula (13), with the important
difference that now 0 is considered to vary and 6 is
fixed. The prior has been eliminated in (27) by assum-
ing that it is flat in the neighborhood of 4. The
approximate posterior for nonflat priors is given by
(11) of Davison or (4.1) of Tierney and Kadane.

(27

There is also a formal equivalence between predict-
ing an observation z from a sample from a density
f(x; 8) and estimating a scalar parameter in the pre-
sence of nuisance parameters. Various approximate
predictive likelihoods proposed in Butler (1986) and
Davison (1986) are thus very closely related to modi-
fied likelihoods proposed by Barndorff-Nielsen (1983,
1986a) and Cox and Reid (1987) that are obtained by
applying the formula for the distribution of the max-
imum likelihood estimate to the conditional setting.

6.2 Conditional Inference

Suppose that the canonical parameter 4 in the expo-
nential family (10) has p components of interest, 6,
and k — p nuisance parameters 6. A similar test for
the hypothesis 6, = 0%, say, is constructed from the
conditional density of ¢, given t), where the parti-
tion of ¢ corresponds to that of §. The saddlepoint
approximations to the density of (¢z), tz) and the
marginal density of ¢, are readily obtained, and their
ratio is usually called the double saddlepoint approx-
imation. The saddlepoint for the numerator is the
maximum likelihood estimate # and for the denomi-
nator is the restricted maximum likelihood esti-
mate ), with 6, fixed at 6%,. Details of the double
saddlepoint approximation in exponential families
and generalized linear models with unknown scale are
provided in Davison (1988). The double saddlepoint
approximation is not the same as the saddlepoint
approximation to the exact conditional density, and
can be more accurate; see McCullagh (1987, Chapter
6). Jensen (1986a) shows that the resulting similar
test is well approximated by the likelihood ratio test,
after Bartlett correction.

Outside the exponential family, it is still possible to
use approximation (15) for the density of the maxi-
mum likelihood estimate # and the restricted maxi-
mum likelihood estimate . This leads to results for
the generalized likelihood ratio test essentially the

. same as those described in Section 4, and the discus-

sion in Barndorff-Nielsen and Cox (1984a) includes a
treatment of the nuisance parameter setting. The
asymptotic normality of the directed log likelihood
ratio statistic in the presence of nuisance parameters
is considered in Barndorff-Nielsen (1986a) and Bickel
and Ghosh (1987). Skovgaard (1988a) finds saddle-
point approximations to the conditional distribution
of the score statistic, and compares that to inference
based on the likelihood ratio statistic.

However, although both W and the appropriately
defined one-sided version of W can be adjusted so that
their nominal asymptotic distributions are close to
exact, and they are to the order considered independ-
ent of any ancillary statistics, it is not the case in
general that they provide optimal, or even correct
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inference for 6;,. Maximizing out the nuisance param-
eters via f(5) does not make allowance for the errors of
estimation of 63 in the inference for 6; the resulting
“profile” likelihood may give misleadingly precise
inference for 6. This problem takes its most extreme
form when the dimension of 6, increases with the
sample size (Neyman and Scott, 1948). (See also Cox
and Hinkley, 1974, page 329; Kalbfleisch and Sprott,
1970; Fraser, 1979, Chapter 5.3.)

Conditional versions of the likelihood ratio test that
are proposed in Barndorff-Nielsen (1983, 1987a) and
Cox and Reid (1987) attempt to adjust for the esti-
mation of the nuisance parameters. Both construc-
tions rely on applying (15) twice, as described in the
previous paragraph. Substantial difficulties remain in
evaluating the inferential properties of these proce-
dures, essentially because the ancillary statistic, a,
say, required for the validity of the approximation to
the density of ), may not be the same as the ancillary
statistic a used in approximating the density of 4,
and in general a; may depend on the parameter of
interest, 6,y).

6.3 Approximating Tail Areas

In many applications, it will be of interest to com-
pute approximate tail areas or cumulative distribution
functions, rather than densities. Integrating the sad-
dlepoint expansion will usually require a lot of numer-
ical calculation, although Daniels’ simplification
outlined in Section 5 may be applicable. In contrast
to this the Edgeworth expansion is easily integrated
term by term and the expansion for the cumulative
distribution function is of the same form as the expan-
sion for the density.

A variety of tail area approximations for the sample
mean derived by the saddlepoint method are reviewed
in Daniels (1987). Special prominence there is given
to the approximation of Lugananni and Rice (1980),
because it is quite simple to use, and accurate over the
range of x. The approximation takes the form

1 — Fx(%)

(28)

=[1- 2@ + ¢z —y {1 + O(n7Y)}
where y = +v2n{$z — K(¢)}? and z = ${nK"($)} 2
If X = u, (28) is replaced by

1- F)?(I-‘) = (1/2) - p3/{6(27|-n)1/2} + O(n—3/2).

This tail area approximation is extremely accurate:
for numerical examples see Daniels (1983, 1987) and
Davison and Hinkley (1988).

For evaluating tail areas in conditional densities, a
technique suggested by Barndorff-Nielsen and Cox
(1979, Section 4) is to use the saddlepoint expansion
for the marginal density in the denominator, and the

Edgeworth expansion in the numerator. This is called
the single saddlepoint expansion, and has the virtue
of being easily integrated, term by term. Skovgaard
(1988a) extends the Lugannani and Rice (1980) for-
mula to conditional tail probabilities of the form
pl'(Xl = £1|X2 = £2).

Note that for the normal approximation to the
signed square root of the likelihood ratio statistic
discussed in Section 4, quite accurate tail areas are
easily computed from the normal cumulative distri-
bution function. This is discussed in more detail in
McCullagh (1987, Chapter 6.2.6).

6.4 Approximating More Complicated Statistics

Many statistics can be approximated by sums of
independent, identically distributed random variables.
A wide class of examples is provided by the von Mises
functionals, satisfying

T(F,) = T(F)+ n'Zar(X)

where F,, is the empirical cumulative distribution func-
tion, T'(F,) is the statistic to be approximated, and
ar(x) is the influence function for the statistic 7.
Examples of von Mises functionals are the L estimates
of robust estimation theory. Another class of examples
are statistics obtained by Hajek projection (Efron and
Stein, 1981). Linear rank statistics can be accurately
approximated this way.

As in Section 5, it is possible to compute the sad-
dlepoint approximation to the distribution of the lin-
ear term. However, as pointed out in Davison and
Hinkley (1988), this does not give an approximation
to the distribution of T (F,,) with relative error O(n™!):
the next term in the von Mises expansion must also
be accounted for. The relevant calculations are illus-
trated in several examples in their paper, but the
accuracy and general applicability of such techniques
remain to be investigated.

A general technique for approximating the cumu-
lant generating function is proposed in Easton and
Ronchetti (1986). This may prove quite useful in
examples such as described above, although at
present it is not clear whether or not the resulting ap-
proximation is more accurate than the Edgeworth
expansion.

6.5 Other Series Expansions

The Edgeworth expansion approximates a density
by a normal density and correction terms based on
derivatives of the normal density. If the basic ap-
proximating density is something else, for example
gamma, then the correction terms depend on the as-
sociated system of orthogonal polynomials. For the
gamma density, these are the Laguerre polynomials.
This can be exploited to give a better finite sample
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approximation to the true density. Several examples
appear in Firth (1987).

This would also seem appropriate in problems such
as those arising in extreme value theory where the
limiting distribution is not normal. Presumably there
is an analogue of the saddlepoint technique in this
context, although whether or not it is more useful for
special problems than the regular saddlepoint tech-
nique is an open question. The only application of the
technique that I know of appears in Jensen (1986b).
A series expansion for Barndorff-Nielsen’s formula is
given in Barndorff-Nielsen (1986b).

6.6 Sums of Nonindependent, Identically
Distributed Random Variables

The derivation of the saddlepoint approximation
outlined in Section 2 suggests that if an Edgeworth
expansion is available for a conjugate density of a
statistic, with terms of successively higher order in
n~ Y2 then a saddlepoint approximation can be
derived. Thus the assumption that the variable of
interest is a sum or average of independent, identically
distributed random variables would not be essential.

This observation is made precise in Robinson (1982)
(see also Daniels, 1955) and applied to the one- and
two-sample permutation test statistics, where the ran-
domization distribution induces some dependence
between the components. The same technique could
be used for estimation in finite populations such as
arise in sample surveys, although in this application
the sample sizes are likely to be large enough that the
saddlepoint refinement to the asymptotic distribution
is somewhat academic. It could also be applied to
approximate the distribution of linear rank statistics,
such as the Wilcoxon statistic, as an alternative to the
Hajek projection argument suggested in Section 6.4.
The difficulty again is the need to evaluate the cumu-
lant generating function.

Durbin (1980a) showed that Barndorff-Nielsen’s
formula given in equation (13) also applies if the
maximum likelihood estimate f is a one-to-one func-
tion of the sufficient statistic, t. In the independent,
identically distributed case this is only true for expo-
nential families, but in the nonindependent, identi-
cally distributed setting some nonexponential models
will satisfy this requirement. In particular the distri-
bution of the serial correlation coefficient in an AR(1)
model can be approximated this way (Daniels, 1956;
Durbin, 1980b; Phillips, 1978).

In the probability and stochastic process literature,
the computation of accurate tail probabilities is usu-
ally phrased in terms of laws of large deviations. The
conjugate exponential family plays an important role
in obtaining these results, and the embedding defined
by (5) is also called exponential tilting. Accurate

approximations to boundary crossing probabilities can
be obtained this way, and these play a fundamental
role in sequential analysis. Related references are
Woodroofe (1982), Siegmund (1985), Asmussen (1985)
and Sorensen (1986).

7. CONCLUSION

There are now available saddlepoint approxima-
tions for very many statistical problems. The empha-
sis in this paper has been on likelihood-based
parametric inference, and the relationship between
second order asymptotic results and the saddlepoint
expansion, as this seems to be an area where
substantial progress is now being made. A

The saddlepoint approximations have not yet had
much impact on statistical practice, though. This is
partly because the computation involved needs spe-
cialized software, and partly because problems with
fairly complex structure cannot yet be readily fitted
in to the available framework. This can be expected
to change rather quickly in the near future.

It is encouraging that an elegant mathematical tech-
nique has the scope to provide new insights for both
applied and theoretical statistics.

APPENDIX: THE MULTIVARIATE SADDLEPOINT
APPROXIMATION

This derivation follows McCullagh (1987, Chapter
6) and is included here for completeness. The random
variable or vector X to be approximated is assumed to
have density f(x; ), where the cumulants of X are
denoted « to conform with McCullagh. The normal
density is denoted by ¢ as in Section 2.

The univariate Edgeworth expansion, in its unstan-
dardized form, is

k3hs(x; k)

flx k) = Y(x; x){l + 5

- (A1)
+ kahy(x; k) + k3he(x; k) + .. .}’

24 72

where ¥ (x; «) is the normal (k;, «2) density and the
Hermite polynomials h;(x; k) are defined by

e ) = -1y D5 / W ).

In the application of this to fzx(%; ¢) outlined in Sec-
tion 2, the cumulants « are all functions of ¢. The
standardized version of (A.1), appropriate when X is
a sum or average of independent, identically distrib-
uted random variables, is given by (5) of Section 2. It
is an expansion in powers of n~'/2. As noted in Section
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2, at x = k;, or z = 0, the right hand side of (5) becomes

1 3p4 15p§
(A.2) <1+————+...>
Vork, 24 72

and the skewness term in the expansion has disap-
peared. In fact all odd powers of n™/% are 0 at x = «;,
and the expansion is in powers of n™! for standardized
random variables. The saddlepoint approximation
exploits this by appropriately choosing the parameter
of the conjugate density.

The multivariate Edgeworth expansion is most eas-
ily expressed in the version analogous to (A.1),

f(x; «)
khijk (x; &) ki’j'k'lhijkl(x; K)
3! 4!

(A3) = y(x K){1 + £

L B g (55 0)[10] }

6!

The approximating ¢ (x; «) is now the multivariate
normal density of dimension p with mean vector and
covariance matrix matching the mean and covariance
of X; the components of the vector x are written with
superscripts x = (x', ---, x?). The Hermite polyno-
mials are generated from y by differentiating:

hiie(%; ) = (= s k) ‘,p;:,’ax)/sﬁ( x; &),

'Y (x; )

) Srarior / v o).

The multivariate cumulant arrays are easier to
describe than to express in terms of moments. First
note that since the components of X are writ-
ten with superscripts, it is consistent to write the
components of EX the same way: E(X?, ..., XP) =
(k', ---, ¥°). The p X p covariance matrix of X is
(k*’), where the element «* is the second cumulant,
or covariance of X' and X’. Then k** is the joint

hijkt(x; k) = (-1

third cumulant of X! X’ X* (in fact equal to-

E{(X' — )X — ) (X* — «*)}), and «**! is the joint
fourth cumulant of X*, X, X* X'. These are arrays of
sizep X p X pand p X p X p X p, respectively. The
Summation convention is used in (A.3) and all indices
run from 1 to p. The [10] in the final term is shorthand
for the sum of 10 similar terms, each corresponding
to one of the partitions of the six indices i, - - -, n into
two sets of three. If the third cumulant array is sym-
metric with respect to the components of X, this can
be replaced by the factor 10. In the univariate case
each index appears only once, so it makes sense to
replace k"' by ks and hy;;, by hs, etc., in which case
(A.1) is recovered.

In order to standardize the variables to obtain a
multivariate version of (5), with the basic normal

density having covariance matrix I, some work is
needed. For the bivariate case the standardization is
explicitly presented in Barndorff-Nielsen and Cox
(1979, Section 3). Beyond the bivariate case the stand-
ardization is better described than actually presented.
All that is needed for the saddlepoint approximation
is the multivariate version of p, and p3. Dividing by «,
corresponds to multiplying by (x*)7", written «;;. It
turns out (McCullagh, 1987, Chapter 2) that there is
just one affinely invariant scalar obtainable from the
fourth cumulant array, and exactly two affinely invar-
iant scalars obtainable from the outer product of two
third cumulant arrays. They are written

— LIk
ps = K"Pl; ik,
2 _ Lk, lLmn
P13 = K"K ™K Ky iKm,ns
2 __ Lk, Lmn
P23 = K™ K™K 1K) m K

and the multivariate version of (A.2) is
4—39%3—2»0%3_'_ )

24

where the (- --) in (A.4) is O(n~?) under independent,
identically distributed sampling.

(A4) (2m)7|x J|1/2<1 L
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