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Comment

George A. Barnard

I broadly agree with much of what Good says, al-
though I am sometimes unhappy with his choice of
terms. For instance, his reference to maximum likeli-
hood seems to suggest that the method amounts to
treating the most likely value of the parameter as if it
were certainly the true value. Unfortunately there are
some who make this mistake.

It is perhaps unfair, when an author has made quite
clear what his topic is to be, to complain that it should
have been something else. But I must express regret
that Good deferred to a final short paragraph his
remarks on the role of statisticians as summarizers of
data. Because the objective, efficient summarization
of data seems to me to be the most important function
of the statistician as such. The function to which Good
devotes a great part of his paper, the “cheminement
de la pensee,” in Emile Meyerson’s phrase, or “good
thinking,” as Good so aptly calls it, is one in which
the statistician functions along with many other
specialists, and where his role is not the primary
one. Besides, as I hope to indicate, the theme of the
Bayes/non-Bayes compromise finds an excellent
expression in connection with data summarization.

It is of the essence of a summarization of data that
it should embody what the data have to say on the
topic of interest, omitting only material that is irrel-
evant, and adding only material accepted as true by
all prospective readers of the summary. In the vast
majority of cases where continuous measurements are
involved, the topic of interest and what is accepted as
true by all prospective readers can be expressed in
terms of parameters and a specific function p(x, §) of
the observations and the parameters, taken to have a
known distribution. The summarization procedure
consists in transforming p, by a 1-1 transformation,
to (q, a), where q depends as much as possible on the
parameters alone, and a depends as much as possible
on the observations alone. In so far as a does not
involve the parameters its value becomes known when
the observations are known. If we then imagine learn-
ing the data by first being told the value of a, then,
after an interval, being told the values of any functions
of the data entering into q, our position just before
the interval is similar to what it was at the beginning,
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with a statistical model now specified by the function
q, with its probability function f(q) derived by con-
ditioning on the known value of a. Then learning the
values of the data functions involved in q is like
learning the values of the original observations. The
data can be efficiently summarized by specifying q, its
distribution f(q) and the values of the observational
functions entering into q. The value of a merely tells
us the value of a quantity of known distribution, not
dependent on any of the parameters; it is irrelevant
information.

In some cases a complete separation can be made,
so that g is a function of parameters only, while a is
a function of data only. This is the “full Bayesian
case,” where the inference consists simply of the pos-
terior distribution of q. The information taken as
known in the statistical model has been combined
with the data in a fully efficient manner and expressed
in the posterior distribution. Cases are, however, rare
where a statistical model allowing such treatment can
be taken as accepted by all potential readers. More
commonly a partial separation is all that can be
achieved.

A typical intermediate case is one in which unknown
scale and location parameters are involved, with a
large number of observations x;. The function p then
has components p; = (x; — A\)/s, where (), o) are the
unknown parameters. If (%, s) denotes any convenient
location-scale pair of functions of the sample (such,
for example, as the sample mean and the sample
estimated standard error of the mean), @ may be taken
to be (¢, z2) = ((x — N)/s, (In s — In o)), while a
has components (x; — £)/s. If the conditional density
of (t, z) is f(t, z), the data are then objectively and effi-
ciently summarized by specifying (¢, z), f(t, z) and

"the observed values of (%, s).

If (to, 20) denotes the result of substituting the
observed values of (%, s) in (¢, z), then f (¢, z,) provides
the likelihood function of (A, ¢) on the basis of the
data. Any reader who can supplement the statistical
model with his personal prior for (), 6) may combine
this with f (o, 2,) to derive his posterior for the param-
eters. If we think of the readers of the summary, some
will have their own priors, whereas others may not be
prepared to so commit themselves. The specification
of (t, z), f(t, z) and the observed values of (x, s) then
can be thought of as a Bayes/non-Bayes compromise.

Other compromises will be needed in practice. It
will be unwise to suppose the distribution of p to be
exactly known, so a “model adjustment parameter”
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should be introduced to allow for this. It is a comfort-
ing fact—responsible for the fact that dubious nor-
mality assumptions have not ruined the reputation of
statisticians—that f (¢, z) often turns out to be affected
very little by changes in the model adjustment param-
eter. Again, location-scale problems, with their gen-
eralizations which take up the bulk of texts on applied
statistical inference, are special in that a large a can
be found which is wholly free from dependence on
parameters. In other cases, compromises have to be
made between the “size” of a and the extent to which
it does not change with changes in the parameters.
Much of the art of statistical inference consists in
judicious choice of statistical model and of the ancil-
lary a so as to produce a useful summary which is
broadly acceptable while remaining highly efficient.

I sketch these ideas here to invite Good to comment
on how they appear to him to fit with his ideas of
Bayes/non-Bayes compromise. One specific aspect
may be picked out in connection with the location
scale problem sketched above. A reader who is unpre-
pared to feed in his own personal prior for (), ) might
argue as follows: If S denotes any set in the space of
(t, z), determined without reference to the observed
values of (x, s), and if I guess that (¢, z) belongs to S,
the probability P that I guess right is given by inte-
grating f over S. But, knowing the observed (%, s), and
nothing else about (), o), to guess that (¢, s) falls
in S is the same as to guess that (A, o) falls in the
set {(\, 0): (to, 20), € S}, so the probability that this
guess is right is also P. This is a version of the fiducial
argument. Fisher came to recognize, near the end of
his life, that he had perhaps been mistaken over this
argument (see Barnard, 1987). I think his mistake
consisted in his assumption that any quantity con-
cerning which a probability statement can be made
must be a random variable in the sense of Kolmogo-
roff. I find Good’s suggestion, that the man who had
the perception to isolate the property of sufficiency
was misled by faulty notation, implausible.

Before leaving the subject of summarization I would
make the point that science is a cumulative endeavor,
built upon continual repetition of repeatable experi-
ments (shown to be repeatable just by being repeated).
The emphasis that Fisher laid on the use of internal
estimates of error has led, in the softer sciences, to
undue emphasis on the interpretation of single, iso-
lated experiments, with their p-values, as if a single
experiment could ever establish the existence of a
natural phenomenon. If the evidence from a number
of experiments is to be combined, this must be done
before any prior judgments are inserted—independent
likelihoods can be multiplied together, but not
independent posteriors.

To return to the major part of Good’s paper, I see
his major contribution to our thinking in the stress he

has laid on the multiple nature of measurable uncer-
tainty as probability, credibility and so on, and in his
taxonomy of these concepts. Since being “cured” of
philosophy by Wittgenstein in 1933, I have come to
see taxonomy as the principle valuable activity of good
philosophers. But such activity carries its own risks.
It is all too easy to suppose, wrongly, that a word or
phrase in current use must possess a generally defin-
able meaning. The extent to which an event F caused
another event E may, for purely practical reasons,
require assessment within legal systems which employ
the dubious concept of damages. But as a general
concept of potential value in science, or even in mo-
rality, I see no use for it. I have similar doubts about
the word “cause.”

“Weight of evidence” is a term which can be given
a precise meaning in reasonably well-defined circum-
stances—namely when it is possible to calculate the
probability of an event E from an hypothesis H and
also from the negation of H. I agree with Good that in
such cases “weight of evidence” has a precise and
useful meaning. (And I may add that according to my
possibly faulty recollection C. S. Peirce said the same,
in his book Chance, Love and Logic, without adding
the condition that H and not-H must be equally
probable a priori.)

“Induction” is another word which perhaps gener-
ates more confusion than it is worth. It so easily
tempts us toward the notion of a “law of nature,”
thought of as necessarily universal.

Good’s criticisms of mechanical interpretations of
p-values are well taken. Fisher’s emphasis on their
“exactness” arose, I think, because he wrote his Sta-
tistical Methods before the heat of his controversy
with Karl Pearson had cooled—accuracy of p-values
being a central issue in that debate. Although he made
far more changes in successive editions than he is
given credit for, he was loth to rewrite sections which
may have given a false impression without actually
being wrong. But I have doubts about Good’s proposal
to standardize P’s to sample size 100. Pitman’s point
(1965) is too little known—that from the strict Ney-
man-Pearson point of view, to minimize the long run
frequency of errors of the second kind, subject to an
upper bound on the frequency of errors of the first
kind, we must adjust our critical p-values to the sen-
sitivity of our tests. Because the sensitivity of a test
depends on factors other than just the sample size,
standardizing the latter could mislead.

Good’s use of the past tense in relation to the idea
that subjective probability might be “the most basic
kind” leaves one in doubt whether he would still so
argue. What is meant here by “basic” is not clear to
me; but taking it in one sense I would object to the
idea by pointing to the use of “probability” in quantum
theory where probability density is equated to the
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squared modulus of the psi function. The theory
amounts to a doctrine that there exist “systems”
whose “state” can be described by a psi function
satisfying certain rules of combination and of evolu-
tion in time. These “systems” relate to objectively
describable repeatable experimental set-ups; and the
theory is related to such set-ups mainly by interpreting
the squared modulus of the psi function as a “long run
frequency probability” over repetitions of such set-
ups. No subjective element enters into this, although
in relation to a single such set-up an observer may
associate the quantum-theoretical probability with a
subjective probability of the same magnitude. There
are many fascinating puzzles here, well described by

Comment

James O. Berger

I recall being surprised upon first encountering the
considerable interest of many philosophers in proba-
bility and statistics, interest at an often detailed tech-
nical level. Perhaps even more unusual is a serious
professional interest in philosophy from a statistician
or probabilist. Jack Good has had such a professional
interest, virtually from the beginning of his career,
and it is indeed a pleasure to view the world of “prob-
abilistic philosophy” through his eyes.

One of the cornerstones of probabilistic philosophy
was the development of the Bayesian and expected
utility paradigms for processing information and
making decisions. The paradigms were, however, an
incomplete representation of reality, until Good in-
corporated the concept of partially ordered probabili-
ties into their structures. I have written, in some
depth, about this aspect of Good’s work in Berger
(1987), and so will refrain from further comments
here.

I found Good’s comment, that “... the future of
statistics . . . will be a compromise between hierarchi-
cal Bayesian methods and methods that seem super-
ficially to be non-Bayesian,” quite interesting. It is
true that hierarchical Bayesian methods (including
their empirical Bayes approximations) often have no
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Like Good I see the future of the foundations of
statistical inference in Bayes/non-Bayes compromises
involving hierarchical models, objective data summa-
rizations and in other directions. It is a pleasure to
have been invited to discuss.
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workable classical analogues, and hence will be indis-
pensable to the future of statistics; was more than this
intended by the comment?

Isn’t the left hand side of (2) often called a “weighted
likelihood ratio”? I have several times been cynically
amused that some statisticians will have no qualms
about basing a decision on a weighted likelihood ratio
with rather arbitrarily chosen weight functions, but
will cry out in horror at the thought of using a Bayes
factor with a prior that is actually thought about!

Another way of trying to understand the type of
correction to a p-value given in (4), is to observe that,
as long as N is at least moderately large,

20g (o)

p-value .
Bayes factor \/N[z + (.75)27Y] ’

here ¢ is the standard deviation of an observation,
g(0,) is the value of the prior density as it approaches
the null model 6, and z is the standardized (normal)
test statistic z = VN(& — 6,)/0. Thus a p-value will
behave roughly like a Bayes factor if it is multiplied
by VN. (The above formula further suggests that
multiplying p by [z + (.75)z™'] might be a beneficial
standardization, but this is a comparatively minor
additional correction.)

The idea of choosing a (perhaps crude) Bayes factor
to be the significance test criterion certainly should
be beneficial to classical testing. What, however, is
the value of this to a Bayesian, who feels that all tail



